图像去雾技术研究概述
基于超像素分割的图像去雾技术研究

基于超像素分割的图像去雾技术研究一、引言雾天对于许多场景来说是一大噩梦,它会让飞行员看不清路、让司机无法看清前方的交通信号和车辆,还会让安保人员和监控摄像头难以识别人脸和车牌号码等。
因此,研究图像去雾技术对于各行业来说都是非常重要的。
基于超像素分割的图像去雾技术是一种目前比较流行的方法,它可以帮助我们快速、准确地去除图像中的雾气。
这种技术的原理是将图像分成一系列超像素,然后通过对每个超像素的颜色和亮度进行分析,去除雾气对图像造成的影响。
本文将详细介绍这种技术的原理和应用。
二、基于超像素分割的图像去雾技术原理基于超像素分割的图像去雾技术的核心原理是对图像进行超像素分割,然后对每个超像素计算它的颜色、亮度和透射率等信息,将这些信息组合起来,得到去雾后的图像。
1、超像素分割超像素是一种类似于像素的单位,但与传统的像素不同,超像素通常包含多个像素点,并且它们在空间上是相邻的、颜色相似的。
在图像去雾过程中,超像素可以使得去雾后的图像更加平滑,同时也可以加快计算速度。
超像素分割是将一张图像分割成多个超像素的过程。
这个过程中,我们先将整个图像与一个固定大小的滑动窗口进行比较,找到颜色和亮度相似的部分,然后将它们归类到同一个超像素中。
这个过程可以用形态学运算和聚类算法实现。
2、颜色和亮度信息的计算在对图像进行超像素分割之后,我们需要对每个超像素的颜色和亮度等信息进行计算。
在雾天环境中,雾气会让物体变得模糊、色彩变暗,因此我们需要通过一些补偿方法来还原出原本的颜色和亮度。
对于颜色信息,常用的方法是通过颜色恢复算法,如Retinex算法、白平衡算法等;对于亮度信息,可以通过图像增强技术、gamma校正等方法来进行处理。
3、透射率估计在超像素分割和颜色亮度信息计算完成之后,我们需要进一步估计图像中不同区域的透射率,以便去除雾气对图像造成的影响。
透射率是一个介于0和1之间的值,它表示了光线在通过雾气时所遭遇的屈折和散射效应的影响。
图像去雾算法研究综述

图像去雾算法研究综述一、本文概述随着计算机视觉技术的快速发展,图像去雾技术已成为近年来的研究热点之一。
图像去雾旨在从有雾的图像中恢复出清晰、无雾的图像,从而提高图像的质量和视觉效果,为后续的图像处理和分析提供更为准确和可靠的信息。
本文旨在对图像去雾算法进行全面的研究综述,探讨各种去雾算法的原理、优缺点及适用场景,以期为后续的研究提供参考和借鉴。
本文将对图像去雾技术的研究背景和意义进行介绍,阐述图像去雾在各个领域中的应用价值。
接着,本文将从去雾算法的基本原理出发,详细介绍各种去雾算法的实现过程,包括基于物理模型的去雾算法、基于深度学习的去雾算法等。
在此基础上,本文将对各种去雾算法的性能进行评估,包括去雾效果、计算复杂度、实时性等方面的比较和分析。
本文还将对去雾算法的未来发展趋势进行展望,探讨去雾算法在新技术、新场景下的应用前景。
本文期望通过全面、系统的综述,为图像去雾技术的研究提供有益的参考和启示,推动图像去雾技术的进一步发展。
二、图像去雾技术基础理论图像去雾技术,作为计算机视觉和图像处理领域的一个重要研究方向,其基础理论涉及大气散射模型、图像增强与复原、深度学习等多个方面。
深入了解这些基础理论,对于设计和实现有效的去雾算法至关重要。
大气散射模型:大气散射模型是图像去雾算法的理论基础,其中最具代表性的是McCartney模型。
该模型描述了光线在大气中的传播和散射过程,将观察到的图像分解为直接衰减部分和大气光散射部分。
通过估算这两个部分,可以恢复出清晰的无雾图像。
图像增强与复原:图像增强和复原技术在去雾过程中发挥着重要作用。
图像增强技术,如对比度增强、色彩增强等,可以提高图像的视觉效果,使去雾后的图像更加清晰自然。
而图像复原技术则通过去除图像中的噪声和失真,恢复图像的原始信息,进一步提高去雾效果。
