变频器工作原理解

合集下载

变频器工作原理图解

变频器工作原理图解

变频器工作原理图解1 变频器的工作原理变频器分为 1 交---交型输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器2 交—直---交型输入是交流,变成直流再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。

多数情况都是交直交型的变频器。

2 变频器的组成由主电路和控制电路组成主电路由整流器中间直流环节逆变器组成先看主电路原理图三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。

经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。

由于一个电容的耐压有限,所以把两个电容串起来用。

耐压就提高了一倍。

又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。

继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。

接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。

我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。

当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。

当电机较大时,还可并联外接电阻。

一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。

变频器工作原理图详解大全

变频器工作原理图详解大全

变频器工作原理图详解大全在工业自动化控制领域,变频器是一种常用的设备,用于控制交流电机的转速。

本文将详细解析变频器的工作原理图,帮助读者更好地理解其工作原理。

1. 变频器基本结构变频器由整流器、滤波器、逆变器和控制电路组成。

其中,整流器将交流电源转换为直流电压,接入滤波器进行滤波处理后,进入逆变器转换为可调交流电压供给电机。

2. 变频器工作原理变频器通过调节输出电压频率改变电机的转速。

其工作原理可简化为以下几个步骤:•步骤一:交流电源输入变频器,经整流器及滤波器处理后,获得稳定的直流电压。

•步骤二:逆变器将直流电压转换为可调的交流电压,控制电路根据用户需求调节输出频率。

•步骤三:输出的交流电压通过电机传达给负载,从而控制电机的转速。

3. 典型工作原理图下图为典型的变频器工作原理图:+----------++---| 逆变器 || +----------++-------+ +---------+ |Vin | | +--+ 整流器 +--+AC | 电源 +--->+---------+ |----| | | | 滤波器 | |+-------+ | +---------+ || DC |+------+---------+|| +----------++--| 控制电路 |+----------+在这个图中,电源交流输入变频器,经整流器、滤波器处理后得到直流电压,再由逆变器产生可调交流电压供给电机。

4. 变频器工作原理图详解4.1 整流器整流器采用可控硅等器件将交流电源转换为直流电压。

其主要作用是保证逆变器的输入电压为直流电压。

4.2 滤波器滤波器用于对整流器输出的脉动直流电压进行滤波平整,确保逆变器输入的电压质量。

4.3 逆变器逆变器将直流电压转换为可控的交流电压,通过调节输出频率控制电机转速。

矢量控制、PWM控制等技术常用于逆变器。

4.4 控制电路控制电路接收来自用户的调节信号,根据信号调节逆变器输出的频率和电压,实现对电机的精确控制。

变频器的工作原理和接线详细图文解析

变频器的工作原理和接线详细图文解析

变频器的工作原理和接线详细图文解析
 变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的。

 一、变频器工作原理
 变频器可分为电压型和电流型两种变频器:
 电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。


 电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

是整流器,整流器,逆变器。

 而变频器的主电路由整流器、平波回路和逆变器三部分构成,将工频电源。

变频器的工作原理,包括电路图等解释

变频器的工作原理,包括电路图等解释

变频器工作原理直流->振荡电路->变压器(隔离、变压)->交流输出方波信号发生器使直流以50Hz的频率突变,用正弦和准正弦的振荡器,波形类似于长城的垛口,一上一下的方波,突变量约为5V;再经过信号放大器使突变量扩大至12V左右;经变压器升压至220V输出怎样将直流电转换成交流电?有三种方法:1、用直流电源带动直流电动机----机械传动到交流发电机发出交流电;这是一种最古老的方法,但现在仍有人在用,特点是成本低,易维护。

目前在大功率转换中还在使用。

2、用振荡器(就是目前市场上的逆变器);这是比较先进的方法,成本高,多用于小功率变换;3、机械振子变换器,其原理就是让直流电流断断续续,通过变压器后就能在变压器的次级输出交流电,这是一种比较老的方法,目前基本上已被淘汰。

现在日本发现一种有机物可以转换2交流电是指电压或电流的幅值在0值附近震荡,也就是有正有负,方向会发生变化,而并不一定是正弦的。

直流电也并不是恒定不变的,它的幅值也是可以变化的,但不会改变方向。

也就是说恒为正或恒为负。

在逆变器中不能单独应用可控硅,它仅仅是起一个开关作用,必须要由振荡电路来控制可控硅的开/关状态,得到方波形的交流电,再经变压、滤波,得到较纯的正弦波交流电。

UPS 电源(Uninterruptible Power System 不间断电源系统)利用逆变电路,即用直流电驱动一个振荡器,产生交流振荡,一般得到的是方波。

如果经过滤波电路去除50Hz的谐波,就能得到比较纯的50Hz交流电。

变频器1 1.1变频技术的概念1.常用的调速方法变极调速、定子调压调速、转差离合器调速2.变频技术的概念把直流电逆变成不同频率的交流电,或是把交流电变成直流电再逆变成不同频率的交流电,或是把直流电变成交流电再把交流电变成直流电等技术的总称。

