中考数学二轮精品复习试卷:圆(含答案)
中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
2024成都中考数学二轮复习专题 二次函数——阿氏圆、胡不归问题专项训练(含答案)

2024成都中考数学二轮复习专题二次函数——阿氏圆、胡不归问题专项训练(学生版)课中讲解模型来源“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立如图1所示,⊙O的半径为R,点A、B都在⊙O外,P为⊙O上一动点,已知25R OB =,连接PA、PB,则当“25PA PB+”的值最小时,P点的位置如何确定?解决办法:如图2,在线段OB上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。
故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。
技巧总结计算PA kPB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA kPB +的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB2.计算出这两条线段的长度比OP k OB=3.在OB 上取一点C ,使得OC k OP=,即构造△POM ∽△BOP ,则PC k PB=,PC kPB =4.则=PA kPB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值例1.已知:如图1,抛物线2y x bx c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 为顶点.(1)求抛物线解析式及点D 的坐标;(2)若直线l 过点D ,P 为直线l 上的动点,当以A 、B 、P 为顶点所作的直角三角形有.且只有三个时,求直线l 的解析式;(3)如图2,E 为OB 的中点,将线段OE 绕点O 顺时针旋转得到OE ',旋转角为(090)αα︒<<︒,连接E B '、E C ',当12E B E C '+'取得最小值时,求直线BE '与抛物线的交点坐标.例2.如图,顶点为C 的抛物线2(0)y ax bx a =+>经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知2OA OB ==,120AOB ∠=︒.(1)求这条抛物线的表达式;(2)过点C 作CE OB ⊥,垂足为E ,点P 为y 轴上的动点,若以O 、C 、P 为顶点的三角形与AOE ∆相似,求点P 的坐标;(3)若将(2)的线段OE 绕点O 逆时针旋转得到OE ',旋转角为(0120)αα︒<<︒,连接E A '、E B ',求12E A E B '+'的最小值.过关检测1.如图,直线:33=-+与x轴、y轴分别相交于A、B两点,抛物线l y x224(0)=-++<经过点B,交x轴正半轴于点C.y ax ax a a(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,ABM∆的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A',连接CA'、BA',在旋转过程中,一动点M从点B出发,沿线段BA'以每秒3个单位的速度运动到A',再沿线段A C'以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?2.如图,抛物线()20,y ax bx a b a a b =+--<、为常数与x 轴交于A 、C 两点,与y 轴交于B 点,直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点M (),0m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点,当m 为何值时,△BDE 恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE D 恰好是以DE 为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间);i :探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变,若存在,试求出P 点坐标;若不存在,请说明理由;ii :试求出此旋转过程中,34NA NB 骣琪+琪桫的最小值.学习任务1.如图,抛物线2y x bx c =-++与直线AB 交于(4,4)A --,(0,4)B 两点,直线1:62AC y x =--交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF x ⊥轴交AC 于点F ,交抛物线于点G .(1)求抛物线2y x bx c =-++的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为E 上一动点,求12AM CM +它的最小值.2.如图1,抛物线2(3)3(0)y ax a x a =+++≠与x 轴交于点(4,0)A ,与y 轴交于点B ,在x 轴上有一动点(E m ,0)(04)m <<,过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求a 的值和直线AB 的函数表达式;(2)设PMN ∆的周长为1C ,AEN ∆的周长为2C ,若1265C C =,求m 的值;(3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为(090)αα︒<<︒,连接E A '、E B ',求23E A E B '+'的最小值.胡不归问题课中讲解故事介绍从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?模型建立如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V +的值最小.问题分析121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.问题解决构造射线AD 使得sin ∠DAN =k ,即CH k AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.模型总结在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.例1.如图,抛物线223y x x =--与x 轴交于A 、B 两点,过B 的直线交抛物线于E ,且4tan 3EBA ∠=,有一只蚂蚁从A 出发,先以1单位/s 的速度爬到线段BE 上的点D 处,再以1.25单位/s 的速度沿着DE 爬到E 点处觅食,则蚂蚁从A 到E 的最短时间是s .过关检测1.如图,已知抛物线(2)(4)(8k y x x k =+-为常数,且0)k >与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线33y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC ∆相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?2.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象经过点(1,0)A -,(0,B ,(2,0)C ,其对称轴与x 轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则12PB PD +的最小值为;(3)(,)M x t 为抛物线对称轴上一动点①若平面内存在点N ,使得以A ,B ,M ,N 为顶点的四边形为菱形,则这样的点N 共有个;3.直线43y x=与抛物线()2343y x m=--+交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.①求点B的坐标;②在抛物线的对称轴上找一点F,使35BF CF+的值最小,则满足条件的点F的坐标是.学习任务1.如图,抛物线212y x mx n =++与直线132y x =-+交于A ,B 两点,交x 轴于D ,C 两点,连接AC ,BC ,已知(0,3)A ,(3,0)C .(Ⅰ)求抛物线的解析式和tan BAC ∠的值;(Ⅱ)在(Ⅰ)条件下:(1)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与ACB ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 个单位的速度运动到A 后停止,当点E 的坐标是多少时,点M 在整个运动中用时最少?2.如图1,二次函数21212y x x =-+的图象与一次函数(0)y kx b k =+≠的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数(0)y kx b k =+≠的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且:1:48AMO AONB S S ∆=四边形.(1)求直线AB 和直线BC 的解析式;(2)点P 是线段AB 上一点,点D 是线段BC 上一点,//PD x 轴,射线PD 与抛物线交于点G ,过点P 作PE x ⊥轴于点E ,PF BC ⊥于点F .当PF 与PE 的乘积最大时,在线段AB 上找一点H (不与点A ,点B 重合),使GH 的值最小,求点H 的坐标和22GH BH +的最小值;3.已知抛物线)0)(1)(3(≠-+=a x x a y ,与x 轴从左至右依次相交于A 、B 两点,与y 轴交于点C ,经过点A 的直线b x y +-=3与抛物线的另一个交点为D 。
