原子探针ppt课件

合集下载

《探针显微技术S》PPT课件

《探针显微技术S》PPT课件

理学奖金.
精选ppt
5
精选ppt
6
三代显微镜的观察范围及典型物体
精选ppt
7
扫描探针显微镜的特点
相较于其它显微镜技术的各项性能指标比较
扫描探 针显微

透射电 镜
扫描电 镜
场离子 显微镜
分辨率
原子级(0.1nm)
点分辨 (0.3~0.5nm)
晶格分辨 (0.1~0.2nm)
6~10nm
原子级
工作环境 样品环境 实环境、大 气、溶液、
其中最常用的有扫描隧道显微镜(STM)和原子力 显微镜(AFM),这两种方法互为补充。
精选ppt
9
STM要求被测样品必须是导体或半导体,虽然不导 电的样品可以通过镀金膜或碳膜在其表面形成一层 导电膜,但膜的粒度和均匀性直接影响对真实表面 的分辨率造成失真。
AFM可用于非导体,但要求样品的粘度不能太大, 否则将直接影响分辨率。
精选ppt
10
SPM技术的特点:
(1)具有原子级的分辨率(横向0.1-0.2nm,纵 向0.01nm);
(2)可以观察单个原子层的局部表面结构;
(3)可以得到表面电子结构的有关信息;
(4)可以实时、实空间地观察表面的三维图像, 可以观测到表面的原子的扩散、迁移等过程。
(5)可以在不同条件下,如真空、大气、常温、 低温、高温、溶液等条件下工作,不需要特别备 制样品,对样品无损伤,能在缓冲溶液中直接观 察生物样品的表面结构,能在高温环境下工作。
(6)除了用于成像、显微观测,还可以对表面的 原子、吸附的原子或分子进行移动,从而进行表 面纳米级加工
精选ppt
11
1990年,IBM公司的科学家展示了一项令世 人震惊的成果,他们在金属镍表面用35个惰 性气体氙原子组成“IBM”三个英文字母。

原子力显微镜课件PPT

原子力显微镜课件PPT

物理吸附
亲水
疏水
2021/3/10
22
2. 毛细力及其对AFM测量的影响
Fa2Rh/r
在R = 50~100 nm,相对湿度在40~80% 时,毛细力大约在几十nN数量级。
3. 液体中针尖-试件间的相互作用力
探针和试件都浸入液体内进行测量 时,可以完全消除毛细现象,因此可不受 毛细力的干扰,使测量时的作用力大大减 小,而且可以:
z
1
ki kc
h
故在恒力测量模式时,测出的试件廓形高低, 大于 真实的高低,即测量结果在垂直方向有放大作用, 造成测量廓形的误差
3)在AFM测量时, 针尖的预置力越大,纵向测量结果的放大作用也越大,即纵 向畸变也增大。为减小测量误差,应尽量采用小的针尖预置力。
4) AFM测量结果的纵向放大量(畸变)和微悬臂的刚度有关。在采用等间隙 测量模式时,从式中可看,采用刚度kc较低的微悬臂较为有利,可以减小纵 向测量误差。但如采用恒力测量模式时,为减小纵向测量误差, 应采用刚度较 高的微悬臂,这和采用等间隙测量模式时正好相矛盾。因此可知,微悬臂刚 度的选择和AFM的测量模式有关。
2021/3/10
27
3. 探针尖曲率半径对测量结果的影响
使 用 商 品 的 Si3N4 四 棱 锥 探 针 尖 检 测所获得的聚酰亚胺薄膜AFM图像
使用ZnO晶须作探针尖检测,所获 的聚酰亚胺薄膜AFM图像
3)AFM测量时利用的相互作用力 在接触测量时,检测的是它们间的相互排斥力; 在非接触测量时,检测的是它们间的相互吸引力
4)针尖-试件间其他作用力及其应用于各种扫描力显微镜
针尖-试件间相互作用的磁力,可制成检测材料磁性能的磁力显微镜(MFM); 针尖-试件间相互作用的静电力,可制成检测材料表面电场电势的静电力显微镜 (EFM); 探针-试件接触滑行时的摩擦力,可制成研究材料摩擦磨损行为的摩擦力显微镜 (FFM);

