浅埋暗挖地铁隧道施工地表沉降规律分析

合集下载

地铁浅埋暗挖隧道地层沉降因素及控制对策

地铁浅埋暗挖隧道地层沉降因素及控制对策

地铁浅埋暗挖隧道地层沉降因素及控制对策地铁浅埋暗挖隧道是大城市城市轨道交通建设的重要组成部分,然而在建设过程中,地铁浅埋暗挖隧道地层沉降问题一直是工程施工与地面安全的重要关键因素。

本文将从地铁浅埋暗挖隧道地层沉降的成因、控制对策等方面进行深入探讨,旨在为地铁浅埋暗挖隧道工程建设提供参考和借鉴。

1.1 地铁浅埋暗挖隧道施工方式地铁浅埋隧道的建设方式主要有钻爆法、掘进法、涂浆桩管法等。

在不同的地质条件下,选择不同的施工方式,但无论采用何种方法,都会对地下地层产生一定的影响。

地铁浅埋暗挖隧道工程负荷是指地铁车辆、载荷、垂直荷载等对地面和地下地基所产生的压力。

在地铁浅埋暗挖隧道施工过程中,对地下地层的压力变化也会引起地层沉降。

1.3 地下水位变化地下水位的变化也是影响地层沉降的重要因素之一。

地下水位的升降对地下地层的稳定性和承载力都会产生一定的影响,从而导致地层沉降的发生。

1.4 地下管线等其他因素在地铁浅埋暗挖隧道的施工过程中,可能会破坏地下管线、破碎地下岩石等,这些都可能成为地层沉降的因素。

2.1 预测和监测在进行地铁浅埋暗挖隧道工程施工前,必须进行地下地层的详细调查、分析和预测,了解地下地质、地下水位等情况,采取有效的控制措施。

在地铁浅埋暗挖隧道工程施工过程中,对地下地层的沉降情况进行实时监测,一旦发现地层沉降超过允许范围,及时采取对策。

2.2 合理施工方式选择合理的地铁浅埋暗挖隧道施工方式,根据地下地质条件、地下水位等因素,采取相应的施工方法,减少对地下地层的影响,降低地层沉降的风险。

对地铁浅埋暗挖隧道工程负荷进行合理控制,避免过重的压力对地下地层产生较大的影响,减少地层沉降的危险。

2.4 保护地下管线和地下水资源2.5 合理规划和控制地下水位2.6 加强沉降控制技术研究加强对地铁浅埋暗挖隧道地层沉降控制技术的研究,通过新技术、新材料等手段减少地层沉降的发生,提高地下地层的稳定性。

三、总结地铁浅埋暗挖隧道地层沉降是一个复杂的问题,需要从地下地质、地下水位、地下管线等多个方面进行综合分析和控制。

城市浅埋暗挖地铁隧道沉降控制与分析

城市浅埋暗挖地铁隧道沉降控制与分析

!!!!""#年$"月第$"期中国资源综合利用"#$%&’()*+,-()"*./,(#(%)$0(12$3$4&2$*%随着城市地铁在我国的陆续兴建,浅埋暗挖法在地铁隧道施工中得到广泛的应用,由于其埋置深度小,随着地层物质被挖出,自洞室临空面向地层深处一定范围内地层应力场将发生调整,宏观表现为地层物质的移动,施工引起的地层变位将波及地表,产生地面沉降,形成施工沉降槽,过大的地面沉降和地层变位将直接危及地面建筑物的正常使用,进而危及施工安全,因此施工中必须对有害沉降进行控制,这就要解决沉降的控制基准问题,并通过控制基准在施工过程中对地面建筑、地表沉降等,在理论分析指导下进行有计划的监测,以监测数据为依据,对暗挖隧道进行动态管理。

$沉降控制基准值的确定沉降控制基准由两个方面确定:其一是出于环控的需要;其二是出于隧道工程结构本身稳定的需要。

实施的控制基准必须两者兼顾。

沉降对城市环境、隧道结构本身造成的危害主要表现在地面建筑物的过量倾斜及地下管线的变形、断裂而影响其正常使用和威胁结构安全。

通常的地面沉降控制值即是出于对环境和结构稳定要求的考虑,其根据主要来源于已有的建设规范及以往的工程实例。

但是由于地面建筑及地下管线种类繁多、结构等级各异,线路穿越的地层不同,若均用同一基准值控制,难免产生某些地段过于保守,造成经济损失,某些地段又出现危害性沉降的弊端。

