成人高考高起专精选数学复习
成人自考高升专数学知识点

成人自考高升专数学知识点一、知识概述《成人自考高升专数学知识点》①基本定义:成人自考高升专数学就是为那些想要通过自学考试从高中起点升专科,在数学科目上需要掌握的知识。
这里面包括好多方面,像代数、几何这些东西。
代数简单理解就是用字母代表数去计算各种关系,比如方程式;几何呢,就是研究图形的形状、大小、位置关系等的学问。
②重要程度:在这个自考里头,数学可是相当重要的。
它能决定你能不能顺利通过考试拿到学历,而且就生活中说,以后要是碰到有关计算、理财、工程尺寸这些事,都得用到数学知识。
③前置知识:得有初中数学的基础,比如基本的四则运算得熟练,一元一次方程得会解,简单的平面几何图形认识得清楚,像三角形、四边形这些的性质啥的得有点了解。
④应用价值:比如说你在装修房子算面积的时候,或者是去市场买东西算优惠的时候,以及规划行程算时间和距离的时候,都能用得上数学知识。
二、知识体系①知识图谱:在高升专的整个知识体系里,数学就像一座大厦里的重要支柱。
它和其他科目联系也紧密着呢,比如物理可能用到数学公式去计算,经济类专业也得用数学做统计分析。
②关联知识:和语文对比,语文是表达理解,数学是准确计算和逻辑推理。
跟物理化学联系也多,那些科学原理的计算很多就得靠数学。
③重难点分析:像函数部分就挺难的,它涉及到很多抽象的概念和复杂的计算,关系也错综复杂。
而几何里的证明题也不简单,得找到合适的定理来推理。
关键在于得理解概念再去计算和推理。
④考点分析:在考试里占的比例不小,选择题、填空题、解答题都有。
选择题可能考基础概念,填空题就考计算的准确性,解答题就综合看能力了。
三、详细讲解【理论概念类】①概念辨析:比如说函数这个概念,它就是一种关系,给定一个数x,通过一定的规则,就能得到唯一的一个数y,就好像一个加工厂,x是原料,y是产品。
②特征分析:函数的特点呢,它有单调性,就是随着x的变化,y是一直变大或者一直变小这样。
还有奇偶性,有的函数图像关于y轴对称就是偶函数,关于原点对称那就是奇函数。
成考高中起点数学复习

成考高中起点数学复习一、集合与简易逻辑1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…;2 .数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。
原命题与其逆否命题是等价命题,逆命题与其否命题是等价命题,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若A ⊆B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若A=B,则 A 是 B 的充要条件;(3)等价法:即利用等价关系"A⇒B⇔B⇒A"判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;6.(1)含 n 个元素的集合的子集个数为 2n,真子集(非空子集)个数为 2n-1;(2)A⊆B⇔A B=A⇔A B=B;(3)CI (A B) =CI A CI B,CI (A B) =CI A CI B;二、函数: 研究函数的问题一定要注意定义域优先的原则。
1.复合函数的有关问题(1)复合函数定义域求法:若已知 f(x)的定义域为[a,b],其复合函数 f[g(x)]的定义域由不等式 a≤g(x)≤b 解出即可;若已知 f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于 x∈[a,b]时,求 g(x)的值域(即 f(x)的定义域);(2)复合函数的单调性由“同增异减”判定;2.