扫描探针显微技术之二——原子力显微镜(AFM)技术ppt课件

扫描探针显微技术之二——原子力显微镜(AFM)技术ppt课件
Atomic force microscopy (AFM)
Lateral Force Microscopy (LFM)
Magnetic Force Microscopy (MFM)
Electrostatic Force Microscopy (EFM)
Chemical Force Microscopy (C学检测部分 反馈电子系统 计算机控制系统
10
工作模式
接触模式 (contact mode) 非接触模式 (non-contact mode) 轻敲模式 (tapping / intermittent contact mode)
van der Waals force curve
Near Field Scanning Optical Microscopy
(NSOM)
3
基本原理
1986,IBM,葛·宾尼(G. Binnig)发明了原子力 显微镜(Atomic Force Microscope ,AFM)——新一代 表面观测仪器.
原理:利用原子之间的范德华力(Van Der Waals
52
原子力显微镜 Atomic Force Microscopy
1
主要内容
发展历史 基本原理 应用
2
扫描探针显微镜SPM
SPM是指在STM基础上发展起来的一大类显微镜, 通过探测极小探针与表面之间的物理作用量如光、 电、磁、力等的大小而获得表面信息。
scanning tunneling Microscopy (STM, 1982)
11
工作模式-接触模式
d <0.03nm
van der Waals force curve
针尖始终向样品接触并简单地在表面上移动,针 尖—样品间的相互作用力是互相接触原于的电子间 存在的库仑排斥力,其大小通常为10-8 —10-11N。

材料分析方法实验课件电子探针PPT课件

材料分析方法实验课件电子探针PPT课件

CCD
FD
用于观察CRT
Image memory
CL
光学 观察系
EWS
自动valveOL
Trackball
Mouse
样 品stage 备用抽真空
分光(色散)晶体
X射线检测器 SED
DP
2 电子探针的工作原理(三)
当原子序数小时: (a)加速电压低时的情况; (b)加速电压高时的情况; 当原子序数大时: (c)加速电压低时的情况; (d)加速电压高时的情况
(3)线分析结果(二)
4 电子探针的应用
表面观察
成分分析
二次电子 背散射电子 透射电子
EPMA 特征X射线
状态分析
(一)表面观察
(1)断口形貌观察
(2)颗粒大小的测定
(3)膜层厚度
(二)成分分析
夹杂物 、析出相 、偏析、 焊接 、镀层、 薄膜 等等 检测其成分,及其某种元素在某个
区域的分布
同时显示所有谱线,定性分析速度快,几十秒时间 可完成。
分析范围小(直径1~100μm),不宜做大面积 内的平均成分分析。
精度高,能做痕量元素、轻元素及有重峰存在时 的分析。
擅长做线分析和面分析,点分析速度慢
有复杂的机械系统,操作麻烦复杂,不易掌握, 售价贵。
分析范围大(最大可至5mm左右)
对中等浓度的元素可得到良好的分析精度。
结果
(二)定性分析
(1)点分析 将电子束固定在需要分析的微区上,用波
谱仪分析时可改变分光晶体和探测器的位置, 得到全波谱谱线,从而得到该微区内全部元 素定性含量。
扫描位置固定(大小1-100μm),转动晶 体角度就收不同波长的信号
(1)定性点分析

扫描隧道显微镜(STM)PPT课件

扫描隧道显微镜(STM)PPT课件
扫描隧道显微镜 (STM)
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz

原子探针

原子探针

图(3)是利用三维原子探针对FeAl有序合金的分析结果。含有 0.04at.%B元素的B原子在FeAl有序合金位错附近偏聚也会形成Cottrell 气团FeAl(40at%Al)合金,有序化后是B2结构,晶体的(100)面是超点阵 面,Fe和Al原子相互交替占据该面。图中只给出垂直于刃型位错线截 面上的一层Al原子,可以分辨出Al原子排列构成的原子面,面间距约 为0.29nm,从前面自左而右数至第21个原子面,然后从这个原子面后 端自右向左数至原来开始的的那个原子面,共有22个原子面,这说明 图中存在一个自上而下的刃型位错,刃型位错的示意图画在图的左上 方。B原子围绕着刃型位错成细圆柱状分布,即Cottrell气团,每一个 点表示测量得到的一个B原子。
A
4
A
5
在场离子显微镜中,如果场强超过某一临界值,将发生场致 蒸发,即样品尖端处的原子以正离子形式被蒸发,并在电 场的作用下射向荧光屏。Ee叫做临界场致蒸发场强,某些 金属的蒸发场强Ee如表1所示。
表1 某些金属的蒸发场强
第一台原子探针也是由E.W.Müller等人在1968年制造出来的 ,它可以用来鉴定样品表面单个原子的元素类别,其工作 原理如图(1)所示。
原子的三维分布图形,分辨率接近原子尺度,是目前最微观、且分析
精度较高的一种定量分析手段。
A
13
原子探针的应用
1、Cottrell气团的直接观察
柯氏气团(Cottrell气团) 金属内部存在的大量位错线,在刃型位错线附近经常会吸附大
量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯 氏气团”。
A
2
当样品被加上一个高于蒸发场强的脉冲高压 时,该原子的离子可被蒸发而穿过小孔到达飞行管道 的终端而被高灵敏度的离子检测器所检测。

荧光探针的应用与进展PPT课件

荧光探针的应用与进展PPT课件

Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
结论 利用所合成制备的两种不同的Polymer-Py/γ-CD主客体复合物, 实现了对四种不同蛋白样品的特异性识别检测。不同的聚合物链与不 同的蛋白的结合常数不同,因而所构建的聚合物基质荧光探针对蛋白 具有良好的选择性。而通过调节聚合物链的长度,还可进一步调节蛋 白识别检测的灵敏度和选择性。 这个方法不但制备简单、普适性强,而且具有较高的荧光检测灵敏度 和较强的蛋白识别选择性,为构建新型聚合物基质的主客体复合物荧 光探针的制备及蛋白识别分析提供了新的研究思路。
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Simultaneous Near-Infrared and Two-Photon In Vivo Imaging of H2O2 Using a Ratiometric Fluorescent Probe based on the Unique Oxidative Rearrangement of Oxonium 利用比率荧光探针实现在体内对H2O2的近红外和双光子成像
给电子取代基如:-NH2,-NR2,OH,-OR和-CN。 吸电子取代基如:-C = O,COOH,-CHO,-NO2和-
外因
溶液的PH值、温度 激发光源的选择 溶剂的性质如极性、介 电常数 染料分子间相互作用等
荧光探针的选择原则
(1)荧光的定性或定量 定性一般选择单波长激发探针,定量最好选择双波长激发的比率探针 (2)荧光探针的特异性和毒性 (3)荧光探针的适用PH (4)激发波长与发射波长 斯托克斯位移 (5)荧光强度与荧光寿命 (6)光稳定性、漂白性 (7)荧光量子产率