深度学习:近年来,深度学习在图像去雾领域取得了显著进展。
通过构建深度神经网络模型,可以学习到去雾过程的复杂映射关系,从而实现更加精确和高效的去雾。
图像去雾技术研究进展

图像去雾技术研究进展近年来,随着计算机视觉和图像处理技术的不断发展,图像去雾成为研究的热点之一。
图像去雾技术是指通过研究图像中存在的雾气信息,利用算法和数学模型将图像中的雾气去除或减弱,从而提高图像的质量和清晰度。
图像去雾技术对于许多应用场景具有重要意义。
在计算机视觉和图像处理领域,如果图像中存在大量的雾气,会导致图像的细节模糊、对比度降低甚至失真,影响图像的可视化效果。
在航空、无人机摄影、遥感等领域中,由于物体与观测者之间存在大气散射现象,会导致图像中存在雾气,减弱图像的信息传递和视觉效果。
最早的图像去雾方法是基于物理模型的方法,例如通过对大气散射过程的建模,采用气象学原理来估计雾气的影响。
这种方法虽然能够一定程度上去除图像中的雾气,但对于复杂的场景和不同的光照条件下的图像处理效果有限。
随后的研究中,出现了基于暗通道先验的图像去雾方法。
该方法利用了天空区域在雾气影响下的特定属性,即图像中的暗通道。
暗通道是指在单一光源照射下,图像中任意一点的RGB通道中最小值的集合。
通过对暗通道的分析和处理,可以估计出图像中存在雾气的程度,并进行去雾处理。
这种方法在一定程度上能够取得较好的去雾效果,尤其在自然风光和室外场景中表现突出。
随着深度学习技术的兴起,基于卷积神经网络的图像去雾方法也得到了广泛应用。
通过利用深度学习模型,可以学习图像中雾气和景物之间的映射关系,从而更准确地去除图像中的雾气。
这类方法通过大量的训练数据和优化算法,能够实现更高质量的图像去雾效果。
除了上述方法外,还有一些新兴的图像去雾技术受到了研究者们的关注。
例如,基于双边滤波的图像去雾方法,通过对图像进行双边滤波处理,同时考虑像素之间的距离和相似度,可以有效地去除图像中的雾气。
此外,使用波束分解和多尺度分析的图像去雾方法也在研究中取得了一定的进展。
然而,图像去雾技术仍然存在一些挑战和局限性。
首先,雾气对图像的影响程度和分布方式较为复杂,不同的光照条件、气象条件以及物体和雾气之间的距离都会对去雾效果产生影响。
图像去雾算法及其应用研究

图像去雾算法及其应用探究摘要:随着科技的飞速进步,图像处理技术也日益成熟。
图像去雾算法作为其中一项重要的探究内容,可以有效消除图像中的大气雾霾和模糊。
本文通过对图像去雾算法的原理及应用进行探究,总结了当前主流的几种图像去雾算法,并分析了其适用范围和应用前景。
一、引言大气雾霾是指由于大气中粉尘、液滴和气态颗粒等悬浮物质对光的散射和吸纳作用所引起的能见度降低的现象。
在平时生活和实际应用中,大气雾霾会导致图像质量下降,从而影响人们对图像内容的识别和理解。
因此,图像去雾技术的探究和应用具有重要的意义。
二、图像去雾算法的原理图像去雾算法的原理主要是基于图像恢复和能见度预估两个方面。
图像恢复是指通过对图像进行处理,消除雾霾、提高图像的明晰度和对比度。
能见度预估主要是依据大气传输模型和雾霾图像特征,预估出雾霾的密度以及图像的深度信息,从而恢复原始图像。
三、主流图像去雾算法及其适用范围1. 单帧图像去雾算法单帧图像去雾算法是指通过对单张雾霾图像进行处理,消除雾霾并恢复原始图像的算法。
其中最常使用的算法有暗通道先验算法和颜色修复算法。
暗通道先验算法是基于图像的颜色信息来进行雾霾去除的算法。
通过寻找图像中的暗通道,预估出雾霾的密度,从而消除雾霾。
这种方法适用于雾霾较弱的状况,但对于雾霾较深厚的图像效果不佳。
颜色修复算法是通过对图像颜色的修复来消除雾霾。
该算法依据图像颜色失真的特点,恢复图像中受到雾霾影响的颜色,从而消除雾霾。