为了使给出的沉降控制基准值既保证建筑物及地下管线的安全,又使建筑成本较为经济,有必要对控制基准作较深入的分析,使其尽量适应各类建筑及地中管线的需求及尽可能符合工程实际。

沉降对地面建筑的危害主要表现在地面的不均匀沉降引发的建筑物倾斜(或局部倾斜)。

在《建筑地基基础设计规范》(5678889!:88:)中对各类建筑物的允许倾斜值已明确规定。

因此,对建筑物而言,允许最大差异沉降(不均匀下沉)作为地面沉降的控制条件,本文以横向沉降曲线加以分析。

地铁浅埋暗挖隧道地层沉降因素及控制对策

 地铁浅埋暗挖隧道地层沉降因素及控制对策

地铁浅埋暗挖隧道地层沉降因素及控制对策地铁是现代城市交通工具的代表之一,它不仅便捷,而且节省时间,受到了广大市民的欢迎和喜爱。

地铁建设需要在地下挖掘隧道,这种浅埋暗挖的方法对地层沉降有着显著的影响。

本文将讨论地铁浅埋暗挖隧道地层沉降因素及控制对策。

一、地铁浅埋暗挖隧道的地层沉降因素1.构造裂隙地壳中存在许多构造裂隙,这些裂隙会在地铁浅埋暗挖隧道过程中引起沉降。

由于地铁隧道穿过了许多构造裂隙,裂隙中的岩石容易破碎和变形,从而导致地层沉降。

2.土壤性质地铁建设的过程中,需要挖掘和开挖土壤,因此,土壤性质对地铁建设的影响非常大。

一般来说,软黏土和淤泥是导致地层沉降的主要土壤类型。

当地铁通过这些土层时,土壤会被挤压和变形,随着时间的推移,地层沉降会越来越明显。

3.水位变化地下水位的变化也会对地层沉降造成影响。

如果地铁穿过含有高水位的土壤层,那么地铁建设过程中,需要采用排水措施,以保证施工过程中的安全。

如果排水不当,水压过大会导致地层沉降,而且还可能导致隧道的变形和破坏。

二、地铁浅埋暗挖隧道地层沉降控制对策1.预测地层沉降在进行地铁建设之前,必须首先预测地层沉降情况。

可以使用数值模型来模拟和预测地层沉降,评估地下建筑物可能引起的地层沉降,从而采取相应的措施来控制地层沉降。

2.地层加固对于地铁经过的土地层,可以采取加固措施,如注浆等,以保证隧道建设过程中的稳定性。

可以使用高分子灌浆剂、水泥浆、珍珠岩等材料对地下土层进行加固。

3.监测地层变形在地铁建设过程中,需要对隧道周围的土地进行实时监测,以便及时发现地层变形的情况并采取相应的措施。

可以使用传感器等设备进行监测。

4.合理排水通过合理的排水控制,可以减少因水压过大而导致的地层沉降,从而保证地下建筑物的安全。

采用排泥管、泥水分离设备等措施可以有效地控制地下水位。

总之,地铁浅埋暗挖隧道施工过程中,地层沉降是一个非常重要的问题。

针对上述因素,采取控制对策可以有效地避免地层沉降,从而保证地铁建设过程的安全和稳定。

浅埋暗挖法地表沉降原因分析

浅埋暗挖法地表沉降原因分析

浅埋暗挖法地表沉降原因分析浅埋暗挖法作为城市地下工程主要的施工方法,具有对地面交通干扰小、拆迁少、施工灵活等优点,但该工法可能引起较大的地表沉降。

为此国内外众多学者对浅埋暗挖法引起的地层沉降进行了广泛而长期的理论研究,最后取得比较一致的意见:土体的固结沉降、施工引起的地层损失、隧道开挖后地层初始应力改变三方面是导致浅埋隧道地层变形的主要原因。

标签:浅埋暗挖法;地表沉降;原因分析目前,我国地铁的修建处于高峰时期[1,2],由于地铁埋深较浅,修建过程中引起土层初始应力场的变化会导致的地层位移发生改变进而波及地表,产生不均匀沉降,地表的沉降会对地面周边的建筑物、构筑物和地下管线产生不同程度的影响,当沉降达到一定限值后就会产生损坏,极有可能引发安全事故,因此正确认识并利用地表沉降规律,保证隧道开挖和支护形式的合理性是很重要的。

