第三章 流体动力学基础
第三章流体动力学基础复习题

第三章流体动力学基础复习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第三章流体动力学基础复习题一、概念部分1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。
2、流体运动的几何描述有:,,和。
3、流线有什么特点?流线、脉线和迹线有什么区别和联系?4、流体微团基本运动形式有,和变形运动等,而变形运动又包括和两种。
5、描述有旋运动几何要素有、和。
6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。
7、表征涡流的强弱的参数有和。
8、在无涡流空间画出的封闭周线上的速度环量为。
9、简述汤姆孙定理的内容10、速度势函数j存在的条件是什么?流函数存在的条件是什么?11、简述流函数的物理意义的内容,并证明。
12、流网存在的条件是什么?简述流网的性质所包含的内容?13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。
b5E2RGbCAP14、是驻点。
通过驻点的流线一定是零流线,是否正确?为什么?零流线是。
轮廓线是。
15、描述流体运动的微分方程有、和。
写出它们的表达式。
16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么?17、写出总水头和测压管水头的表达式,并说明各项的物理意义。
18、写出总压、全压和势压得表达式,并说明各项的物理意义。
19、简述系统和控制体的定义和特点二、计算部分1、已知拉格朗日描述:求速度与加速度的欧拉描述2、试判断下列流场的描述方式:并转换成另一种描述方式3、已知用欧拉法表示的流场速度分布规律为:试求在t=0时刻位于点<a,b>的流体质点的运动轨迹及拉格朗日法表示的速度场4、粘性流体在半径为R的直圆管内做定常流动。
设圆管截面<指垂直管轴的平面截面)上有两种速度分布,一种是抛物线分布u1(r>,另一种是1/7指数分布u2(r>:p1EanqFDPw上式中um1,um2分别为两种速度分布在管轴上的最大速度。
流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。
第三章 流体动力学基础

1、在水位恒定的情况下: (1)A®A¢不存在时变加速 度和位变加速度。 (2)B®B¢ 不存在时变加速 度,但存在位变加速度。 2、在水位变化的情况下: (1)A®A¢ 存在时变加速度, 但不存在位变加速度。 (2)B®B¢ 既存在时变加速 度,又存在位变加速度。
图3-19
第二节 流体质点运动特点和有旋流
图3-13
非均匀流——流线不是平行直线的流 动, 。 非均匀流中流场中相应点的流速大 小或方向或同时二者沿程改变,即沿流 程方向速度分布不均。例:流体在收缩 管、扩散管或弯管中的流动。(非均匀 流又可分为急变流和渐变流)
4.渐变流与急变流
非均匀流中如流动变化缓 慢,流线的曲率很小接近平行, 过流断面上的压力基本上是静 压分布者为渐变流(gradually varied flow),否则为急变流。
图3-17
(3)三元流
三元流(threedimensional flow):流动 流体的运动要素是三 个空间坐标函数。例 如水在断面形状与大 小沿程变化的天然河 道中流动,水对船的 绕流等等,这种流动 属于三元流动。(图 3-18)
图3-18
三.描述流体运动的方法
1.拉格朗日法 拉格朗日方法(lagrangian method)是以 流场中每一流体质点作为描述流体运动 的方法,它以流体个别质点随时间的运 动为基础,通过综合足够多的质点(即 质点系)运动求得整个流动。——质点 系法
一、流体质点的运动 特点 刚体的运动是由 平移和绕某瞬时轴 的 转动两部分组成,如 图3-20(a)。
图3-20(a)
流体质点的运动, 一般除了平移、转 动外,还要发生变 形(角变形和线变 形),如图3-20(b)。
图3-20(b)
二、角速度的数学表达式 流体质点的旋转用角速度表征,习 惯上是把原来互相垂直的两邻边的角速 度平均值定义为该转轴的角速度。
流体力学 第三章 流体动力学

7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
一元流体动力学基础

拉格朗日法表示流体质点的 速度
二、欧拉法
特点
以固定空间点为研究 对象,描述各瞬时物理量 在空间的分布来研究流体 运动的方法。
欧拉变量
变量 (x 、 y 、 z 、 t )称为欧拉变量。
本书以下的流动描 述均采用欧拉法!
第二节 恒定流动和 非恒定流动
非恒定流动
运动不平衡的流动,在流场中各 点流速随时间变化,各点压强,粘性力 和惯性力也随着速度的变化而变化。
质点标志
把流体质点在某一时间 t0时 的坐标( a 、 b 、c)作为该质点 的标志,则不同的( a 、 b 、c) 就表示流动空间的不同质点。这 样,流场中的全部质点,都包含 在 ( a 、 b 、c) 变数中。
拉格朗日变量
表达式中的自变量( a 、 b 、c、 t ) , 称为拉格朗日变量。
外力(压力)作功等于流段机械能量增加
压力作功为: (a) 动能增量为: (b)
位能增量为:
(c)
理想不可压缩流体恒定流元流能量方程(伯努利方程):
二、恒定元流能量方程本身及 其各项含义
Z: 断面对于选定基准面的高度, 水力 学中称为位置水头,表示单位重量 的位置势能,称为单位位能。
p γ
是断面压强作用使流体沿测压管所 能上升的高度,水力学中称为压强水头, 表示压力 y 作功所能提供给单位重量流 体的能量,称为单位压能。 以断面流速 u为初速的铅直上升射流所 能达到的理论高度,水力学中称为流速 水头,表示单位重量的动能,称为单位 动能。
一、总流能量方程的应用要点:
(1)基准面是写方程中 Z 值的依据。一般通过两 断面中较低一断面的形心,使一Z 为零,而另一Z 值 为正值。 (2)两计算断面必须是均匀流或渐变流断面并包含 已知和要求参数; (3)过水断面上计算点的选取,可任取,一般: 管流-断面中心点, 明渠流-自由液面上; (4)两计算断面压强必须采用相同计算基准〕 (绝对、常用:相对压强); (5)方程中各项单位必须统一。
三章一元流体动力学基础