2024河南中考数学复习 与圆有关的计算(含阴影部分面积) 强化精练 (含答案)

2024河南中考数学复习与圆有关的计算(含阴影部分面积)强化精练基础题1.(2023兰州)如图①是一段弯管,弯管的部分外轮廓线如图②所示是一条圆弧AB ︵,圆弧的半径OA =20cm ,圆心角∠AOB =90°,则AB ︵=()第1题图A.20πcmB.10πcmC.5πcmD.2πcm2.(2023新疆维吾尔自治区)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()第2题图A.12πB.6πC.4πD.2π3.(2023鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是()第3题图A.53-33πB.53-4πC.53-2πD.103-2π4.(2023连云港)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()第4题图A.414π-20B.412π-20C.20πD.205.(2023金华)如图,在△ABC 中,AB =AC =6cm ,∠BAC =50°,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为________cm.第5题图6.如图,在2×3的网格图中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,线段CD 与AC ︵交于点E ,则图中AE ︵的长度为________.第6题图7.(2023重庆A 卷)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为________.(结果保留π)第7题图8.(2023包头)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为________.第8题图9.(万唯原创)如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AC=2,以点A为圆心,AC 长为半径作弧,分别交AB,BC于点D,E,则图中阴影部分的周长为________.第9题图10.(2023新乡一模)如图,△ABC中,∠C=90°,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为________.第10题图11.(2023驻马店二模)如图,将扇形OAB沿OA方向平移得到对应扇形CDE,线段CE交AB︵于点F,当OC=CF时平移停止.若∠O=60°,OB=3,则阴影部分的面积为________.第11题图拔高题12.(2023通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB︵于点D,点C是半径OB 上一动点,若OA =1,则阴影部分周长的最小值为()A.2+π6B.2+π3C.22+π6 D.22+π3第12题图13.如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB ︵的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分面积等于()第13题图A.π2-1B.π2-2C.π-1D.π-214.如图,AB 为⊙O 的直径,将BC ︵沿BC 翻折,翻折后的弧交AB 于点D.若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()第14题图A.25πB.25πC.8D.1015.如图,在矩形ABCD中,AD=2,AB=22,对角线AC,BD交于点O,以A为圆心,AB的长为半径画弧,交CD于点F,连接FO并延长交AB于点M,连接AF,则图中阴影部分的面积是______.(结果保留π)第15题图参考答案与解析1.B 【解析】∵圆弧的半径OA =20cm ,圆心角∠AOB =90°,∴ AB 的长=90π×20180=10π(cm).2.B 【解析】∵∠ACB =30°,∴∠AOB =2∠ACB =60°,∴S 扇形AOB =60×π×62360=6π.3.C【解析】如解图,连接OD ,BD ,在Rt △ABC 中,tan 30°=AB BC ,∴BC =AB tan 30°=43,∵OC =OD ,∴∠OCD =∠ODC =30°,∴∠BOD =60°,∵BO =DO ,∴△BOD 是等边三角形,∴BD =BO =12BC =23,∠BDO =60°,∴∠BDC =90°,AD =BD ·tan 30°=2.∴S 阴影部分=S △ABD +S △BOD -S 扇形BOD =12×23×2+34×(23)2-60π×(23)2360=53-2π.第3题解图4.D 【解析】如解图,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5,∴AC 2=AB 2+BC 2,∴阴影部分的面积为S矩形ABCD +π×(AB 2)2+π×(BC 2)2-π×(AC 2)2=S 矩形ABCD +π×14(AB 2+BC 2-AC 2)=S 矩形ABCD =4×5=20.第4题解图5.56π【解析】如解图,连接OE ,OD ,∵OD =OB ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠C =∠ODB ,∴OD ∥AC ,∴∠EOD =∠AEO ,∵OE =OA ,∴∠OEA =∠BAC =50°,∴∠EOD =∠BAC =50°,∵OD =12AB =12×6=3(cm),∴ DE 的长为50π×3180=56π(cm).6.54π【解析】如解图,连接AC ,AD ,设AC 交网格线于点O ,连接OE .∵AD 2=22+12=5,AC 2=22+12=5,CD 2=12+32=10,∴AD =AC ,AD 2+AC 2=CD 2,∴△ACD 是等腰直角三角形,∴∠ACD =45°,∵∠ABC 是直角,∴AC 是⊙O 的直径,∴∠AOE =90°.∵AC =5,∴OE =OA =12AC =52,∴ AE 的长为90π×52180=54π.第6题解图7.254π-12【解析】如解图,连接BD ,由题知∠BAD =90°,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AD 2+AB 2=32+42=5,∴S 阴影=S ⊙O -S 矩形ABCD =π×(52)2-3×4=254π-12.第7题解图8.π【解析】∵正方形ABCD 对角线相交于点O ,∴AO =BO ,CO =DO ,∠AOD =∠BOC ,∴△AOD ≌△BOC ,∴阴影部分的面积=扇形DBE 的面积,∵正方形的边长为2,∴由勾股定理得BD =22,∠DBC =45°,∴阴影部分的面积=45360×π·(22)2=π.9.π3+23【解析】如解图,连接AE ,∵在Rt △ABC 中,∠B =30°,∴BC =2AC =4,AB =23.∵ DE 是以点A 为圆心,AC 长为半径的弧,∴AD =AE =AC =2,∴BD =AB -AD=23-2,∠AEC =∠C =60°,∴△AEC 为等边三角形,∴AE =EC =2.,∴BE =2,∠BAE=∠B =30°,∴ DE 的长为30π×2180=π3,∴阴影部分的周长为2+π3+23-2=π3+23.10.π【解析】在△ABC 中,∠ACB =90°,AC =BC =2,由勾股定理得,AB =22+22=22,∵将△ABC 绕着点A 顺时针旋转90度到△AB 1C 1的位置,∴∠CAC 1=90°,∴阴影部分的面积S =S 扇形BAB 1+S △B 1AC 1-S △ACB -S 扇形CAC 1=S 扇形BAB 1-S 扇形CAC 1=90π×(22)2360-90π×22360=π.11.3π4-334【解析】如解图,连接OF ,过点C 作CH ⊥OF 于点H ,由平移性质知,CE ∥OB ,∴∠CFO =∠BOF ,∵CO =CF ,∴∠COF =∠CFO ,∴∠COF =∠BOF =12∠BOC =30°,在等腰△OCF 中,OH =12OF =12OB =32,∴CH =OH ·tan 30°=32×33=32,∴S 阴影=S 扇形AOF -S △COF =30·π×32360-12×3×32=3π4-334.