1、土体的固结沉降简单的说,土的固结是指在荷载等因素作用下,土体水分排出,土体体积减小、密度及强度增大的现象。

广义上的土体固结是指土的压缩过程,通常意义下的固结仅指饱和土的固结,当荷载刚施加在饱和土上时,由于土体孔隙中充满了水,土体所受的附加压力全部由孔隙水压力承担,随着水分的排出,有效应力逐步分担附加压力,当土体孔隙水分完全排出后,有效应力承担全部附加压力,这就是土体的固结过程。

简单的讲,土体固结就是附加压力由孔隙水压力转移到有效应力的过程。

固结按其发生机理可以分主固结与次固结,主固结是指土体受压,孔隙水排出,孔隙水压力逐步转化为有效应力的过程,也称渗透固结;次固结沉降是指主固结完成后,变形随时间缓慢增长导致的沉降。

这种变形既包括剪应变,又包括体积变化,主要取决于土骨架本身的蠕变性质,与孔隙水排出无关。

在一些软土、淤泥等孔隙比较大的土层中,次固结沉降不仅持续时间长而且在整个沉降量中占有较大比重,个别可高达35%,不容忽视。

结合土的固结理论和与地下工程的特点,我们可以将土的固结沉降归结为以下4个方面:(1)地下水位的下降;(2)孔隙水溢出;(3)开挖对土体的扰动;(4)土体的后期固结沉降。

浅埋暗挖隧道施工中沉降变形原因分析及控制措施

浅埋暗挖隧道施工中沉降变形原因分析及控制措施

浅埋暗挖隧道施工中沉降变形原因分析及控制措施一、引言近年来,随着城市化进程的加快,地下空间的需求不断增加,浅埋暗挖隧道的施工也越来越普遍。

隧道的稳定性和安全性是施工中亟待解决的问题,其中沉降变形是一项关键问题。

本文将从隧道施工沉降变形的原因和控制措施两个方面进行分析和探讨。

二、浅埋暗挖隧道施工中沉降变形原因分析浅埋暗挖隧道施工中沉降变形的主要原因可以归纳为以下四点:1. 地质和水文条件地质条件和水文条件的不同会直接影响隧道的沉降变形。

例如,土层中的含水量、地下水位的高低、土层结构的稳定性等都会导致隧道的沉降变形。

2. 施工方式和技术隧道的施工方式和技术也是造成沉降变形的重要原因。

挖掘工序、注浆和加固工序、打洞工序等都会影响隧道的沉降变形。

3. 荷载条件荷载条件也是导致隧道沉降变形的因素之一。

例如,地铁列车、行人、车辆等会对隧道的沉降变形产生影响,甚至会加剧沉降程度。

4. 工期和施工方法施工方法和工期也会影响隧道沉降变形。

例如,在复杂地质条件下采用快进法施工会加速围岩的破坏并导致隧道沉降变形。

三、浅埋暗挖隧道施工中沉降变形控制措施为了控制和减小隧道施工中的沉降变形,以下控制措施应被采取:1. 地质条件分析在施工前一定要进行地质条件分析,如土层的性质、水文条件、地震灾害等。

仅仅采取一般的地质勘察方式是不够的,站在工程全局的角度,可以采用先进的地质探测技术,并结合实测资料等多种方式进行综合分析。

2. 施工技术与措施在施工过程中,应采用先进的技术,并调整施工顺序,以最大限度地减小地下沉降变形。

例如,在挖孔过程中,应试图减少挖孔造成的运动量,以改善工作现场的环境条件,使土地的变形得以最小化。

3. 进行沉降预测通过对施工工艺和设备的模拟、试验和分析,可以较为准确地预测隧道沉降变形的范围和程度。

可以及时调整施工工艺和方法,以最大限度地减少隧道沉降变形。

4. 注浆工程注浆技术在地下工程中起着关键作用,它可以加固岩石,提高坚硬程度,从而减少地下沉降的风险。

北京地铁浅埋暗挖法施工引起地表沉降规律研究.doc

北京地铁浅埋暗挖法施工引起地表沉降规律研究.doc

北京地铁浅埋暗挖法施工引起地表沉降规律研究随着城市化建设进程节奏的逐步加快,城市里面人口越来越多,地面空间变得越来越拥挤,地下建筑的大规模建设解决了这个问题。

在地铁施工过程中,由于地下土体被挖出,造成洞室周围土体应力重分部,不可避免的产生地表沉降。

因此,对地下建筑施工引发的地表沉降规律进行研究十分重要。

本文首先对地铁建设引发的地表沉降的研究成果进行了总结,并对浅埋暗挖法以及监控测量技术进行了概括性的描述,并结合北京地铁九龙山站7号线地铁站及14号线地铁站车站主体84个监测断面,附属结构60个监测断面,区间20个监测断面,共计164个断面,并剔除之中9个数据异常的监测断面,最终选取155个断面的现场实际监控测量数据进行分析,并辅以FLAC3D数值模拟。