特点:电能不变,只有频率变。

3.变频技术的发展应交流电机无级调速的需要而诞生的。

自20世纪60年代以来,电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场革命,即交流调速取代直流调速、计算机数字控制技术取代模拟控制技术已经成为发展趋势。

变频器开关工作原理图详解

变频器开关工作原理图详解

变频器开关工作原理图详解
一个变频器开关工作原理图详解如下:
{说明:图中箭头表示信号的流向,实线表示电气连线,虚线表示控制信号的流向}
控制信号
|
V
控制开关 ---+--- LC滤波器 ---+--- 电机
| |
控制逻辑 |
| |
V |
参考信号 --------|
控制开关是变频器的核心部件,它根据控制逻辑接收到的控制信号,来控制电机的运行状态。

控制信号通过控制开关的控制端输入,控制开关根据控制信号的高低电平来开关电路。

控制逻辑是根据预设的参数和实时反馈信号,决定控制信号的变化。

例如,控制逻辑根据频率设定和电机转速反馈信号,计算出控制信号的频率信号来调整电机的转速。

控制逻辑还可能根据实时负载情况,调整控制信号的电流限制来保护电机。

参考信号是改变频率的依据。

它由外部设备提供,例如控制面板或者PLC。

参考信号可以是恒定频率、可变频率或者动态变化的频率。

根据参考信号的变化,控制逻辑会相应地修改控
制信号。

LC滤波器是为了滤除控制开关输出的高频信号,保证电机能够正常工作。

它由电感(L)和电容(C)组成,通过将高频分量短路到地,只留下纯净的低频信号供电机使用。

以上就是一个变频器开关工作原理的详细解释,通过控制信号和参考信号的输入,控制开关和控制逻辑来实现对电机的精确控制。

变频器工作原理与结构图文详解—变频器的功能作用分析

变频器工作原理与结构图文详解—变频器的功能作用分析

变频器工作原理与结构图文详解—变频器的功能作用分析变频器变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

变频器基本组成变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。

整流单元:将工作频率固定的交流电转换为直流电。

高容量电容:存储转换后的电能。

逆变器:由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

控制器:按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

变频器的结构与原理图解变频器的发展也同样要经历一个徐徐渐进的过程,最初的变频器并不是采用这种交直交:交流变直流而后再变交流这种拓扑,而是直接交交,无中间直流环节。

这种变频器叫交交变频器,目前这种变频器在超大功率、低速调速有应用。

其输出频率范围为:0-17(1/2-1/3 输入电压频率),所以不能满足许多应用的要求,而且当时没有IGBT,只有SCR,所以应用范围有限。

变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。

故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。

变频器电路结构框架图矩阵式变频器是一种交交直接变频器,由9个直接接于三相输入和输出之间的开关阵组成。

变频器的工作原理

变频器的工作原理

变频器的工作原理
变频器是一种电子设备,主要用于调节交流电的电压和频率。

它的工作原理是将输入的固定频率和电压的交流电转换为可调节频率和电压的交流电。

变频器由三个主要部分组成:整流器、滤波器和逆变器。

首先,交流电经过整流器,将交流电转换为直流电。

然后,直流电经过滤波器,去除其中的脉动部分,使电流变得更加平稳。

最后,直流电经过逆变器,将直流电转换为可调节频率和电压的交流电。

逆变器是变频器的核心部分,它包含了高频开关器件(如晶体管或功率场效应管)和控制电路。

控制电路通过对开关器件的控制,改变开关器件的通断状态,从而改变输出电压和频率。

具体来说,当开关器件导通时,输入的直流电通过变压器将电压升高;而当开关器件截断时,变压器的能量向输出电路释放,将电压降低。

通过不断地切换开关器件的通断状态,可以产生不同频率和电压的交流电输出。

变频器常用于电机控制领域,通过调节输出频率和电压,可以实现对电机运行速度和扭矩的精确控制。

另外,变频器还广泛应用于节能领域,通过调整电机的运行参数,实现能耗的最优化。

总而言之,变频器通过改变输入的固定频率和电压的交流电,实现对输出频率和电压的调节,从而实现对电机的精确控制。

变频器的工作原理(详解版)

变频器的工作原理(详解版)
:析
b) ( a) 3
)
a) b) 源
EXB841
• 1 )正常开通过程
• 当控制电路使 EXB841 输入端脚 14 和脚 15 有 10mA 的电流流过时,光耦合器 IS0l 就会导通, A 点电位迅 速下降至 0V ,使 V1 和 V 2 截止; V 2 截止使 D 点电位上升至 20V , V4 导通, V5 截止, EXB841 通 过 V4 及栅极电阻 Rg 向 IGBT 提供电流使之迅速导 通 , Uc 下降至 3V 。与此同时, V1 截止使十 20V 电源 通 R3 向电容 C2 充电,时间常数 r1 为
-Ud
~措-措~~
~累著窄~
1
2
3