第11题解图12.A 【解析】如解图,作D 点关于直线OB 的对称点E ,连接AE ,OE ,DE ,CE ,AE 与OB 的交点为C 点,则CD =CE ,OD =OE ,∠DOB =∠EOB ,∴AC +CD =AC +CE ≥AE ,当A ,C ,E 三点共线时,AC +CD 取得最小值,此时阴影部分周长最小,在扇形AOB 中,∠AOB =60°,OD 平分∠AOB 交 AB 于点D ,∴∠AOD =∠BOD =30°,由轴对称的性质,∠EOB =∠BOD =30°,OE =OD ,∴∠AOE =90°,∴△AOE 是等腰直角三角形,∵OA =1,∴AE =2, AD 的长=30π×1180=π6,∴阴影部分周长的最小值为2+π6.第12题解图13.D 【解析】两扇形的面积和为180π·(2)2360=π,如解图,过点C 作CM ⊥AE 于点M ,CN ⊥BE 于点N ,连接CE ,则四边形EMCN 是矩形,∵点C 是 AB 的中点,∴EC 平分∠AEB ,∴CM =CN ,∴矩形EMCN 是正方形,∵∠MCG +∠FCN =90°,∠NCH +∠FCN =90°,∴∠MCG =∠NCH ,在△CMG 与△CNH 中,MCG =∠NCH ,=CN ,CMG =∠CNH ,∴△CMG ≌△CNH (ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为12×2×2=1,∴图中阴影部分的面积=π-2.第13题解图14.C 【解析】如解图,连接AC ,CD ,过点C 作CH ⊥AB 于点H ,∵∠ABC =∠DBC ,∴ AC = CD,∴AC =CD ,∵CH ⊥AD ,∴AH =HD ,∵BC =45,sin ∠ABC =55,∴CH =BC ·sin ∠ABC =4,∵AB 为⊙O 的直径,∴∠ACB =90°,∵sin ∠ABC =AC AB =55,∴设AC =5m ,AB =5m ,根据勾股定理,AC 2+BC 2=AB 2,∴5m 2+80=25m 2,∴m =2(负值已舍去),∴AC =CD =25,∴AH =AC 2-CH 2=(25)2-42=2,∴AD =2AH =4,∴S 阴影=S △ACD =12AD ·CH =12×4×4=8.第14题解图15.π-22+2【解析】在矩形ABCD 中,AD =2,AB =22,∴∠ADC =90°,AB ∥CD ,OB =OD ,∴∠ABD =∠CDB ,∵AF =AB =22,AF 2=AD 2+DF 2,∴(22)2=22+DF 2,∴DF =2,∴AD =DF ,∴∠DAF =∠DFA =45°,∴∠BAF =45°,在△BOM 和△DOF 中,MBO =∠FDO=ODBOM =∠DOF ,∴△BOM ≌△DOF (ASA),∴BM =DF =2,∴AM =22-2,∴图中45π×(22)2360-12×(22-2)×2=π-22+2.阴影部分的面积为:。
2020-2021中考数学二轮 圆的综合 专项培优及答案解析

2020-2021中考数学二轮圆的综合专项培优及答案解析一、圆的综合1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设MBN∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为24523602ππ⨯=.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=12(∠AOC-∠MON)=12(90°-45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.2.如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y.(1)如图2,当AB ⊥OM 时,求证:AM=AC ;(2)求y 关于x 的函数关系式,并写出定义域;(3)当△OAC 为等腰三角形时,求x 的值.【答案】 (1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】 分析:(1)先判断出∠ABM =∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论; (2)先判断出BD =DM ,进而得出DM ME BD AE =,进而得出AE =122x (),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM =∠BAM =90°.∵∠ABM +∠M =∠DOM +∠M ,∴∠ABM =∠DOM .∵∠OAC =∠BAM ,OC =BM ,∴△OAC ≌△BAM ,∴AC =AM .(2)如图2,过点D 作DE ∥AB ,交OM 于点E .∵OB =OM ,OD ⊥BM ,∴BD =DM .∵DE ∥AB ,∴DM ME BD AE =,∴AE =EM .∵OM =2,∴AE=122x -(). ∵DE ∥AB ,∴2OA OC DM OE OD OD ==, ∴22DM OA y OD OE x =∴=+,.(02x ≤<) (3)(i ) 当OA =OC 时.∵111222DM BM OC x ===.在Rt △ODM 中,222124OD OM DM x =-=-. ∵2121224x DM y OD x x =∴=+-,.解得1422x -=,或1422x --=(舍). (ii )当AO =AC 时,则∠AOC =∠ACO .∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在.(ⅲ)当CO =CA 时,则∠COA =∠CAO =α.∵∠CAO >∠M ,∠M =90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA =2α>90°.∵∠BOA ≤90°,∴此种情况不存在.即:当△OAC 为等腰三角形时,x 的值为1422-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y 关于x 的函数关系式是解答本题的关键.3.已知▱ABCD 的周长为26,∠ABC=120°,BD 为一条对角线,⊙O 内切于△ABD ,E ,F ,G 为切点,已知⊙O 的半径为3▱ABCD 的面积.【答案】3【解析】【分析】首先利用三边及⊙O 的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD 的长即可解答.【详解】设⊙O 分别切△ABD 的边AD 、AB 、BD 于点G 、E 、F ;平行四边形ABCD的面积为S;则S=2S△ABD=2×12(AB·OE+BD·OF+AD·OG)=3(AB+AD+BD);∵平行四边形ABCD的周长为26,∴AB+AD=13,∴S=3(13+BD);连接OA;由题意得:∠OAE=30°,∴AG=AE=3;同理可证DF=DG,BF=BE;∴DF+BF=DG+BE=13﹣3﹣3=7,即BD=7,∴S=3(13+7)=203.即平行四边形ABCD的面积为203.4.如图,在⊙O中,直径AB⊥弦CD于点E,连接AC,BC,点F是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线; (2)若AE=4,tan∠ACD=12,求AB和FC的长.【答案】(1)见解析;(2) ⑵AB=20 ,403 CF【解析】分析:(1)连接OC,根据圆周角定理证明OC⊥CF即可;(2)通过正切值和圆周角定理,以及∠FCA=∠B求出CE、BE的长,即可得到AB长,然后根据直径和半径的关系求出OE的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE∽△CFE,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB是⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.5.在平面直角坐标系xOy 中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,3AB 为边的“坐标菱形”的最小内角为 ;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.6.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S △ACP =334, ∴四边形ACBP 的面积=2S △ACP =332. 点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.7.如图所示,以Rt △ABC 的直角边AB 为直径作圆O ,与斜边交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)连接OE ,AE ,当∠CAB 为何值时,四边形AOED 是平行四边形?并在此条件下求sin ∠CAE 的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,5, ∴sin ∠CAE=10EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.8.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是2﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=2AP=QB+BP=PC+PB,∴2AP=PC+PB.