第三节、流线与迹线
1、迹线(path line):运动中旳某一流体质点,在连续时间
内所占据空间点旳连线,即质点运动旳轨迹 例如:在流动旳水面上洒上某些木屑,木屑随水流漂流旳途径
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 旳流动情况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
▪在流场中,因为辨认空间比辨认某一种质点轻易。所
以,欧拉法在流体力学中被广泛采用。
▪在流动旳流体中有无数个流体质点,要用拉格朗日法描述
每个质点旳运动是很困难甚至不可能,极难实现,在流体力 学中不常采用。一般在稀薄气体动力学和数值计算中用得 较多。
三元流动旳连续性方程
利用质量守恒定律还能够导出空间流动旳连续性方 程,其体现式为
ux uy uz 0 x y z
该方程合用于不可压缩流体,对于恒定流和非恒定流均合用。
例题:P56
第六节 理想流体旳运动微分方程
(Euler’s Equation of Motion)
一、推导过程
在某一给定旳瞬间,从流动旳不可压缩性理想流体中任取一微
图3--6 连续性方程推导
u dA (u (u) ds) (dA (dA) ds) 0
s
s
(质量守恒)
u dA (u (u) ds) (dA (dA) ds) 0
s
s
u dA (udA (u) ds dA u (dA) ds (u) ds (dA) ds) 0
而合速度u与三个座标轴上旳分速度之间旳关系是:
第三章-流体动力学基础
第三章流体动力学基础习题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是〔〕 A .加速运动 B .减速运动 C .匀速运动 D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的〔〕倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =3.0×10-3 Pa·S ,密度ρ=1.05×103 kg/m 3,则此时主动脉中血液的流动形态处于〔〕状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为〔〕m/s 。
A .30B .40C .45D .605、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为〔〕。
A .1m /sB .2m /sC .3 m /sD .4 m /s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为〔 〕。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为〔〕mm 。
A .4B .3C .2D .18、正常情况下,人的血液密度为1.05×103kg/m 3,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差〔〕Pa 。
《流体力学》第三章一元流体动力学基础
02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。
第三章流体动力学基础(1)
A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
一维流体动力学基础
❖ ——可压缩流1u体1d微A1小流束2u的2d连A2续性方程。
对不可压缩流体的定常流动, 1 2
dQ1 dQ2
u1dA1
u2dA2
——不可压缩流体微小流束定常流动的 连续性方程。
其物理意义是: 在同一时间间隔内流过微小流束上任一过水断面的流量均相等。或 者说,在任一流束段内的流体体积(或质量)都保持不变
(x,y,z,t)——欧拉变量
2.欧拉加速度
流体质点某一时刻处于流场不同位置, 速度是坐标及时间的函
数, 所以流速是t 的复合函数, 对流速求导可得加速度:
a
dux,
y,
z,
t
dt
如:
ax
dux dt
ux t
ux x
dx dt
ux y
dy dt
ux z
dz dt
a
dx dt
ux
du
dt
其物理意义是: 不可压缩流体做定常流动时,总流的体积流量 保持不变;各过水断面平均流速与过水断面面积成反比,即过 水断面积↑处,流速↓;而过水断面面积↓处,流速↑。
第四节 流体定常流能量方程
一、理想流体元流能量方程
从功能原理出发,取不可 压缩无黏性流体恒定流动 这样的力学模型,可以推 出元流的能量方程式:
一时段内的运动轨迹线。
图中烟火的轨迹为迹线。
2)迹线的微分方程
dx dy dz dt
ux uy uz
式中, ux,uy,uz 均为时空t,x,y,z的函数, 且t是自变量。
注意: 流线和迹线微分方程的异同点。
dx dy dz ux uy uz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、流管、流束
1、流管 流管(stream tube ):在流场中取任一封闭曲线(不是流线),通过该封闭曲线的
每一点作流线,这些无数流线所组成的管状的假想表面。
性质:不能相交 ,流体质点不能穿过流管表面。 在定常时,形状和位置不随时间变化而变化。 非定常时,形状和位置可能随时间义,可以求得流线的微分方程:
设ds为流线上A处的一微元弧长:
u为流体质点在A点的流速:
因为流速向量与流线相切,即没有垂直于流线的流速分量,u和ds重合。
所以
即
展开后得到:
——流线方程
精品课件