函数的奇偶性(1)若 f(x)是偶函数,那么 f(x)=f(-x)=f ( x ) ;(2)定义域含零的奇函数必过原点(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或1 ( ) (-) =±f x f x (f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像 C1与 C2的对称性,即证明 C1上任意点关于对称中心(对称轴)的对称点仍在 C2上,反之亦然;(3)曲线 C1:f(x,y)=0,关于 y=x+a(y=-x+a)的对称曲线 C2的方程为 f(y-a,x+a)=0(或 f(-y+a,-x+a)=0);(4)曲线 C1:f(x,y)=0 关于点(a,b)的对称曲线 C2方程为:f(2a-x,2b-y)=0; (5)若函数 y=f(x)对 x∈R 时,f(a+x)=f(a-x)恒成立,则 y=f(x)图像关于直线 x=a 对称;(6)函数 y=f(x-a)与 y=f(b-x)的图像关于直线 x==2a+b 对称4.函数的周期性(1)y=f(x)对 x∈R 时,f(x +a)=f(x-a) 或 f(x-2a )=f(x)(a>0)恒成立,则 y=f(x)是周期为 2a 的周期函数;(2)若 y=f(x)是偶函数,其图像又关于直线 x=a 对称,则f(x)是周期为 2︱a︱的周期函数;(3)若 y=f(x)奇函数,其图像又关于直线 x=a 对称,则f(x)是周期为 4︱a︱的周期函数;(4)若 y=f(x)关于点(a,0),(b,0)对称,则 f(x)是周期为2a -b 的周期函数;(5)y=f(x)的图象关于直线 x=a,x=b(a≠b)对称,则函数y=f(x)是周期为 2a -b 的周期函数;(6)y=f(x)对 x∈R 时,f(x+a)=-f(x)(或 f(x+a)=( ) 1fx -,则 y=f(x)是周期为 2a 的周期函数;5.方程 k=f(x)有解⇔k∈D(D 为 f(x)的值域);6.a≥f(x)⇔a≥[f(x)]max,; a≤f(x)⇔a≤[f(x)]min;7.(1)n a a b log b =log n (a>0,a≠1,b>0,n∈R+);(2) l og a N=aNbb log log ( a>0,a≠1,b>0,b≠1);(3) l og a b 的符号由口诀“同正异负”记忆;(4) a log a N= N ( a>0,a≠1,N>0 );8.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
2023成人高考高起专数学知识点

2023成人高考高起专数学知识点数学作为一门基础学科,在成人高考高起专考试中占据着重要的地位。
掌握数学的基本知识点对于考生来说至关重要。
本文将为大家总结2023年成人高考高起专数学知识点,帮助考生更好地备考。
一、代数与函数1.1 整式与分式整式是由常数、变量及它们的乘积与积的和组成的代数式,分式是由整式的和、差、积、商组成的代数式。
在解题过程中,需要掌握整式与分式的基本运算法则,如加减乘除等。
1.2 方程与不等式方程是含有未知数的等式,不等式是含有未知数的不等式。
在解方程和不等式的过程中,需要运用代数运算的方法,如移项、合并同类项、分式的化简等。
1.3 函数与图像函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
在学习函数的过程中,需要了解函数的定义、性质以及函数图像的绘制方法。
二、几何与图形2.1 点、线、面点是几何图形的基本要素,线是由无数个点组成的集合,面是由无数个线组成的集合。
在几何学中,需要掌握点、线、面的基本性质,如点的坐标表示、线的方程表示等。
2.2 相似与全等相似是指两个图形的形状相同但大小不同,全等是指两个图形的形状和大小都相同。
在解题过程中,需要根据相似性质和全等性质进行推理和证明。
2.3 三角形与四边形三角形是由三条线段组成的图形,四边形是由四条线段组成的图形。
在学习三角形和四边形的过程中,需要了解它们的性质、分类以及相关的定理和公式。
三、概率与统计3.1 概率概率是描述随机事件发生可能性的数值。
在学习概率的过程中,需要了解基本概率公式、条件概率、事件的独立性等概念和计算方法。
3.2 统计统计是对数据进行收集、整理、分析和解释的过程。
在学习统计的过程中,需要了解数据的表示方法、频数分布、均值、中位数、众数等统计指标的计算方法。
四、解析几何4.1 坐标系与直线坐标系是用来描述平面上点的位置的系统,直线是由无数个点组成的集合。
在解析几何中,需要了解直线的方程表示、直线的性质以及直线与坐标系的关系。