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC,∴∠BAC=90°,由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,∴在Rt△OAQ中,OQ=32,AO=3 ,∴在△OQB中,BQ≥OQ﹣OB=32﹣3 ,即OC最小值是32﹣3;(3)如图③中,作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC ==43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2, ∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.9.已知,ABC ∆内接于O e ,点P 是弧AB 的中点,连接PA 、PB ; (1)如图1,若AC BC =,求证:AB PC ⊥; (2)如图2,若PA 平分CPM ∠,求证:AB AC =; (3)在(2)的条件下,若24sin 25BPC ∠=,8AC =,求AP 的值.【答案】(1)见解析;(2)见解析5 【解析】 【分析】(1)由点P 是弧AB 的中点,可得出AP=BP , 通过证明APC BPC ∆≅∆ ,ACE BCE ∆≅∆可得出AEC BEC ∠=∠进而证明AB ⊥ PC.(2)由PA 是∠CPM 的角平分线,得到∠MPA=∠APC, 等量代换得到∠ABC=∠ACB, 根据等腰三角形的判定定理即可证得AB=AC.(3)过A 点作AD ⊥BC,有三线合一可知AD 平分BC,点O 在AD 上,连结OB ,则∠BOD =∠BAC ,根据圆周角定理可知∠BOD=∠BAC, ∠BPC=∠BAC ,由∠BOD=∠BPC 可得sin sin BDBOD BPC OB∠=∠=,设OB=25x ,根据勾股定理可算出OB 、BD 、OD 、AD 的长,再次利用勾股定理即可求得AP 的值.【详解】解:(1)∵点P 是弧AB 的中点,如图1, ∴AP =BP , 在△APC 和△BPC 中AP BP AC BC PC PC =⎧⎪=⎨⎪=⎩, ∴△APC ≌△BPC (SSS ), ∴∠ACP =∠BCP , 在△ACE 和△BCE 中AC BC ACP BCP CE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCE (SAS ), ∴∠AEC =∠BEC , ∵∠AEC +∠BEC =180°, ∴∠AEC =90°, ∴AB ⊥PC ;(2)∵PA 平分∠CPM , ∴∠MPA =∠APC ,∵∠APC +∠BPC +∠ACB =180°,∠MPA +∠APC +∠BPC =180°, ∴∠ACB =∠MPA =∠APC , ∵∠APC =∠ABC , ∴∠ABC =∠ACB , ∴AB =AC ;(3)过A 点作AD ⊥BC 交BC 于D ,连结OP 交AB 于E ,如图2,由(2)得出AB =AC , ∴AD 平分BC , ∴点O 在AD 上,连结OB ,则∠BOD =∠BAC , ∵∠BPC =∠BAC ,∴sin sin BOD BPC ∠=∠=2425BD OB=, 设OB =25x ,则BD =24x ,∴OD =22OB BD -=7x ,在Rt ABD V 中,AD =25x +7x =32x ,BD =24x , ∴AB =22AD BD +=40x ,∵AC =8, ∴AB =40x =8, 解得:x =0.2,∴OB =5,BD =4.8,OD =1.4,AD =6.4, ∵点P 是¶AB 的中点, ∴OP 垂直平分AB , ∴AE =12AB =4,∠AEP =∠AEO =90°, 在Rt AEO ∆中,OE =223AO AE -=,∴PE =OP ﹣OE =5﹣3=2,在Rt APE ∆中,AP =22222425PE AE +=+=. 【点睛】本题是一道有关圆的综合题,考查了圆周角定理、勾股定理、等腰三角形的判定定理和三线合一,是初中数学的重点和难点,一般以压轴题形出现,难度较大.10.在O e 中,AB 为直径,C 为O e 上一点.(Ⅰ)如图①,过点C 作O e 的切线,与AB 的延长线相交于点P ,若28CAB ∠=︒,求P ∠的大小;(Ⅱ)如图②,D 为弧AC 的中点,连接OD 交AC 于点E ,连接DC 并延长,与AB 的延长线相交于点P ,若12CAB ∠=︒,求P ∠的大小. 【答案】(1)∠P =34°;(2)∠P =27° 【解析】 【分析】(1)首先连接OC ,由OA=OC ,即可求得∠A 的度数,然后由圆周角定理,求得∠POC 的度数,继而求得答案;(2)因为D为弧AC的中点,OD为半径,所以OD⊥AC,继而求得答案.【详解】(1)连接OC,∵OA=OC,∴∠A=∠OCA=28°,∴∠POC=56°,∵CP是⊙O的切线,∴∠OCP=90°,∴∠P=34°;(2)∵D为弧AC的中点,OD为半径,∴OD⊥AC,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点睛】本题考查切线的性质以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.11.已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=45,求⊙O的半径.【答案】(1)当AD=BC时,四边形ABCD是平行四边形,理由见解析;(2)作出相应的图形见解析;(3)圆O的半径为2.5.【解析】分析:(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.详解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45AE AB ,∵AE=4,∴AB=5,则圆O 的半径为2.5.点睛:此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.12.如图①,已知Rt ABC ∆中,90ACB ∠=o ,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O e ,过C 作CE 切O e 于E ,交AB 于F .(1)若O e 的半径为2,求线段CE 的长; (2)若AF BF =,求O e 的半径;(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)42CE =(2)O e 的半径为3;(3)G 、E 两点之间的距离为9.6. 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r=610,解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】(1)如图,连结OE . ∵CE 切O e 于E ,∴90OEC ∠=︒.∵8AC =,O e 半径为2, ∴6OC =,2OE =.∴2242CE OC OE =-=; (2)设O e 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC =-=.∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O e 于E ,∴90OEC ∠=︒. ∴OEC ACB ∠=∠, ∴OEC BCA ∆~∆. ∴OE OCBC BA =, ∴8610r r -=, 解得3r =. ∴O e 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =. 又CE CB =, ∴CE CG =. ∴EGC GEC ∠=∠.∵CE 切O e 于E , ∴90GEC OEG ∠+∠=︒. 又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠, ∴OEG OME ∠=∠. ∴OE OM =. ∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上. 连结AE 、BE , ∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒. 又CE CB CG ==, ∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒, ∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠, ∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE=. ∴9.6GE =.故G 、E 两点之间的距离为9.6. 【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.13.如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,且D 是BC 中点,DE ⊥AB ,垂足为E ,交AC 的延长线于点F . (1)求证:直线EF 是⊙O 的切线;(2)若CF=3,cosA=25,求出⊙O 的半径和BE 的长;(3)连接CG ,在(2)的条件下,求CGEF的值.