2. 基于多帧图像的去雾算法基于多帧图像的去雾算法是指通过对多张雾霾图像进行处理,借助图像之间的信息差异来消除雾霾。
其中最常使用的算法有暗通道先验算法和多帧融合算法。
暗通道先验算法在多帧图像去雾中同样适用,通过多帧之间的暗通道信息差异来预估出雾霾的密度和图像的深度信息。
多帧融合算法则是通过对多张雾霾图像进行融合,将不同图像中的雾霾进行消除。
这种算法适用于复杂雾霾状况下的图像去雾,但对于计算量要求较高。
基于深度学习的图像去雾技术研究

基于深度学习的图像去雾技术研究第一章:绪论随着计算机视觉技术的不断发展,图像处理技术也得到了长足的发展。
其中,图像去雾技术是图像处理领域中一项重要的技术之一。
图像去雾技术指的是通过对被大气雾霾改变的图像进行处理,使其在视觉上更加清晰明了的过程。
而基于深度学习的图像去雾技术则是近年来取得了突破性进展的一项技术。
本文将对基于深度学习的图像去雾技术进行研究分析。
第二章:基于深度学习的图像去雾技术研究现状目前,基于深度学习的图像去雾技术已经广泛应用于自动驾驶、航拍、智能视频监控等领域。
其主要技术路线主要分为两类,一类是基于全卷积神经网络的端到端训练方法,另一类则是基于多阶段细节调整的方法。
其中,深度学习算法主要包括卷积神经网络(CNN)、循环神经网络(RNN)、对抗神经网络(GAN)等。
已经有许多学者对基于深度学习的图像去雾技术进行了研究分析,并取得了显著的研究进展和成果。
第三章:基于深度学习的图像去雾技术研究方法分析对于基于深度学习的图像去雾技术,其研究方法主要基于以下两方面的思路:数据驱动方法和物理模型驱动方法。
其中,数据驱动方法主要是通过大量带有雾霾图像和清晰图像的数据集,利用深度学习算法进行训练,从而生成更高质量的去雾图像。
物理模型驱动方法则是针对不同环境下的雾霾现象,建立相应的物理模型,并应用深度学习算法进行计算求解,生成更加真实的去雾结果。
第四章:基于深度学习的图像去雾技术研究应用案例分析目前,基于深度学习的图像去雾技术已经广泛应用于多个领域。
例如,基于深度学习算法的图像去雾技术可应用于自动驾驶领域,实现更加清晰的行车视角;在航拍领域,通过基于深度学习的图像去雾技术,可以实现更加真实的航拍效果;在智能视频监控领域,应用基于深度学习的图像去雾技术可以提升监控图像清晰度,提高监控效果。
第五章:基于深度学习的图像去雾技术研究存在的问题与展望尽管基于深度学习的图像去雾技术已经取得了较大的进展和成果,但是在实际应用中仍然存在一些问题,例如,算法效率不高、处理时间长等。
遥感技术中的高分辨率图像去云与去雾技术研究

遥感技术中的高分辨率图像去云与去雾技术研究第一章引言遥感技术是一种通过无需接触被测目标,利用能传播在空间中的电磁波进行观测、获取和记录地球和其他天体物体信息的技术。
遥感图像是遥感数据处理和分析的基础,然而,由于云和雾的存在,高分辨率遥感图像中的目标信息常常被掩盖或模糊化。
因此,高分辨率图像去云与去雾技术的研究具有重要的实际意义。
第二章高分辨率图像去云技术研究2.1 云检测与分割云检测与分割是高分辨率图像去云的第一步,通过对图像中的云区域进行检测和划分,可以准确提取出其他地物信息。
传统的云检测方法包括阈值分割、谱特征分析和纹理特征提取等,而基于深度学习的方法(如卷积神经网络)在云检测方面表现出更好的效果。
2.2 云补偿与填充云补偿与填充是针对云区域的处理方法,旨在通过利用周围无云区域的信息来还原云掩盖的地物信息。
常用的云补偿与填充方法包括基于像素相似性的插值方法和基于图像分解的方法,如小波变换和低秩矩阵重建等。
2.3 云去除与恢复云去除与恢复是通过对云区域进行处理,从而使图像中的地物信息更加清晰和真实。
常用的云去除与恢复方法包括传统的多时相合成方法和基于机器学习的方法,如随机森林和支持向量机等。
2.4 云降噪与增强云降噪与增强是为了减少云区域中的噪声,并增强云区域的边缘和纹理等细节信息。