成人高考高起专《数学》必考考点

成人高考高起专《数学》必考考点1、集合【注意:请不要忘记空集!!!】交集:A ∩B={x| x ∈A 且x ∈B}并集:A ∪B={x| x ∈A 或x ∈B}补集:C U A={x| x A 但x ∈U}2、数列(选择和填空中的数列请大家掌握)3、解不等式(含绝对值)a>0, |x|<a 则 –a<x<a |x|>a 则 x>a 或 x<-a4、平面向量 0 ,//21211221=+⇔⊥=⇔y y x x y x y x5、平均数、方差6、解三角形(1)正弦定理:Cc B b A a sin sin sin ==(已知两边一对角或已知双角必定用正弦) (2)三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===(3)余弦定理:(已知三条边或两边一夹角必定用余弦)2222cos a b c bc A =+-B ac c a b cos 2222-+=C ab b a c cos 2222-+=7、导数0)(='c (c 为常数),)()(1+-∈='N n nx x n n ,()x x e e ='8、求切线方程步骤【例题】求曲线y=x 3-4x+2在点(1,-1)处的切线方程①求导:y ’=3x 2-4②把x=1 代入○1中:y=3-4=-1(即切线方程的k 为-1)③y=-x+b④把点(1,-1)代入○3:-1=-1+b 得b=0⑤所以切线方程为:y=-x请大家大题目当中的倒数第二题的第一步求导,无论会不会做,第一步请求导。
大题目中的解三角形无论会不会做第一步请写公式。
成考数学(文科)成人高考(高起专)试题及解答参考(2025年)

2025年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数f(x)=x2−4x+5在x=2处取得极值,则该极值为:()A.−1B.0C.1D.32、若函数f(x) = x^3 - 3x^2 + 4x在区间[1,2]上连续,且f’(x) = 3x^2 - 6x + 4,则f(x)在区间[1,2]上的极值点为:A. 1B. 1.5C. 2D. 无极值点3、在下列各数中,既是质数又是合数的是()A、4B、6C、9D、154、在下列各数中,最小的负整数是()A、-1.5B、-3C、-2D、-2.35、若函数(f(x)=x2−4x+3)的图像与(x)轴交于点(A)和(B),则(AB)的长度是:A. 2B. 3C. 4D. 56、在下列各数中,绝对值最小的是:A、-2B、0C、2D、-37、下列函数中,在其定义域内连续的函数是())A.(f(x)=xxB.(g(x)=√x2)C.(ℎ(x)=|x|))D.(k(x)=1x8、在下列各数中,既是整数又是无理数的是()A、√4B、πC、0.25D、-1/29、下列各数中,有理数是:A、√2B、πC、−3√5D、3210、已知函数(f(x)=2x3−3x2+4),求函数的极值点。
A.(x=−1)B.(x=1)C.(x=0)D.(x=2)11、若函数f(x)=lnx的图像上一点A(x0,lnx0),那么该点的切线斜率为:A.1B.1x0C.1x0−1D.1x0+112、在下列各数中,哪个数是无限循环小数?A、0.333…B、0.444…C、0.666…D、0.777…二、填空题(本大题有3小题,每小题7分,共21分)1、若函数(f(x)=√2x+3−x)的定义域为(A),则(A)的取值范围是______ 。
2、若函数(f(x)=2x3−3x2+2)在(x=1)处的切线斜率为 4,则(f′(1))的值为______ 。
成人高考高升专数学常用知识点及公式(打印版)精编版

成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
成人高考数学复习课件一全文
常见几种数集之间的关系:N Z Q R
例 1 用符号“ ”、“ ”、“”或“ ”填空:
(1) a,b,c, d a,b ;(2) 1 , 2 ,3;
(3) N Q ;
(4) 0 R ;
(5) d a,b,c ; (6) x | 3 x 5 x | 0 x 6.
.