【答案】(1)见解析;(2)2,65(3)CG:EF=4:7【解析】试题分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;(2)先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cosA==,求出AE=,然后由BE=AB﹣AE即可求解.试题解析:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cosA===,∴AE=,∴BE=AB﹣AE=﹣=2.【点睛】本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.14.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH 63-或12311+【解析】【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF=.②当△CDH∽△MFB时,DH CDFB MF=,分别构建方程即可解决问题;【详解】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=12∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD33,∴OD=OC﹣CD=43,∴AD=OA+OD=8+43=123,在Rt△ADP中,DP=AD•tan30°=(123)×33=3﹣1,∴PM=PD﹣DM=3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 63-1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.15.已知AB 是半圆O 的直径,点C 在半圆O 上.(1)如图1,若AC =3,∠CAB =30°,求半圆O 的半径;(2)如图2,M 是»BC的中点,E 是直径AB 上一点,AM 分别交CE ,BC 于点F ,D . 过点F 作FG ∥AB 交边BC 于点G ,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.【答案】(1)半圆O的半径为3;(2)⊙D与直线AC相切,理由见解析【解析】试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是»BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.试题解析:(1)∵ AB是半圆O的直径,∴∠C=90°.在Rt△ACB中,AB=cos AC CAB ∠=3 cos30︒=23.∴ OA=3(2)⊙D与直线AC相切.理由如下:由(1)得∠ACB=90°.∵∠AEC=∠ECB+∠6,∴∠AEC>∠ECB,∠AEC>∠6.∵△ACE与△CEB相似,∴∠AEC=∠CEB=90°.在Rt△ACD,Rt△AEF中分别有∠1+∠3=90°,∠2+∠4=90°.∵ M是»BC的中点,∴∠COM=∠BOM.∴∠1=∠2,∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∴ CF=CD.过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有∠CAE+∠ACE=90°,∠CAE+∠6=90°.∴∠ACE=∠6=∠FPE.又∵∠1=∠2,AF=AF,∴△ACF≌△APF.∴ CF=FP.∵ FP∥GB,FG∥AB,∴四边形FPBG是平行四边形.∴ FP=GB.∴ CD=GB.∵ CD⊥AC,∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.。
中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
数学初三圆的试题及答案

数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
2020年九年级数学 中考第二轮专题训练 圆 (含答案)

2020年九年级数学中考第二轮专题训练圆1、已知:如图,⊙O的直径A B与弦C D相交于E,=,⊙O的切线B F与弦A D的延长线相交于点F.(1)求证:C D∥B F.(2)连接B C,若⊙O 的半径为4,cos∠BCD =,求线段A D、C D的长.2、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断D E与⊙O 的位置关系,并证明你的结论;(2)如果⊙O的直径为9,cos B=,求D E的长.3、如图,在Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O,点D 为⊙O上一点,且C D=C B,连接D O并延长交C B的延长线于点E.(1)判断直线C D与⊙O 的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及A C的长.4、如图,BC 是⊙O的直径,CE 是⊙O的弦,过点E 作⊙O 的切线,交C B的延长线于点G,过点B作B F⊥G E于点F,交C E的延长线于点A.(1)求证:∠ABG=2∠C;(2)若G F=33,GB=6,求⊙O的半径.5、如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是C D延长线上的点,且A P=A C.(1)求证:A P是⊙O的切线;(2)若A C=3,求P D 的长.6、如图,在矩形A B C D中,CD=2,AD =4,点P在B C上,将△A B P沿A P折叠,点B 恰好落在对角线A C上的E点,O为A C上一点,⊙O经过点A,P(1)求证:BC 是⊙O的切线;(2)在边C B上截取C F=C E,点F是线段B C的黄金分割点吗?请说明理由.7、已知:如图,在Rt△ABC 中,∠C=90°,点O在A B上,以O为圆心,O A 长为半径的圆与A C,A B分别交于点D,E,且∠CB D=∠A.(1)判断直线B D与⊙O的位置关系,并证明你的结论;(2)若B C=2,B D=,求的值.8、如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.9、如图,在△A B C中,A B=A C,以A B为直径的⊙O分别交B C、A C于点D、E,连接E B交O D于点F.(1)求证:O D⊥B E;(2)若D E=,A B=,求A E的长.10、如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线D F是⊙O的切线;(2)求证:B C2=4C F•A C;(3)若⊙O的半径为 4,∠CDF=15°,求阴影部分的面积.11、如图,A B是⊙O的直径,C是⊙O上一点,D是的中点,E为O D延长线上一点,且∠C A E=2∠C,AC 与B D交于点H,与O E交于点F.(1)求证:AE 是⊙O的切线;(2)若DH=9,tan C=,求直径A B的长.12、已知Rt△ABC 中,∠ABC=90°,以A B为直径作⊙O交A C于点D,连接B D.(1)如图 1,若BD :CD =3:4,AD =3,求⊙O的直径A B的长;(2)如图 2,若E是B C的中点,连接E D,请你判断直线E D与⊙O的位置关系,并证明你的结论.13、如图,△A B C内接于⊙O,A B为直径,作O D⊥A B交A C于点D,延长B C,O D交于点F,过点C作⊙O的切线C E,交O F于点E.(1)求证:E C=E D;(2)如果OA=4,EF=3,求弦A C的长.14、以坐标原点为圆心,1 为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过 1 秒后点P运动到点(2,0),此时P Q 恰好是⊙O的切线,连接O Q.求∠Q O P的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过 5 秒后直线PQ被⊙O截得的弦长.15、如图,已知半径为 1 的⊙O1 与x轴交于A,B两点,O M 为⊙O1 的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=﹣x2+b x+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线O M的函数解析式;(3)线段O M 上存在一点P,使得以P,O,A为顶点的三角形与△O O1M 相似.请问有几个符合条件的点P 并分别求出它们的坐标.16、(1)方法选择如图①,四边形A B C D是⊙O的内接四边形,连接A C,B D,A B=B C=A C.求证:B D=A D+C D.小颖认为可用截长法证明:在D B上截取D M=A D,连接A M…小军认为可用补短法证明:延长C D至点N,使得D N=A D…请你选择一种方法证明.(2)类比探究【探究 1】如图②,四边形A B C D是⊙O的内接四边形,连接A C,B D,B C是⊙O的直径,A B=A C.试用等式表示线段A D,B D,C D之间的数量关系,井证明你的结论.【探究 2】如图③,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,∠ABC =30°,则线段A D,B D,C D之间的等量关系式是.