通过研究所得,对九龙山站PBA工法施工的车站主体进行了小导洞开挖方法的优化,本文主要结论如下:1.区间隧道采用台阶法施工,开挖上台阶的施工,对地表沉降影响较大,占总沉降量的50%-65%,因此缩短开挖的进尺,及时使得施工掌子面封闭成环可有效减缓地表沉降;2.隧道上覆建筑的存在,由于建筑的自重作用对隧道拱部土体产生压应力,改变了土体中应力的分布,因此地表受到的影响很大,引起了较大的沉降量,并且使得沉降槽平缓,宽度变大;3.施工方法及隧道断面形状对沉降槽宽度系数影响较大,上覆埋深基本相同的情况下,不同施工方法产生沉降槽宽度由大到小的排列顺序为PBA工法>中洞法>CRD工法;4.高跨比的增加使得沉降槽宽度变小,沉降曲线宽度参数也相应变小,地层损失率也有所减小,在粉质粘土和粉细砂为主的条件下,成拱效应高跨比的值在1.2-1.5之间;5.PBA工法步骤较多,小导洞施工阶段,采用“先上后下,交错施工”的施工方案对地层的影响较小,引发沉降量较小,通过现场监控测量数据与数值模拟计算结果比较分析,可知计算结果较为合理,可为今后的设计和施工提供参考;。

地铁车站浅埋暗挖法施工引起地表沉降规律研究

地铁车站浅埋暗挖法施工引起地表沉降规律研究

地铁车站浅埋暗挖法施工引起地表沉降规律研究摘要:在城市隧道施工中经常用到浅埋暗挖法,其具有施工便利、灵活、经济效益好的特点。

然而在地铁施工中应用浅埋暗挖法容易引起地表的沉降。

而城市地铁车站往往位于人口和建筑物密集的区域,一旦发生地表沉降容易造成严重的后果。

本文对地铁车站浅埋暗挖法施工引起地表沉降规律进行了研究,希望能够为判断地铁车站施工的最大地表沉降提供参考。

关键词:地铁车站;浅埋暗挖法;地表沉降为了对地铁车站使用浅埋暗挖法进行施工而造成的地表沉降进行合理的控制,避免施工造成的地表沉降给地铁车站周围的建筑物和行人造成不利的影响,本文结合工程实例,对砂性土和黏性土互层的地质条件下的由浅埋暗挖法施工而造成的地表沉降规律进行了研究,施工方法会对地表沉降值造成直接的影响。

1.工程实例和研究现状在地铁车站的施工过程中,周围的地层受到了施工的扰动,从而造成地表沉降槽,并影响周边的建筑物,甚至使其不能正常使用。

地表沉降预测是地铁施工前期一项重要的施工环境影响评估工作。

本文以某市的地铁5号线、10号线的11个地铁车站工程施工实例为例,该市使用了浅埋暗挖法进行施工,当地的地质条件为砂性土和黏性土互层。

当前国内外对于地铁车站中使用浅埋暗挖法进行施工而造成的地表沉降还没有进行系统的研究,F. Martos曾经以扁平矿洞开采导致的地表沉降统计结果为根据将沉降槽符合高斯分布首次提了出来。

而 R. B. Peck以及B. Schmidt等学者又对隧道开挖导致的横向地表沉降槽与高斯分布同样符合进行了证明[1]。

也就是Smaxexp[-y2/(2i2)]=S在公式中隧道中线与地表点之间的水平距离用y来表示;距离隧道中线处的地表沉降用S来表示;最大地表沉降用Smax来表示;到地表沉降槽反弯点距离用i来表示,其对沉降槽的形状与范围进行了定义。