“ ” 与“ ”用来表示集合与集合之间关系的符号
课堂设计
1、例题演练:例题讲解,讲练结合 2、引导学生思考:启发探究,查漏补缺 3、知识点掌握:考情点播,应试指导 4、同类题目演练:举一反三,归纳总结 5、课后作业:温故知新,学以致用 6、模拟考试演练:适应环境,达到目标
第一讲 集合和简易逻辑
考试复习大纲
➢了解集合的意义及表示方法。了解空集、全集、 子集、交集、并集、补集的概念及表示方法,了
本章复习提纲
集合的概念 集合的表示法 集合与集合的关系 集合与集合的运算 简易逻辑
一、集合的概念
通常把由某些确定的对象组成的整体叫做集合(简称集). 组成集合的对象叫做这个集合的元素.
一般采用大写英文字母A,B,C…表示集合, 小写英文字母a,b,c… 表示集合的元素.
集合的性质:确定性;互异性;无序性
.
在研究数集时,常把实数集R作为全集.
补集
如果集合A是全集U子集,那么,由U中不属于A的所有元 素组成的集合叫做集合A在全集U中的补集.
U A x x U 且 x A
.
五、 简易逻辑
条件与结论:一个数学命题由条件和结论两部分组成,
如果假设 A 是条件,B 是结论,那么命 题可表示为“如果 A 成立,那么 B 成立”
3、情感、态度和价值观
(1)通过讲练结合、自主探究与合作交流的 教学环节的设置,激发学生的学习热情和求知欲 ,充分体现并发挥学生的主体地位;
成人高考高起专数学知识点归纳总结
成人高考高起专数学知识点归纳总结一、集合论与逻辑1. 集合与元素:集合是指具有相同特性的对象的总体,元素是构成集合的个体。
2. 集合的表示方法:列举法、描述法、特殊集合。
3. 集合的运算:并集、交集、差集、补集。
4. 集合的关系:包含关系、相等关系、互斥关系、无交关系。
5. 命题与命题的逻辑运算:合取、析取、否定、蕴含、等价。
6. 命题的真值表与真值运算:真、假、可满足、不可满足。
二、数与代数1. 数的性质:自然数、整数、有理数、实数、无理数。
2. 数的基本运算:加法、减法、乘法、除法。
3. 数的性质与运算规律:交换律、结合律、分配律、对称律。
4. 代数式与多项式:代数式的定义、多项式的定义、单项式与多项式。
5. 多项式的运算:多项式的加法、减法、乘法。
6. 因式分解与整式的乘法公式:公因式提取法、公式法、分组分解法、特殊公式。
7. 一元一次方程与不等式:方程与方程的解、不等式与不等式的解、绝对值不等式。
8. 二元一次方程组:方程组与方程组的解、二元一次方程组的解法。
三、函数与方程1. 函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性。
2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数。
3. 函数的运算:函数的加法、减法、乘法、除法、复合运算。
4. 反函数与二次函数:反函数的性质、二次函数的定义、顶点、对称轴、图像。
5. 一次函数与一次函数方程:一次函数的定义、斜率、截距、图像、一次函数方程的解法。
6. 一元二次方程:二次方程的定义、根与系数的关系、求解二次方程的方法。
7. 二元二次方程组:二元二次方程组的定义、解法。
四、几何与三角1. 几何图形的性质:点、线、面、角、线段、圆。
2. 几何图形的分类与性质:直线与曲线、多边形、圆的性质。
3. 点、线、面的位置关系:相交、平行、垂直、重合。
4. 相似与全等:相似的定义、判定与性质、全等的定义、判定与性质。
5. 三角形的性质与判定:角的性质、三角形的分类、判定三角形的方法。
成人高考大专数学必考知识点
成人高考大专数学必考知识点一、知识概述《函数》①基本定义:函数就像是一个机器,你给它一个东西(输入,我们叫做自变量),它就按照一定的规则产出一个东西(输出,我们叫做因变量)。
比如说,有个函数是y = 2x,x就是自变量,当x = 3的时候,y = 6,这个y就是根据x按照2倍的规则得到的结果。
②重要程度:在成人高考大专数学里那可是极其重要的存在。
它贯穿了代数、几何好多方面的知识,如果函数没搞明白,后面很多知识学起来就像看天书。
③前置知识:你得明白基本的四则运算,就是加、减、乘、除,像3+5这种运算。
还有数的概念,正数、负数、0之类的。
④应用价值:生活中到处都是函数的影子。
就像去买东西,商品的总价和数量之间就有函数关系,假如苹果3元一斤,买x斤苹果的总价y = 3x,这就是个简单的函数关系。
二、知识体系①知识图谱:函数在整个数学学科的大树里,那就是粗壮的树干。
很多的分支知识都是从它这延伸出去的,像二次函数、三角函数都是从函数这个大概念发展出来的。
②关联知识:和方程关系可紧密了,函数可以看成是一种特殊的方程,只不过方程是求某个值满足等式,函数是在规则下给出一系列的对应值。