最新分子探针简介分析化学新方法新技术课件ppt

最新分子探针简介分析化学新方法新技术课件ppt

合糖的活性
蛋白质及酶的荧光探针
❖ 蛋白质是生物大分子,它能在溶液中与某些染料静电吸 引或氢键结合,可用紫外可见光度法或荧光测定蛋白质。 另外蛋白质含有氨基(—NH2 或—NH—),—SH,— COOH和=CO,可用与以上基团发生反应的荧光 衍生试剂对蛋白质标记,进而用色谱及电泳分离紫外可 见或荧光检测蛋白质
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/
分子探针简介分析化学新 方法新技术
写在前面
经典化学分析:沉淀剂、滴定剂、萃取
剂、指示剂和显色剂等 发展方向:微型化、仿生化、自动化、信 息化
目前最高水平:DNA序列分析中标记碱基
的四种分子荧光探针
微型化:纳米芯片、生物芯片及芯片上的实验室 仿生化:电子鼻和电子舌的传感器 自动化:原位及体内实时在线检测 信息化: 临床、环境及生产过程检测的网络化
上一页 下一页
表示水这 种物质
宏观意义
表示水由 氢元素和 氧元素组 成
例:H2O表示的意义:
表示一个 水分子
微观意义
表示一个水 分子由2个氢 原子和1个氧 原子构成
上一页 下一页
3.化学式的书写和命名
(1)化学式的写法 ①单质 金属单质:铁(Fe) 铝(Al) 固态非金属单质:硫(S) 磷(P) 稀有气体:氖气(Ne) 氦气(He)
半渗透膜;A~T选择, 细胞周期研究;染色 体和细胞计数染色; 支原体检测
水或 甲醇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一台原子探针也是由E.W.Müller等人在1968年制造出来的, 它可以用来鉴定样品表面单个原子的元素类别,其工作原 理如图(1)所示。
2020/4/29
66
2020/4/29 图(1)带有离子反射型能量补偿装置的常规AP
7
•首先,在低于Ee的成像条件下获得样品表面的场离子图像, 通过调节样品的位向,使欲分析的某一原子像点对准荧光屏 的小孔,它可以是偏析的溶质原子或细小的沉淀物相等等。 当在样品上施加高于蒸发场的脉冲电压时,该原子将产生场 蒸发。此时电离的原子从样品表面剥落,但只有穿过小孔的 离子才能进入质谱仪被分析。这些离子的质荷比m/n可利用 飞行时间质谱仪来测出离子飞行时间求得。
(3)
如果取 Udc、Up 以kV为单位,t以s ,D以m为单位,则公
式(3)变成原子探针中常用的计算质荷比公式
m n
0.193 D2
(Udc
Up)t 2
(4)
2020/4/29
10
三维原子探针
•图(1)为带有离子反射型能量补偿装置的常规(一维)AP,离子穿过 荧光屏的探测小孔经过能量补偿后改变飞行方向到达探测器。仪器测定 离子从试样到探测器的飞行时间,计算其质荷比,从而推断其种类。但 常规AP只能确定探测到的从试样最表层蒸发而来的离子,但无法确定该 离子原来在表面层上的位置。当第一层蒸发后,记录第二层(现为第一 层)蒸发出来的离子。因此,常规AP只能确定离子沿深度方向的z坐标, 精确到一个原子面间距的距离,但失去了离子在表面层位置(x,y)坐标 的信息。 •为能测得蒸发离子的坐标(x.y),Blavette等设计了三维原子探针 (3DAP)如图(2)所示。
2020/4/29
8
若在针尖样品上施加的直流高电压为Udc ,脉冲高压为Up ,针 尖到检测其距离为D(通常长达1~2m),离子的价数为n, 质量为m,则离子的能量和飞行速度v有如下关系
1 mv2 ne(Ucd Up)
2
(1)
式中, 是脉冲因素。由于 v D /(t ),t是离子飞行时间,
是延迟常数,则由(1)式可得离子的质量电荷比为
m n
2e D2
(Udc
Up)(t
)2
Hale Waihona Puke (2)2020/4/29
99
当准确测出离子飞行时间t时,根据公式(2)可计算出离子
的质量电荷比,从而鉴别出是什么元素,达到原子分辨水
平的化学成分分析的目的。当取 =1和=0时,式(2)则
成为
m n