(3)拓展猜想如图④,四边形A B C D是⊙O的内接四边形,连接A C,B D.若B C是⊙O的直径,B C:A C:A B=a:b:c,则线段A D,B D,C D之间的等量关系式是.17、如图,Rt△ABC 中,∠ACB=90°,以B C上一点O为圆心作圆与A B相切于点D,与B C分别交于点F、N,连接D F并延长交A C的延长线点E.(1)求证:A E=A D;(2)过点D作D H⊥B C于点B,连接A F并延长交⊙O于点G,连接D G,若D O平分∠G D H.求证:∠A F D=2∠D F N;(3)在(2)的条件下,延长D G交A E的延长线于点P,连接P F并延长交⊙O于点M,若FM=5,FH =9,求O H的长.参考答案1、(1)证明:∵直径A B平分,∴AB⊥CD.∵BF与⊙O相切,AB是⊙O的直径,∴A B⊥B F.∴C D∥B F.(2)解:连接BD,BC.∵AB是⊙O的直径,∴∠ADB=90°.在Rt△ADB中,∵cos∠BAF=c os∠BCD=,AB=4×2=8.∴AD=AB •c o s∠BAF=8×=6.∵AB⊥CD于E,在Rt△AED中,c os∠BAF=c os∠BCD=,sin∠BAF=.∴DE=AD •s i n∠BAF=6×.∵直径A B平分,∴C D=2D E=3.2、解:(1)答:D E是⊙O的切线.证明:连接O D,A D,∵AB是直径,∴∠ADB=90°,即A D⊥B C,∵O D=O A,∴∠O D A=∠O A D,∴∠O A D=∠C A D,∴∠O D A=∠C A D,又∵D E⊥A C,∴∠EDA+∠CAD=90°,∴∠EDA+∠ODA=90°,即:O D⊥D E,∴DE是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,∵cos∠B==,AB=9,∴B D=C D=3,在Rt△CDE中,∵cos∠C=,∴CE=CD•cos∠C=3•cos∠B=3×=1,∴D E==2.3、(1)证明:连接O C.∵CB=CD,CO=CO,OB=OD,∴△O C B≌△O C D(S S S),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△O B E中,∵O E2=E B2+O B2,∴(4﹣r)2=r2+22,∴r=1.5,∵tan∠E==,∴=,∴CD=BC=3,在Rt△ABC中,A C===3.∴圆的半径为1.5,AC 的长为3.4、(1)证明:连接O E,∵EG是⊙O的切线,∴O E⊥E G,∵B F⊥G E,∴O E∥A B,∴∠A=∠OEC,∵OE=OC,∴∠O E C=∠C,∴∠A=∠C,∵∠ABG=∠A+∠C,∴∠ABG=2∠C;(2)解:∵BF⊥GE,∴∠BFG=90°,∵GF=3,GB=6,∴B F==3,∵BF∥OE,∴△B G F∽△O G E,∴=,∴=,∴OE=6,∴⊙O的半径为 6.5、解:(1)证明:连接O A,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵A P=A C,∴∠P=∠ACP=30°,∴∠OAP=90°,即O A⊥A P,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接A D,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,C D=2A D=2,∴D O=A O=C D=,在Rt△P A O中,由勾股定理得:P A2+A O2=P O2,∴32+()2=(P D+)2,∵PD的值为正数,∴P D=.6、解:(1)连接O P,则∠P A O=∠A P O,而△A E P是由△A B P沿A P折叠而得:故A E=A B=4,∠O A P=∠P A B,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)C F=C E=A C﹣A E=﹣4=2﹣2,=,故:点F是线段B C的黄金分割点. 7、解:(1)直线B D与⊙O相切.证明:如图 1,连接O D.∵OA=OD,∴∠A=∠A D O.∵∠C=90°,∴∠CBD +∠CDB=90°.又∵∠C B D=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴直线BD与⊙O相切.(2)解法一:如图 1,连接DE.∵∠C=90°,BC=2,BD=∴.∵AE是⊙O的直径,∴∠ADE=90°.∴.∵∠CBD=∠A,∴==.∵AE=2AO,∴=.解法二:如图 2,过点O作OH⊥AD于点H.∴.∴∵∠C=90°,BC=2,BD=∴.∵∠CBD=∠A,∴==.∴=.8、(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵A O=B O,∴A D=B D,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.9、证明:(1)连接A D.∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∵A B=A C,∴D C=D B.∵O A=O B,∴O D∥A C.∴∠OFB=∠AEB=90°,∴OD⊥BE.(2)设AE=x,∵OD⊥BE,∴可得OD是BE的中垂线,∴DE=DB,∴∠1=∠2,∴B D=E D=,∵O D⊥E B,∴F E=F B.∴O F=A E=,D F=O D﹣O F=.在Rt△DFB 中,;在Rt△OFB 中,;∴=.解得,即.10、解:(1)如图所示,连接O D,∵AB=AC,∴∠ABC=∠C,而OB=OD,∴∠ODB=∠ABC=∠C,∵DF⊥AC,∴∠CDF+∠C=90°,∴∠CDF+∠ODB=90°,∴∠ODF=90°,∴直线DF是⊙O的切线;(2)连接A D,则A D⊥B C,则A B=A C,则D B=D C=,∵∠CDF+∠C=90°,∠C+∠DAC=90°,∴∠CDF=∠DCA,而∠D F C=∠A D C=90°,∴△C F D∽△C D A,∴C D2=C F•A C,即B C2=4C F•A C;(3)连接O E,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△O A E=A E×O E sin∠O E A=×2×O E×cos∠O E A×O E sin∠O E A=4,S =﹣S =×π×42﹣4 =﹣4 .阴影部分S扇形OAE △OAE11、解:(1)∵D是的中点,∴OE⊥AC,∴∠AFE=90°,∴∠E+∠EAF=90°,∵∠AOE=2∠C,∠CAE=2∠C,∴∠CAE=∠AOE,∴∠E+∠AOE=90°,∴∠EAO=90°,∴AE是⊙O的切线;(2)∵∠C=∠B,∵OD=OB,∴∠B=∠O D B,∴∠O D B=∠C,∴tan C=tan∠ODB==,∴设HF=3x,DF=4x,∴DH=5x=9,∴x=,∴D F=,H F=,∵∠C=∠FDH,∠DFH=∠CFD,∴△D F H∽△C F D,∴=,∴C F==,∴A F=C F=,设O A=O D=x,∴O F=x﹣,∵A F2+O F2=O A2,∴()2+(x﹣)2=x2,解得:x=10,∴OA=10,∴直径AB的长为 20.12、解:(1)如图,∵A B是⊙O的直径,∴∠ADB=90°.则∠CDB=∠ADB=90°.∴∠C+∠CBD=90°.∵∠ABC=90°,∴∠ABD+∠CBD=90°.∴∠C=∠A B D.∴△A D B∽△B D C.∴.∵BD:CD=3:4,AD=3,∴BD=4.在Rt△A B D中,A B=;(3 分)(2)直线E D与⊙O相切.证明:如图,连接O D.由(1)得∠BDC=90°.∵E是BC的中点,∴D E=B E=B C,∴∠E D B=∠E B D,∵OB=OD,∴∠ODB=∠OBD.∵∠OBD+∠EBD=90°,∴∠ODB+∠EDB=∠ODE=90°.∵点D在⊙O上,且OD⊥DE∴ED是⊙O的切线.(5 分)13、(1)证明:连接O C,∵CE与⊙O相切,为C是⊙O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA=OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE +∠ECF=90°,∵∠CDE +∠F=90°,∴∠ECF=∠F,∴E C=E F,∵EF=3,∴EC=DE=3,∴O E==5,∴OD=OE﹣DE=2,在Rt△OAD中,A D==2,在Rt△AOD 和Rt△ACB 中,∵∠A=∠A,∠A C B=∠A O D,∴Rt△AOD∽Rt△ACB,∴,即,∵∴O C = = .. ∴A C = .14、解:(1)如图一,连接A Q .由题意可知:O Q =O A =1.∵OP =2,∴A 为 OP 的中点.∵PQ 与⊙O 相切于点 Q ,∴△O Q P 为直角三角形.∴.即△OAQ 为等边三角形.∴∠QOP =60°.(2)由(1)可知点 Q 运动 1 秒时经过的弧长所对的圆心角为 30°,若 Q 按照(1)中的方向和速度继续运动,那么再过 5 秒,则 Q 点落在⊙O 与 y 轴负半轴的交点处(如图二).设 直线 P Q 与⊙O 的另外一个交点为 D ,过 O 作 OC ⊥QD 于点 C ,则 C 为 QD 的中点.