还和图形有点关系,像一次函数y = kx + b在平面直角坐标系下就是一条直线。
③重难点分析:- 掌握难度:对于刚接触的人来说有点难,难点在于理解函数的概念,还有不同类型函数的特点。
- 关键点:一定要搞清楚自变量和因变量的关系,还有不同函数各自的规则。
④考点分析:- 在考试中的重要性:那是必考,而且分值还不低。
- 考查方式:可能会让你判断是不是函数,求函数值,或者根据条件写出函数表达式。
三、详细讲解- 【理论概念类】①概念辨析:函数就是一种对应关系,每一个自变量只能对应一个因变量。
但一个因变量可以有多个自变量对应它,这就好比每个人(自变量)只能有一个身份证号(因变量),但是同一个身份证号(因变量)可以对应好多个人名(自变量)这种情况是不行的。
(完整word版)成人高考专科数学复习重点 (1)
第一部分代数(重点 占55%)第一章 集合和简易逻辑一、集合的概念:强调——共同属性、全体 二、元素与集合的关系: x A ∈ 或 x∉A三、集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 注意:“且”2.并集 A ∪B ={x︱x A ∈或x B ∈} 注意:“或”3.补集 c u A ={x︱ U x ∈但A x ∉}四、简易逻辑:充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数 (重点)一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法2.求函数值3.求函数定义域:1)分式的分母不等于0; 2)偶次根式的被开方数≥0; 3)对数的真数>0;二、函数的性质 1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性(1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数. (2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成人高考数学复习资料集合和简易逻辑考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合B的元素所组成的集合,叫做集合A和集合B的交集,记作A∩B,读作“A交B”(求公共元素)A∩B={x|x∈A,且x∈B}2、由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A和集合B的并集,记作A∪B,读作“A并B”(求全部元素)A∪B={x|x∈A,或x∈B}3、如果已知全集为U,且集合A包含于U,则由U中所有不属于A的元素组成的集合,叫做集合A的补集,记作ACu,读作“A补”ACu={ x|x∈U,且x∉A }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件A和结论B两部分构成,写成“如果A成立,那么B成立”。
充分条件:如果A成立,那么B成立,记作“A→B”“A推出B,B不能推出A”。
必要条件:如果B成立,那么A成立,记作“A←B”“B推出A,A不能推出B”。
充要条件:如果A→B,又有A←B,记作“A←B”“A推出B ,B推出A”。
解析:分析A和B的关系,是A推出B还是B推出A,然后进行判断不等式和不等式组考点:不等式的性质如果a>b,那么b<a;反之,如果b>a,那么a<b成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c如果a>b,c>0,那么ac>bc(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么ac<bc(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果a>b>0,那么ba>;反之,如果ba>,那么a>b解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
如:6x+8>9x-4,求x 把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
考点:一元一次不等式组定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。
考点:含有绝对值的不等式定义:含有绝对值符号的不等式,如:|x|<a,|x|>a型不等式及其解法。
简单绝对值不等式的解法:|x|<a的解集是{x|-a<x<a},取中间,在数轴上表示所有与原点的距离小于a的点的集合;|x|>a的解集是{x|x>a或x<-a},取两边,在数轴上表示所有与原点的距离大于a的点的集合。