2.4.1
• Ud
i2
a)
2-29
a

i2,u2,ud u2
ud
i2
0
δθ
π
ωt
b)
b
2.4.2
1)
a)
2-30 点
ud
ud uab ud uac ia
δ 0θ π 3
π
ωt
id
O
ωt
b)
2.4.2
ia
O
ωt
b) ia
O
ωt
c)
2-32
a
b
c

5.4.2
• 又简化了电路,为整个系统设计提供了很 大方便。
• 2 )输入采用高速光耦隔离电路,既满足 了隔离和快速的要求,又在很大程度上使 电路结构简化。
3 )通过精心设计,将过流时降低 Uge 与慢 关断技术综合考虑 , 按前面所述,短路时 EXB841 各引脚波形如图 2 - 68 所示。可 见一旦电路检测到短路后,要延迟 约 1 . 5 us ( VZI 导通时, R4 会有 压降) Uge 才开始降低,再过约 8us 后 Uge 才降低到 0V (相对 EXB841 的脚 1 )。在这 10us 左右的时间内,如 果短路现象消失, Uge 会逐步恢复到正常 值,但恢复时间决定于时间常数 t3 ,时间 是较长的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器工作原理图解
通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。

该设备首先要把三相或单相交流电变换为直流电(DC)。

然后再把直流电(DC)变换为三相或单相交流电(AC)。

变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。

因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。

变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。

随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。

1 变频器的工作原理变频器分为 1 交---交型输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器
2 交—直---交型输入是交流,变成直流再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。

多数情况都是交直交型的变频器。

2 变频器的组成由主电路和控制电路组成主电路由整流器中间直流环节逆变器组成先看主电路原理图三相工频交流电经过
VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。

经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。

由于一个电容的耐压有限,所以把两个电容串起来用。

耐压就提高了一倍。

又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。

继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。

接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。

我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。

当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。

当电机较大时,还可并联外接电阻。

一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。

直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。

控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。

例如:某一时刻,V1 V2 V6 受基极控制
导通,电流经U相流入电机绕组,经V W 相流入负极。

下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。

为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。

主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线上,通过放电电阻释放掉。

变频器主电路引出端子上图就是变频器控制电路的原理示意图。

上半部为主电路,下半部为控制电路。

主要由控制核心CPU 、输入信号、输出信号和面板操作指示信号、存储器、LSI电路组成。

外接电位器的模拟信号经模数转换将信号送入CPU,达到调速的目的。

外接的开关量信号也经由与非门送入控制CPU。

变频器基础原理知识 1.变频器基础 1: VVVF 是 Variable Voltage and Variable Frequency 的缩写,意为改变电压和改变频率,也就是人们所说的变压变频。

2: CVCF 是Constant Voltage and Constant Frequency 的缩写,意为恒电压、恒频率,也就是人们所说的恒压恒频。

我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。

交流电源在人们使用电源中占总使用电源的95%左右。

无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能于我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz等等,标准的电压和频率的交流供电电源叫工频交流电。

通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。

为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。

把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。

一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。

对于逆变为频率可调、电压可调的逆变器我们称为变频器。

变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。

对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。

一般变频电源是变频器价格的15--20倍。

由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。

变频器也可用于家电产品。

使用变频器的家电产品中,不仅有电机(例如空调等),还有荧光灯等产品。

用于电机控制的变频器,既可以改变电压,又可以改变频率。

但用于荧光灯的变频器主要用于调节电源供电的频率。

汽车上使用的由电池(直流电)产生交
流电的设备也以“inverter”的名称进行出售。

变频器的工作原理被广泛应用于各个领域。

例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

2. 电机的旋转速度为什么能够自由地改变? n = 60f/p(1-s) n: 电机的转速 f: 电源频率 p: 电机磁极对数 s:电机的转差率电机的转速 = 60(秒)*频率(Hz)/电机的磁极对数 - 电机的转差率电机旋转速度单位:每分钟旋转次数,rpm/min也可表示为rpm 电机的旋转速度同频率成比例同步电机的转差矩为0,同步电机的转速 = 60(秒)*频率(Hz)/电机的磁极对数异步的转速比同步电机的转速低。

例如:4极三相步电机 60Hz时低于 1,800 [r/min] 4极三相异步电机 50Hz时低于 1,500 [r/min] 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。

感应式
交流电机(以后简称为电机)的旋转速度近似地确决于电机的极对数和频率。

由电机的工作原理决定电机的磁极对数是固定不变的。

由于电机的磁极对数1个磁极对数等于2极,电机的极数不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适和改变该值来调整电机的速度。

相关文档
最新文档