∵∠QOP =90°,OQ =1,OP =2,∴Q P =. , ∵O C ⊥Q D ,O Q =1,O C = ,∴Q C == .∴QD =15、解:(1)∵圆心的坐标为O1(2,0),⊙O1 半径为 1,∴A(1,0),B(3,0),∵二次函数y=﹣x2+b x+c的图象经过点A,B,∴可得方程组,解得:,∴二次函数解析式为y=﹣x2+4x﹣3.(2)过点M作M F⊥X轴,垂足为F.∵O M是⊙O1 的切线,M为切点,∴O1M⊥O M(圆的切线垂直于经过切点的半径).在R T△O O1M中,sin∠O1O M==,∵∠O1O M为锐角,∴∠O1O M=30°,∴O M=O O1•cos30°=,在R T△M O F中,OF=OM •cos30°=.MF=O M sin30°=.∴点M坐标为(),设切线O M的函数解析式为y=k x(k≠0),由题意可知=k,∴k=,∴切线O M的函数解析式为y=x(3)两个,①过点A作A P1⊥x轴,与O M交于点P1,可得 Rt△A P1O∽Rt△M O1O(两角对应相等两三角形相似),P1A=O A•tan∠A O P1=,∴P1(1,);②过点A作A P2⊥O M,垂足为,过P2 点作P2 H⊥O A,垂足为H.可得 Rt△O P2A∽Rt△O1 M O(两角对应相等两三角形相似),在Rt△O P2A中,∵OA=1,∴P2=O A•cos30°=,在Rt△O P2 H中,O H=O P2•cos∠A O P2=,P2H=O P2 •sin∠A O P2=,P2(,),∴符合条件的P点坐标有(1,),(,).16、解:(1)方法选择:∵A B=B C=A C,∴∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△A B M≌△A C D(A A S),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴D M=A D,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△A B M≌△A C D(A A S),∴BM=CD,∴B D=B M+D M=C D+A D;【探究 2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作A M⊥A D交B D于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴B M=C D,∴B D=B M+D M=C D+2A D;故答案为:B D=C D+2A D;(3)拓展猜想:B D=B M+D M=C D+A D;理由:如图④,∵若B C是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠B A M=∠D A C,∴△A B M∽△A C D,∴=,∴B M=C D,∵∠ADB=∠ACB,∠BAC=∠NAD=90°,∴△ADM∽△ACB,∴==,∴D M=A D,∴B D=B M+D M=C D+A D.故答案为:B D=C D+A D17、解:(1)证明:∵∠A C B=90°∴∠E+∠CFE=∠ACB=90°∵∠CFE=∠OFD∴∠E+∠OFD=90°∵AB切⊙O于D∴OD⊥AB∴∠ODF+∠ADE=90°∵OD=OF∴∠OFD=∠ODF∴∠E=∠ADE∴AE=AD(2)证明:连接D N∵DO平分∠GDH∴设∠ODG=∠ODH=α,设∠FDG=β,则∠FDH=2α+β∵OF=OD∴∠DFN=∠ODF=α+β∵DH⊥FN∴∠DHF=90°∴∠DFN+∠FDH=90°,即α+β+2α+β=3α+2β=90°∵FN为⊙O直径∴∠FDN=90°∴∠DNF=90°﹣∠DFN=90°﹣(2α+β)=3α+2β﹣(α+β)=2α+β∴∠G=∠DNF=2α+β∵∠AFD=∠G+∠FDG=2α+β+β=2α+2β∴∠AFD=2∠DFN(3)过O作O Q∥A B交F M于点Q∵∠AEF+∠EFC=90°,∠DFN+∠FDH=90°,∠EFC=∠DFN∴∠AEF=∠FDH=2α+β∴∠ADE=∠AEF=2α+β∴∠FAD=180°﹣∠AFD﹣∠ADF=2(3α+2β)﹣(2α+2β)﹣(2α+β)=2α+β 即∠F A D=∠A D F∴AF=DF∴F在AD的垂直平分线上∵∠AEF=∠FGD=2α+β,∠AFE=∠DFG∴∠EAF=∠FDG=β∴∠PAD=∠PDA=β+(2α+β)=2α+2β∴PA=PD∴P在A D的垂直平分线上即P M垂直平分A D∴OQ⊥FM∴∠OQF=90°,FQ=F M=∵OQ∥AB∴∠FOQ=∠B∵∠B+∠DOH=∠DOH+∠ODH=90°∴∠B=∠ODH∴∠F O Q=∠O D H在△F O Q与△O D H中∴△FOQ≌△ODH(AAS)∴OH=FQ=。
湘教版2021年中考数学二轮复习专题24圆【含答案】

湘教版备考2021年中考数学二轮复习专题24圆一、单选题1.如图,已知E 是 的外心,P ,Q 分别是 , 的中点,连接 , ,分别交 于点△ABC AB AC EP EQ BC F ,D.若 , , ,则 的面积为( )BF =10DF =6CD =8△ABCA. 72B. 96C. 120D. 1442.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A. 不能构成三角形B. 这个三角形是等腰三角形C. 这个三角形是直角三角形D. 这个三角形是钝角三角形3.如图,在△ABC 中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)⊙O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P.根据以上作图过程及所作图形,下列四个结论:① =2 ;②AB =2AM ;③点P 是△ABC 的内心;④∠MON +2∠MPN =360°.BC NC 其中正确结论的个数是( )A. 1B. 2C. 3D. 44.如图,将边长为6的正六边形铁丝框ABCDEF (面积记为S 1)变形为以点D 为圆心,CD 为半径的扇形(面积记为S 2),则S 1与S 2的关系为( )A. S 1= S 2B. S 1<S 2C. S 1=S 2D. S 1>S 2π35.如图,半径为2cm ,圆心角为90°的扇形OAB 的弧AB 上有一运动的点P ,从点P 向半径OA 引垂线PH 交OA 于点H 。
设△OPH 的内心为I ,当点P 在弧AB 上从点A 运动到点B 时,内心I 所经过的路径长为( )A. B. C. D. π2π22π24π6.如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O 的切线BQ ,且BQ=3,现测得 的长度是 , 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的AB 4π3AB 值是( )A. 3B. 2C. 9D. 1010137.如图,AB 是⊙o 直径,M ,N 是 上两点,C 是 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC AB MN 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. B. C. D. 2π232528.如图,△ABC 内接于⊙O ,BC=6,AC=2,∠A-∠B=90°,则⊙O 的面积为( )A. 9.6πB. 10πC. 10.8πD. 12π9.正六边形的半径与边心距之比为( ) A. 1: B. :1 C. :2 D. 2: 333310.在 Rt △ABC ,∠C=90°,AB=6.△ABC 的内切圆半径为1,则△ABC 的周长为( )A. 13B. 14C. 15D. 16二、填空题11.如图,将半径为2,圆心角为120°的扇形OAB 绕点B 逆时针旋转60°,得到扇形O'A'B ,其中点A 的运动路径为 ,则图中阴影部分的面积为________. AA ′12.如图所示,将边长为 的正方形 沿直线 向右滚动(不滑动),当正方形滚动两周时(当8cm ABCD l 正方形的四个顶点的位置首次与起始位置相同时,称为正方形滚动一周),正方形的顶点 所经过的路A 线长是________ . cm13.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =2,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为________.OQ=6.M ∠AOB=45°,点P 、Q 都在射线OA 上,OP=2,OQ=6.M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为________.15.如图,正六边形 内部有一个正五形 ,且 ,直线 经过 、 A 1A 2A 3A 4A 5A 6B 1B 2B 3B 4B 5A 3A 4//B 3B 4l B 2 ,则直线 与 的夹角 ________ .B 3l A 1A 2α=°16.如图,有一个圆O 和两个正六边形T 1 , T 2 . T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1 , T 2分别为圆O 的内接正六边形和外切正六边形).