通过该公式进行积分能够将沉降槽在隧道掘进方向上单位距离的的体积得出来,也就是所谓的地层损失率在这里指的是在隧道开挖体积中单位距离内沉降槽体积所占的百分比:V1=4VS/πD2其中:地层损失率(%)用V1来表示;隧道等效直径用D 来表示。

地铁浅埋暗挖隧道地层沉降因素及控制对策

地铁浅埋暗挖隧道地层沉降因素及控制对策

地铁浅埋暗挖隧道地层沉降因素及控制对策随着城市交通的发展,地铁成为现代城市中不可或缺的交通方式。

而地铁建设中最为复杂的工程之一就是地铁浅埋暗挖隧道。

在地铁建设过程中,地层沉降是一个重要的问题,它不仅关系到地铁建设的安全和稳定,还会对周边环境和建筑物造成影响。

研究地铁浅埋暗挖隧道地层沉降因素及控制对策显得十分重要。

地铁浅埋暗挖隧道地层沉降因素主要包括地质条件、暗挖施工方式、地下水、建筑物及设施等因素。

首先是地质条件,地质条件对地层沉降有着直接的影响,例如地质构造、地层岩性、地下水情况等都会影响地层的承载能力和稳定性。

其次是暗挖施工方式,挖掘方式的选择会直接影响地层的沉降情况,不同的挖掘方式对地层的影响也不同。

再者是地下水,地下水位的变化会对地层稳定性产生影响,尤其是在暗挖隧道时,当地下水位下降会导致地层沉降。

最后是周边建筑物及设施,地铁建设会对周边建筑物和设施造成一定的影响,尤其是在地层沉降较大时可能会引起周边建筑物的裂隙等问题。

针对以上地层沉降因素,我们需要采取相应的控制对策。

首先是对地质条件的控制,需要在地铁建设前进行详细的地质勘察和分析,充分了解地质情况,根据地质情况设计合理的地铁线路和施工方案。

其次是对暗挖施工方式的控制,选择适合地质条件的挖掘方式,并且在挖掘过程中采取相应的支护措施,保证挖掘过程中地层的稳定性。

再者是地下水的控制,需要合理的控制地下水位的变化,特别是在暗挖隧道时,要加强地下水的排水工作,避免地下水位下降带来的地层沉降问题。

最后是对周边建筑物及设施的控制,地铁建设前需要对周边建筑物和设施进行详细的评估和加固工作,保证地铁建设过程中对周边建筑物和设施的影响尽量降到最低。

除了以上的控制对策,我们还可以采取其他一些措施来减小地层沉降对周边环境和建筑物的影响。

在地铁建设过程中加强监测工作,对地层的沉降情况进行实时监测,并根据监测数据及时调整施工方案,保证地层沉降在可控范围内。

可以采取地铁隧道盾构施工、压浆注浆技术、地下水位监测和调控技术等先进技术来控制地层沉降的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅埋暗挖地铁隧道施工地表沉降规律分析
————————————————————————————————作者:————————————————————————————————日期:
摘要:为了研究大连地铁202标段促进路站-春光街站暗挖区间人工素填土地段单双线隧道施工地表沉降规律,通过现场实测和数据分析整理的方法,在地铁隧道开挖期间建立了地表沉降监控量测测站,运用精密水准仪进行3个月的监测,监测结果表明浅埋暗挖隧道在开挖期间地表沉降最大位置处于隧道中心线的正上方,沉降量约为25.66~31.82mm.提出了距跨比β的概念,距跨比β的有效工程取值范围-4<β<4,地表沉降与距跨比β密切相关,其中-2<β<2地表沉降剧烈阶段,约占整体变形的67.5~77.6%,沉降速率约达0.84~0.93mm/d.建议应加强监测频率,增加现场巡视.现场测试结果与文克尔地表沉降计算模型相吻合,监测成果对大连地铁及类似的浅埋暗挖隧道建设有借鉴作用.
关键词:地铁隧道;人工素填土;地表沉降;文克尔沉降模型
0引言
随着社会经济的迅速发展和城市化步伐的加快,我国的地铁建设进入高速发展时期.在地铁隧道施工过程中不可避免地扰动隧道周围的地层,产生地表沉降,严重时将影响到周边建筑物和地下管线的安全[1-3].国内外学者展开了许多地铁隧道施工引起地表沉降变形方面的研究[4-5],对指导工程建设具有重要的理论与实际意义.由于大连地铁202标段促春区间是在人工素填土层中的地铁隧道施工,地层含水量大,地层软弱,底下管线密布,因此,对人工素填土地层中隧道施工引起的地表沉降规律进行总结研究,有着非常重要的理论和现实意义.