流线的性质 (1)定常流动中流线形状不随时间变化,而且流体质点的迹线和流线重合 (2)实际流场中除驻点和奇点外流线不能相交,不能突然转折
流场运动要素是时空(x,y,z,t)的连续函数: 速度
(x,y,z,t)——欧拉变量
控制体:将孤立点上的观察站扩大为一个有适当规模的连续区域。控制体相对于坐 标系固定位置,有任意确定的形状,不随时间变化。控制体的表面为控制面,控制 面上有流体进出。
精品课件
质点的加速度
流体质点运动速度在欧拉法中,由于位置又是时间t的函数,所以流速是t的复 合函数,对流速求导可得加速度:
空间坐标
(a,b,c)为t=t0起始时刻质点所在的空间位置坐标,称为拉格朗日数。所以,任何质点在空 间的位置(x,y,z)都可看作是(a,b,c)和时间t的函数
(1)(a,b,c)=const , t为变数,可以得出某个指定质点在任意时刻所处的位置。
(2)(a,b,c)为变数,t=const,可以得出某一瞬间不同质点在空间的分布情况。
由于位置又是时间t的函数,对流速求导可得加速度:
速度
加速度
由于流体质点的运动轨迹非常复杂,而实用上也无须知道个别质点的运动情况,所以 除了少数情况(如波浪运动)外,在工程流精体品力课学件中很少采用。
注意质点系概念: 在t=0时紧密毗邻的具有不同起始坐标
(a,b,c)的无数质点组成一个有确定形状、有确定流 动参数的质点系。经过t时间之后,质点系的位置和形 状发生变化。
精品课件
二、欧拉法与控制体
欧拉法(Euler method)是以流体质点流经流场中各空间点的运动即以流场 作为描述对象研究流动的方法——流场法 。它不直接追究质点的运动过程,而是以 充满运动流体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。 将个别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间 中的每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的 整个流体的运动情况。 (设立观察站的方法)
2、流束 流管内的全部流体为流束。流束的极限是一条流线。极限近于一条流线的流束为微元
流束。
3、总流 把流管取在运动液体的边界上,则边界内整股液流的流束称为总流。
4、过流断面 流束中处处与速度方向相垂直的横截面称为该流束的过流断面。
5、缓变流动 如果微小流束(流线)间的夹角及流精束品的课曲件率都非常小,这种流动称为缓变流动。反之
精品课件
一、拉格朗日法与质点系
拉格朗日方法(lagrangian method)着眼于流场中每一个运动着的流体质点,跟踪 观察每一流体质点的运动轨迹和运动参数-跟踪追迹法。是以流场中每一流体质点作为描述 流体运动的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点 系)运动求得整个流动。——质点系法
动可忽略不计,即流动流体的运动要素是二个空间坐标(不限于直角坐标)函数。
(3)三元流 三元流(three-dimensional flow):流动流体的运动要素是三个空间坐标函数。
精品课件
四、迹线、流线
1、迹线 迹线(path line)某一质点在某一时段内的运动轨迹线。是拉格朗日法描述流体运动的基础。
精品课件
2、流线 定义:流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点
的切线方向与该点的流速方向重合。流线是欧拉法描述流体运动的基础。图为流线谱中显 示的流线形状。
流线的作法: 在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距
1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线 1234 …,若各点无限接近,其极限就是某时刻的流线。
第三章 流体动力学基础
流体动力学的基础知识、基本原理和基本 方程。内容重要,是整个课程的重点。
精品课件
§3-1描述流体运动的两种方法
连续介质模型告诉我们:流体是由无数质点组 成,而流体质点是连续的、彼此无间隙的充满空间。通 常把由运动流体所充满的空间称为流场。表征流体运动 的物理量,通称为流体的流动参数。
在恒定流中,流场中任意空间点的运动要素不随时间变化,所以时变加速度等于 零; 在均匀流中,质点运动速度不随空间位置变化,所以位变加速度等于零。
精品课件
§3-2流体运动中的基本概念
一、定常流与非定常流(或恒定流与非恒定流)
二、均匀流与非均匀流
精品课件
三、一元流、二元流与三元流
按流体运动要素所含空间坐标变量的个数分: (1)一元流
急变流。缓变流的过流断面可看作是平面。急变流的过流断面是曲面。
缓变流
精品课件
六、流量、净通量
代入上式得:
由两部分组成:等号右边第一项是时变加速度;后三项是位变加速度; (1)时变加速度(当地加速度)(local acceleration)——流动过程中流体由于速度 随时间变化而引起的加速度; (2)位变加速度(迁移加速度)(connective acceleration)——流动过程中流体由 于速度随位置变化而引起的加速度。
一元流(one-dimensional flow):流体在一个方向流动最为显著,其余两个方向的流动 可忽略不计,即流动流体的运动要素是一个空间坐标的函数。若考虑流道(管道或渠道) 中实际液体运动要素的断面平均值,则运动要素只是曲线坐标s的函数,这种流动属于一 元流动。
(2)二元流 二元流(two-dimensional flow):流体主要表现在两个方向的流动,而第三个方向的流