常见的云降噪与增强方法包括基于滤波的方法和基于边缘保留的方法,如双边滤波和非局部均值滤波等。
第三章高分辨率图像去雾技术研究3.1 雾图像恢复模型雾图像恢复模型是去雾技术的关键,其主要目标是从有雾图像中还原出真实的无雾图像。
常见的雾图像恢复模型包括传统的暗通道先验模型和最小二乘模型,以及基于深度学习的模型,如卷积神经网络和生成对抗网络等。
3.2 雾图像去噪与增强雾图像经常伴随着噪声和细节丢失的问题,因此,去噪与增强是雾图像处理中必不可少的步骤。
传统的去噪与增强方法包括基于小波变换和图像分析的方法,而基于深度学习的方法则能够进行更精确的去噪与增强。
基于深度学习的雾霾图像去雾算法研究

随着数字图像处理技术的不断发展,图像去雾技术已经成为计算机视觉领域 的一个研究热点。在雾霾天气下,由于空气中的颗粒物导致光线散射,拍摄的图 像往往呈现出模糊、对比度低等问题。因此,研究如何通过去雾算法来提高图像 的质量具有重要意义。
近年来,深度学习技术在图像处理领域取得了巨大的成功。其中,卷积神经 网络(CNN)在图像分类、目标检测、图像生成等方面表现出色。因此,我们考 虑将深度学习技术应用于单幅图像去雾算法的研究。本次演示提出了一种基于深 度学习的单幅图像去雾算法,通过对CNN的深入学习和训练,实现了对模糊图像 的高效恢复。
一、背景及意义
在过去的几十年中,随着工业化和城市化的快速发展,空气污染问题越来越 严重。雾霾是一种常见的空气污染现象,它主要是由于大气中各种颗粒物和气溶 胶的含量增加而形成的。雾霾对人们的健康和生活质量产生了严重的影响,同时 也对光学成像系统产生了干扰。因此,研究一种基于深度学习的雾霾图像去雾算 法具有重要意义。
三、研究内容及方法
本次演示提出了一种基于深度学习的雾霾图像去雾算法。具体的研究内容和 方法如下:
1、数据采集与预处理
首先,我们采集了大量的雾霾图像和对应的清晰图像作为训练数据。然后, 我们对数据进行预处理,包括灰度化、裁剪和归一化等操作,以提高算法的收敛 速度和精度。
2、卷积神经网络模型构建
3、去雾处理:将训练好的模型应用于单幅模糊图像的去雾处理。首先将输 入图像输入到训练好的模型中,得到预测的清晰图像。然后对预测的清晰图像进 行后处理,包括锐化、色彩校正等操作,以进一步提高视觉效果。
四、实验结果与分析
为了验证本次演示提出的去雾算法的有效性,我们在公开数据集上进行实验。 实验结果表明,我们的算法在去雾效果和视觉效果方面均优于传统的方法。此外, 我们还对不同场景下的模糊图像进行了测试,结果表明我们的算法具有较强的泛 化能力。
基于神经网络的图像去雾算法研究

基于神经网络的图像去雾算法研究一、研究背景在雾霾天气的背景下,如何从图像中去除雾霾是一个常见的问题。
不过,去除雾霾并不是简单的颜色滤镜或者对比度调节。
到目前为止,基于神经网络的图像去雾算法被认为是最为灵活而有效的解决方案。
基于神经网络的算法可以识别图像内容,以此作为去除雾霾的指导。
这种算法可以减少人工干预,从而减少处理时间和提高算法的准确性。
二、去雾算法原理1. 图像去雾算法是基于多个模型的集成实现。
集成模型包括神经网络模型、卷积神经网络模型和深度比特网络模型等。
2. 神经网络模型是一种人工神经网络,它可以学习和适应数据集中不同场景的变化。
这种模型还可以逐步减少深度图像中的雾霾,并且可以提高图像的亮度和对比度。
神经网络模型具有很高的灵活性,这意味着它可以对各种不同的场景进行归纳。
3. 卷积神经网络模型是通过卷积操作来识别和提取图像的特征。
通过卷积层和池化层的组合,可以有效地实现特征提取和降维。
这种模型可以直接从输入图像中提取局部特征,然后根据上下文信息对这些特征进行调整。
4. 深度比特网络模型是一种用于图像表示学习的方法。
深度比特网络模型可以将图像映射到低维表示空间中,并实现去除雾霾等任务。