2e D2
(Udc Up)t 2
2020/4/29
11
微通道板 图(2) 三维原子探针的结构示意图
三维原子探针的关 键问题在于探测器 的设计和制造. 当 触发信号(脉冲电压) 施加到样品上,原 子从样品尖端表面 蒸发,成为离子飞出 并击中由微通道板 制成的探测器. 微 通道板是一种将离 子象增强为电子象 的“板”,由许多< 45μm玻璃毛细管 组成的电子倍增器, 入射离子进入毛细 管后激发产生二次 103 - 104 倍电子,信 号可放大
原子探针(Atom Probe)
材料科学与工程学院 制作者:王蕾
2020/4/29
1
场致蒸发的另一应用是所谓“原子探针”, 可以用来鉴定样品表面单个原子的元素类别。它 是一台场离子显微镜与一台质谱仪的组合。
首先,在低于Ee的成像条件下获得样品表面 的场离子图像。
通过观察窗监视样品位向的调节,使欲分析 的某一原子像点对准荧光屏的小孔,它可以是偏 析的溶质原子或细小沉淀物相等。
由于表面上突出的原子具有较高的位能,总是比那些不处于台阶 边缘的原子更容易发生蒸发,它们也正是最有利于引起场致电离的原 子。所以,当一个处于台阶边缘的原子被蒸发后,与它挨着的一个或 几个原子将突出于表面,并随后逐个地被蒸发;据此,场致蒸发可以 用来对样品进行剥层分析,显示原子排列的三维结构。
4
2020/4/29
原子的三维分布图形,分辨率接近原子尺度,是目前最微观、且分析
精度较高的一种定量分析手段。
13
原子探针的应用
1、Cottrell气团的直接观察
柯氏气团(Cottrell气团) 金属内部存在的大量位错线,在刃型位错线附近经常会吸附大
量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯 氏气团”。
5
在场离子显微镜中,如果场强超过某一临界值,将发生场致 蒸发,即样品尖端处的原子以正离子形式被蒸发,并在电 场的作用下射向荧光屏。Ee叫做临界场致蒸发场强,某些 金属的蒸发场强Ee如表1所示。
表1 某些金属的蒸发场强
金属
难熔金属 过渡族金属
Sn
Al
Ee
400~500
300~400
220
160
(MV/cm)
三维原子探针可以直接观察到溶质原子偏聚在位错附近形成 的Cottrell 气团,可以分析界面处原子的偏聚,研究沉淀相的析出 过程、非晶晶化时原子扩散和晶体成核的过程,分析各种合金元 素在纳米晶材料不同相及界面上的分布等。
14
图(3)有序FeAl合金中硼原子在刃型位错附近的Cottrell气团
15
图(3)是利用三维原子探针对FeAl有序合金的分析结果。含有 0.04at.%B元素的B原子在FeAl有序合金位错附近偏聚也会形成Cottrell 气团FeAl(40at%Al)合金,有序化后是B2结构,晶体的(100)面是超点阵 面,Fe和Al原子相互交替占据该面。图中只给出垂直于刃型位错线截 面上的一层Al原子,可以分辨出Al原子排列构成的原子面,面间距约 为0.29nm,从前面自左而右数至第21个原子面,然后从这个原子面后 端自右向左数至原来开始的的那个原子面,共有22个原子面,这说明 图中存在一个自上而下的刃型位错,刃型位错的示意图画在图的左上 方。B原子围绕着刃型位错成细圆柱状分布,即Cottrell气团,每一个 点表示测量得到的一个B原子。
2020/4/29
2
当样品被加上一个高于蒸发场强的脉冲高压时, 该原子的离子可被蒸发而穿过小孔到达飞行管道的 终端而被高灵敏度的离子检测器所检测。
2020/4/29
3
1、基本原理
在场离子显微镜中,如果场强超过某一临界值,将发生场致蒸发, 即样品尖端处的原子以正离子形式被蒸发,进而被计算机所搜集。
12
三维原子探针大约是在1995年才推向市场的新型分析仪器,是在
原子探针的基础上发展的:在原子探针样品尖端叠加脉冲电压使原子
电离并蒸发,用飞行时间质谱仪测定离子的质量/电荷(m n
2eU
t2 s2

比来确定该离子的种类,用位置敏感探头确定原子的位置(见上图)。
它可以对不同元素的原子逐个进行分析,并给出纳米空间中不同元素
相关文档
最新文档