1工程背景
大连地铁202标段促进路站至春光街站区间设计范围为里程DK11+365.945~DK12+013.350,区间地貌为剥蚀低丘陵、冲洪积沟谷,地形起伏较大,整体上看中央高,两侧低,地面高程7.69~22.78m.沿线穿越街道、工厂、居民住宅区,建筑物密集,管线、管道众多.本文以暗挖区间为主要研究对象,右线先于左线开挖.左、右线隧道长分别为732.127m和734.273m.隧道主体横断面为单拱圆形断面,断面尺寸为6.3×6.5m.隧道范围内上覆第四系人工堆积层(人工堆积素填土、杂填土层),第四系全新统冲洪积层(卵石层),第四系上更新统坡洪积层(粉质粘土),下伏震旦系五行山群长岭子组强(全风化岩、强风化岩、中风化岩).隧道断面范围上方自上而下分别为:素填土(0.50~11.00m)和杂填土层(1.40~8.50m),卵石层(0.70~13.30m),粉质粘土(1.10~11.00m),全风化岩(2.20~29.60m).采用新奥法台阶法施工,上、中、下三个台阶依次进行施工,每次进尺1m.暗挖结构超前支护采用超前小导管注浆对地层进行预注浆加固.施工后,及时进行隧道初期支护,支护方式采用立钢拱架和挂钢筋网喷混凝土方法,初期支护贯通后即采用二次衬砌.
2地表沉降监测方案
在隧道地表上方每隔30m布置一个观测断面,每个断面布置12个点,沿着隧道轴线垂直方向地表均匀布置,间距为1.5m,采用莱卡DNA03电子水准仪按照二级水准要求进行地表沉降观测,自从2011年11月1日到2012月1月31日,共计90天的观测,为了便于分析,选取DB03、DB04、DB05个断面数据进行分析.
3监测结果分析
3.1右线隧道开挖沿着隧道方向地表沉降分析
为了便于分析总结规律,以监测断面为基准,当掌子面通过监测断面后,掌子面与监测断面的距离为正值;当掌子面未通过监测断面时,掌子面与监测断面的距离为负值.设掌子面与监测断面间的距离为L,隧道拱径为D,即为拱跨,定义L/D比值为距跨比β,即
β=L/D(1)
断面间距为30m,隧道拱跨距离为6.3m,得出距跨比β的取值范围为-4.8<β<4.8.2011年11月1日建立测站DB03、DB04、DB05,随着隧道开挖掌子面逐渐逼近、达到、通过监测断面,地表沉降逐渐发展直至稳定;此后左线开挖,历时90天于2012年1月31日通过DB05监测站监测的地表最终稳定.其曲线如图1所示,当-4<β<-2时,各观测断面各监测点出现明显沉降,DB03最大沉降点位于右线隧道中心线正上方测点DB0304,量为4.67mm,约占总沉降量的16.6%,DB04最大沉降点位于右线隧道中心线正上方测点DB0404,量为3.43mm,约占总沉降量的10.8%,DB05最大沉降点位于右线隧道中心线正上方测点DB0504,量为4.04mm,约占总沉降量的15.7%;当-2<β<2时,各观测断面各监测点出现急剧沉降,DB03最大沉降点位于右线隧道中心线正上方测点DB0304,量为19.36mm,沉降速率可达0.89mm/d,占总沉降量的67.5%;DB04最大沉降点位于右线隧道中心线正上方测点DB0404,量为24.24mm,沉降速率可达0.84mm/d,占总沉降量的76.2%;DB05最大沉降点位于右线隧道中心线正上方测点DB0504,量为19.92mm,沉降速率可达0.93mm/d,占总沉降量的77.6%;当2<β<4时,各观测断面各监测点沉降变化速率开始减缓趋于稳定.
3.2右线隧道开挖垂直于隧道方向地表沉降分析