若设T 1 , T 2的边长分别为a ,b ,圆O 的半径为r ,则r :a=________;r :b=________;正六边形T 1 , T 2的面积比S 1:S 2的值是________.17.如图,扇形AOB ,且OB=4,∠AOB=90°,C 为弧AB 上任意一点,过C 点作CD ⊥OB 于点D ,设△ODC 的内心为E ,连接OE 、CE ,当点C 从点B 运动到点A 时,内心E 所经过的路径长为 ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二轮精品复习试卷:圆学校:___________姓名:___________班级:___________考号:___________1、半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A.3 B.4 C.D.2、两个圆的半径分别为2和3,当圆心距d=5时,这两个圆的位置关系是【】A.内含B.内切C.相交D.外切3、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°5、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=500,则∠DAB等于A.55°B.60°C.65°D.70°6、如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为A.36°B.46°C.27°D.63°7、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是【】A.4B.5C.6D.88、如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为【】A.cm B.cm C.cm D.7πcm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A.外离B.外切C.相交D.内切10、如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°11、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为【】A.B.8 C.D.12、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.cm C.cm D.4 cm13、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1)。
过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有【】A.1个B.2个C.3个D.4个14、如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为A.8 B.4 C.4π+4 D.4π-415、如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE16、如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为A.4 B.C.6 D.17、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.18、已知两个半径不相等的圆外切,圆心距为,大圆半径是小圆半径的倍,则小圆半径为A.或B.C.D.19、如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=﹣1,则△ABC的周长为A、B、6 C、 D、420、如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为【】A.B.C.D.21、如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=400,则∠OCB 的度数为【】A.400B.500C.650D.75022、如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是【】A.6cm B.3cm C.2cm D.0.5cm23、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上AD=OA=1,则图中阴影部分的面积为A.B.C.D.24、如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为A.B.C.D.25、如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,两圆的连心线O1O2的长为10cm,则弦AB的长为【】A.4.8cm B.9.6cm C.5.6cm D.9.4cm二、填空题()26、在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为.27、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线与⊙O交于B、C两点,则弦BC的长的最小值为.28、已知⊙O1的半径为3,⊙O2的半径为r,⊙O1与⊙O2只能画出两条不同的公共切线,且O1O2=5,则⊙O2的半径为r的取值范围是.29、已知与的半径分别是方程的两根,且,若这两个圆相切,则t= .30、已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).31、如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是.32、如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).33、如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.34、若圆锥的母线长为5cm,底面半径为3cm,则它的侧面展开图的面积为cm2(结果保留π)35、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).36、图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .37、如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧的弧长为.(结果保留π)38、如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB= .39、如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.40、如图,A,B,C为⊙O上相邻的三个n等分点,,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p= ;当n=12时,p= .(参考数据:,)三、计算题()41、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
四、解答题()42、已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.43、已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.44、如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.45、如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O 相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).46、如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C 作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.47、如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.48、如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=,cos60°=,tan60°=,≈26.851,可使用科学计算器)49、如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。
(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。
(2)若cosB=,BP=6,AP=1,求QC的长。
50、问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.试卷答案1.【解析】试题分析:如图所示,过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2。
在Rt△BOD中,。
故选C。
2.【解析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。