这种模型通过对图像数据的特征进行非线性变换,在保留图像信息的同时降低噪声和雾霾的影响,从而提高图像质量。
三、神经网络在去雾算法中的应用1. 图像去雾算法中的神经网络被广泛应用。
神经网络可以自动学习各种场景下的特征,并以此为依据去除图像中的雾霾。
这使得算法具有适应性和灵活性,而不需要对特定的场景和颜色进行硬编码。
2. 神经网络可以处理大量训练数据,从而逐步减少深度图像中的雾霾。
此外,神经网络还可以提高图像的对比度和亮度,使得图像更加清晰明亮。
这种方法被证明比传统的颜色滤镜或对比度调节方法更为有效。
3. 通过调整神经网络的参数,可以改变算法的输出。
在目标图像中,可以改变神经网络中的策略,进而改变去除雾霾的程度。
这意味着用户可以根据需要自由地调整去雾算法的输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号图像去雾技术研究The research on image defoggingtechnology学生姓名XX专业电子科学与技术学号XXXXXXX学院电子信息工程学院摘要本文首先简单介绍了云雾等环境对图像成像的影响,接着从图像增强的角度研究图像去雾技术的基本方法,介绍了去雾算法的原理和算法实现步骤,并对去雾算法的优缺点和适用条件进行了总结。
基于图像增强的去雾原理,本文提出了联合使用同态滤波和全局直方图均衡的改进去雾算法。
先进行同态滤波使有雾图像的细节充分暴露,然后采用全局直方图均衡扩展图像的灰度动态范围。
去雾效果具有对比度高,亮度均匀,视觉效果好的特点,不足的是图像的颜色过于饱和。
关键字:图像增强图像去雾同态滤波全局直方图均衡AbstractFirstly, this paper simply introduces the influence of cloud environment of image formation, then from the enhanced image perspective of image to fog technology basic method, is introduced to fog algorithm principle and algorithm steps, and has carried on the summary to fog algorithm advantages, disadvantages and applicable conditions.As for the defogging theory based on the image enhancement, the paper puts forward the improved defogging algorithm which requires combining homomorphic filtering and global histogram equalization. We should use homomorphic filtering to get details of the fogging images clearly exposed and then use global histogram equalization to spread the images’ gray scale dynamic range. Defogging has features of high contrast ratio, uniform brightness and good visual effect. But its drawback is that the image color is too saturated.Key words: image enhancement; image defogging; homomorphic filtering; global histogram equalization;1.云雾等环境对图像成像的影响1.1 课题研究的背景和意义近年来国内的雾霾天气逐渐由中东地区向全国蔓延。