大连地铁202标段促春暗挖区间在掌子面前方50m布置监测断面,右线区间先开挖,左线滞后,根据右线隧道监测结果确定左线隧道开挖的时间.在右线区间单独开挖期间选择DB03、DB04和DB05等3个监测断面进行地表沉降分析,沉降曲线分布如图2所示,3个监测断面的最大沉降点在隧道中心线上方.由图2可知,DB03、DB04和DB05等右侧有建筑物群,故不能完全布置地表沉降点,该3个监测断面的地表沉降隧道中线基本呈半正态分布,变化趋势基本相同.
3.3双线隧道开挖引起地表沉降的变形分析
当右线隧道开挖引起地表沉降趋于稳定时,各断面最大沉降曲线见图3所示,DB03断面右线隧道中心线正上方最大沉降量为28.87mm,DB04断面右线隧道中心线正上方最大沉降量为31.82mm,DB05断面右线隧道中心线正上方最大沉降量为25.66mm.左线隧道开始开挖后对已经稳定的隧道围岩产生新的扰动,但其影响程度与距离有关,距离越近,影响约为剧烈.当左线隧道掌子面通过各断面时最终沉降曲线如图3所示.DB03断面双线隧道中心线正上方最大沉降量为57.34mm,约为右线隧道开挖最大沉降量的1.99倍;隧道DB04断面隧道中心线正上方最大沉降量为64.86mm,约为右线隧道开挖最大沉降量的2.04倍;DB05断面隧道中心线正上方最大沉降量为51.76mm,约为右线隧道开挖最大沉降量的2.02倍.由此可见,双线隧道开挖较单线隧道开挖引起的地表沉降不仅位置发生了改变,而且最大沉降量也发生较大的改变,约为单线隧道开挖的1.99~2.04倍.
4地表沉降验证
运用文克尔模型对右线区间隧道开挖地表沉降进行计算验证.文克尔模型假设地基表面任意一点的压力p与该点的位移ω成正比,如式(2)所示.
分析式(2)可知,当时或x→∞时,ω(x)=0,即实际隧道开挖时地表的影响范围,根据监测结果,隧道开挖影响范围为21m,当x=0时,P(x,y)值最大,即在隧道中心处
上方,根据实测结果为-31.82mm,故可得出
得出文克尔计算模型预测方程:
由式(3)计算的文克尔模型沉降数据如表1所列.由图4对比可知,实测数据曲线和文克尔计算模型曲线和沉降趋势吻合,文克尔计算数值较实际观测值偏小,仅应用文克尔地表沉降预测模型能够得出地表沉降的趋势,不能准确得出最大沉降量.这是由于在实际工程中隧道上方的土层为人工素填土且有少量的建筑垃圾,理论假设有了一定的差距;同时在理论计算时没有考虑到流-固耦合条件下土-结构的变形是否符合线弹性性质.由图4对比可知,实测数据曲线和文克尔计算模型曲线和沉降趋势吻合,文克尔计算数值较实际观测值偏小,仅应用文克尔地表沉降预测模型能够得出地表沉降的趋势,不能准确得出最大沉降量.这是由于在实际工程中隧道上方的土层为人工素填土且有少量的建筑垃圾,理论假设有了一定的差距;同时在理论计算时没有考虑到流-固耦合条件下土-结构的变形不符合线弹性性质.
5结语
a.大连地铁202标段促春暗挖区间地表沉降数据分析过程中引进距跨比β,便于沿着隧道掘进方向地表沉降分析.地表沉降最大位置处于隧道中心线的正上方,沉降量约为25.66~31.82mm.
随着掌子面推进,沿隧道纵向地表沉降分为3个阶段-4<β<-2地表沉降加速阶段,约占整体变
形的10.8%~16.6%;-2<β<2地表沉降剧烈阶段,约占整体变形的67.5%~77.6%,沉降速率约达0.84~0.93mm/d;2<β<4,地表沉降减速阶段,沉降变化趋于稳定.监测结果表明,人工素填土地段地铁暗挖隧道施工在-2<β<2阶段,应加强监测频率,建议增加现场巡视.
b.右线隧道开挖垂直于隧道中线地表沉降曲线基本呈半正态分布,最大沉降点发生在右线隧道中心线正上方.文克尔沉降模型的计算曲线与现场实际监测曲线趋势相同,数值偏小,主要是由于文克尔预测模型假设所致,但也可作为人工素填土地段地铁暗挖隧道施工地表沉降的预测手段.c.左线隧道开挖造成了已经稳定的右线隧道围岩的二次扰动.左线隧道的开挖不仅改变了地表最大沉降位置,由右线隧道中心线正上方改变到双线隧道中线正上方,而且最大沉降量也发生了改变,双线隧道开挖最大沉降量约为单线隧道开挖的1.99~2.04倍.。

相关文档
最新文档