雾霾自2013年起开始成为人们对天气关注的关键词。
雾霾是特定气候条件与人类活动相互作用的结果。
高密度人口的经济及社会活动必然会排放大量细颗粒物(PM2.5),一旦排放超过大气循环能力和承载度,细颗粒物浓度将持续积聚,此时如果受静稳天气等影响,极易出现大范围的雾霾。
雾天时,弥漫在空中的雾气和尘埃模糊了人们的视线,使得景物的能见度大幅降低。
在雾天条件下的室外获得的图像会受到严重的退化,图像目标的对比度和颜色等特征被衰减,这大大降低了图像的应用价值。
即使在晴朗的天气条件下拍摄的照片,由于大气的散射作用,照片的清晰度同样受到影响。
因为在每一个实际的场景中,光线在到达相机之前,都会从物体表面反射出来而且散射在空气中。
这是因为空气中存在的浮质,像灰尘、雾和烟等,这些因素导致物体表面颜色变淡和整幅图像的对比度降低。
这给工业生产及人们的日常生活带来了很大影响。
例如城市交叉路口图像监视系统,在恶劣天气条件下得到的退化图像会对判断车辆信息和监控交通情况造成极大的困难;在军事侦察或监视中,退化图像对信息的识别与处理会造成偏差,而这种偏差的后果是非常严重的;遥感探测中退化图像同样会对后续的信息处理产生很大的干扰。
因此许多领域都要用到去雾算法。
有雾图像特征清晰化的研究具有非常重要的意义。
另一方面,随着科学技术的飞速发展,计算机运行处理速度加快,图像处理广泛应用于众多的科学和工程领域重要领域。
数字图像技术从20世纪50年代发展至今,在航空航天、工业生产、医疗诊断、资源环境、气象及交通监测、文化教育等领域有着广泛的应用,创造了巨额的社会价值。
应用的视觉系统极易受到天气因素的干扰甚至无法正常工作。
雾天天气条件是各种天气条件中对视觉影响最严重的一种。
图像去雾技术成为图像处理和计算机视觉领域共同关心的重要问题。
为了保证视觉系统的全天候正常工作,就必须使系统能够适用于各类天气状况,这样才能提高系统的可信赖性。
因此,研究如何对尘雾等恶劣天气条件下获得的退化图像进行有效地处理,对大气退化图像的复原和景物细节信息的增强有着非常重要的现实意义。
雾天下图像的清晰化技术有可能对其他恶劣天气条件下图像的清晰化技术也起到促进作用。
从而促使全天候视觉系统排除天气状况的干扰和影响。
此方面技术的研究有着很大应用前景。
1.2 国内外研究现状对雾天图像,改善退化图像的质量,可采用模拟和数字两种图像处理技术进行处理。
模拟图像处理利用光学处理和电子电路处理,特点是速度快实时性好,但是精度较差,灵活性差,很难有判别能力和非线性处理能力。
而数字图像处理采用计算机或实时硬件处理,处理精度高,可以进行复杂的非线性处理,有灵活的变通能力。
图像增强法就是采用数字图像处理技术对雾天得到的退化图像进行处理的一种方法。
图像增强方法又称为非模型的方法,不考虑图像退化原因,按照特定需要突出图像中的某些信息,如边缘轮廓、亮度、对比度等,同时削弱或者除去某些不需要的信息,来改善图像的视觉效果或者将图像转换成为一种更适合人或机器进行分析的形式。
增强处理并不能增强原始图像的信息,只是改善图像的可识别度,这种处理可能使图像失去某些信息。
(1)全局化的图像增强方法全局化的雾天图像增强方法是指对由整幅雾天图像的统计信息决定的灰度值的调整,与被调整点所处的区域无关。
由于雾天下场景的退化程度与其深度相关,而一幅图像往往包含复杂的深度信息,所以全局化的处理方法往往不能得到理想的效果,但当雾天图像的场景相对简单时,不失为一种有效的途径。
典型的全局化雾天图像增强方法主要有6种。
1)全局直方图均衡化算法。
该方法的基本思想是把有雾图像的直方图变换为近似均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到增强雾天图像整体对比度的效果。
但是在实际场景中图像的景深和雾天图像不同区域影响有差别,整体处理会造成图像增强不均匀,去雾图像视觉效果不够好。
2)同态滤波算法。
该算法是一种把频率过滤和灰度变换相结合的图像增强处理方法,也是一种把照明反射模型作为频域处理的基础,利用压缩亮度范围和增强对比度来改善图像质量的处理技术。
3)小波方法。
小波与多尺度分析在对比度增强上的应用取得了很大进展。
4)Retinex算法。
Retinex是一种描述颜色不变性的模型,它具有动态范围压缩和颜色不变性的特点,对由于光照不均而引起的低对比度彩色图像具有很好的增强效果。
黄义明[1]对于Retinex算法的改进,利用递归高斯滤波对Retinex算法进行加速和利用线性拉伸的方法提高图像的对比度。
5)曲波变换。
曲波是一种在小波变换基础上发展起来的新的多尺度分析方法,由于它特别适合于各向异性奇异性特征的信号处理,因此能够很好地弥补小波变换在图像的曲线边缘增强方面的局限性。
6)基于大气调制传递函数增强雾天图像。
该方法的原理是:首先通过对大气调制传递函数的预测,近似估计大气对图像质量的退化过程。
当得到先验信息时,通过预测公式计算出相应的湍流调制传递函数和气溶胶调制传递函数,再由前两者的乘积得到总的大气调制传递函数。
然后利用大气调制传递函数在频域内对天气退化图像进行复原,并对户外景物图像中由大气调制传递函数造成的衰减进行补偿。
例如杨国强通过分析transmission图像的本质特性,并基于图像的大气衰减模型,提出一种有效的单幅图像去雾技术—非线性的双边滤波图像去雾方法,并利用获得结果图像实现图像的重光照技术[2]。
(2)局部化的图像增强方法对于上述全局化的图像增强方法而言,由于此类方法是对整幅图像进行操作,而且在确定变换或转移函数时是基于整个图像的统计量。
而在实际应用中常常需要对图像某些局部区域的细节进行增强,但这些局部区域内的像素数量相对于整幅图的像素数量往往较小,在参与整幅图的计算时其影响常被忽略掉,并且从整幅图像得到的函数也不能保证这些所关心的局部区域得到所需的增强效果。
因此,需要根据所关心的局部区域的特性来计算变换或转移函数,并将这些函数用于所关心的区域,以得到所需的增强效果。
王敬东等人使用Kuwahara边缘角点保持滤波器对大气散射光进行估计并对所采用的Kuwahara滤波器进行改进[3]。
通过增加子块的数目以及进行局部加权等提高边缘保留效果,抑制方块效应,从而获得较为准确的介质透射率。
2 .基于图像增强的去雾算法研究基于图像增强方法的去雾算法是不考虑有雾图像的成像原理,从有雾图像呈现的低亮度和低对比度的特征考虑,按照特定的需要增强需要突出部分的图像内容,削弱或去除某些图像信息的方法。
但是应当明确的是,图像增强去雾算法并不能够增加原始图像的信息,其结果只是提高视觉的清晰度和对比度,会有图像信息的损失。
本节主要研究了基于图像增强的全局化处理方法和局部处理方法,分析算法实现步骤并仿真,然后对每一种算法结果进行总结。
最后,总结各图像增强算法优缺点后,提出基于同态滤波和全局直方图均衡的改进去雾算法方案。
2.1全局化雾天图像增强全局化的雾霾图像增强是指根据整幅雾霾图像的统计信息来对灰度值进行调整,与调整点所在的区域无关。
针对雾天条件下获取的图像具有低对比度,全局化图像增强可以使图像成像均匀,扩大图像动态范围及扩展对比度。
具有算法时间复杂度小的优点,对薄雾图像有明显的改善效果。
2.1.1全局直方图均衡直方图是图像的灰度像素统计图,用于表示图像中不同灰度级出现的概率[4]。
全局直方图均衡是对原始图像的直方图进行操作,使灰度级分布近似均匀,是灰度级动态范围增加,改善图像的对比度。