复杂绝对值不等式的解法:|ax+b|<c,相当于解不等式-c<ax+b<c,不等式三边同时减去b,再同时除以a(注意,当a<0的时候,不等号要改变方向);|ax+|>c相当于解不等式ax+b>c或ax+b<-c,解法同一元一次不等式一样。
解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或”考点:一元二次不等式定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。
如:02>++c bx ax 与02<++c bx ax (a>0)) 解法:求02>++c bx ax(a>0为例)步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)求根公式:a acb b x 242-±-=十字相乘法:如:62x -7x-5=0求x 2 1 × 3 -5交叉相乘后 3 + -10 = -7解析:左边两个相乘等于2x 前的系数,右边两个相乘等于常数项,交叉相乘后相加等于x 前的系数,如满足条件即可分解成:(2x+1)×(3x-5)=0,两个数相乘等于0,只有当2x+1=0或3x-5=0的时候满足条件,所以x=21-或x=35。
配方法(省略)(2)求出x 之后,“>”取两边,“<”取中间,即可求出答案。
注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。
考点:其他不等式不等式(ax+b )(cx+d )>0(或<0)的解法这种不等式可依一元二次方程(ax+b )(cx+d )=0的两根情况及2x 系数的正、负来确定其解集。
不等式0>++d cx bax (或<0)的解法它与(ax+b )(cx+d )>0(或<0)是同解不等式,从而前者也可化为一元二次不等式求解。
此处看不明白者问我,课堂上讲。
指数与对数 考点:有理指数幂 正整数指数幂:a a a a a nΛ⨯⨯= 表示n 个a 相乘,(n+∈N 且n>1) 零的指数幂:10=a(0≠a )负整数指数幂:pp a a 1=-(0≠a,p +∈N )分数指数幂: 正分数指数幂:n mnma a=(a ≥0,;m ,n+∈N 且n>1)负分数指数幂:nmnm nm a aa11==-(a>0,;m ,n+∈N 且n>1)解析:重点掌握负整数指数幂和分数指数幂 考点:幂的运算法则y x y x a a a +=⨯(同底数指数幂相乘,指数相加) y x y xa b a -=(同底数指数幂相除,指数相减) xy y x a a =)((可以乘进去) x x x b a ab =)((可以分别x 次)解析:重点掌握同底数指数幂相乘和相除 考点:对数 定义:如果N ab=(a>0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。
特别底,以10为底的对数叫做常用对数,通常记N10log 为lgN ;以e 为底的对数叫做自然对数,e ≈2.7182818,通常记作N ln 。
两个恒等式:ba N ab a N a ==log log ,几个性质:b N a =log ,N>0,零和负数没有对数1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0n n =10lg ,(n Z ∈)考点:对数的运算法则NM MN a a a log log )(log +=(真数相乘,等于两个对数相加;两个对数相加,底相同,可以变成真数相乘)N M NMa a alog log log -=(真数相除,等于两个对数相减;两个对数相减,底相同,可以变成真数相除)Mn M a n a log log =(真数的次数n 可以移到前面来)M n M a n a log 1log =(nnM M 1=,真数的次数n 1可以移到前面来)函数考点:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域 求定义域:c bx ax y bkx y ++=+=2一般形式的定义域:x ∈Rx ky = 分式形式的定义域:x ≠0 xy =根式的形式定义域:x ≥0xy a log = 对数形式的定义域:x >0解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可考点:函数的单调性 在)(x f y =定义在某区间上任取1x ,2x ,且1x <2x ,相应得出)(1x f ,)(2x f 如果:1、)(1x f <)(2x f ,则函数)(x f y =在此区间上是单调增加函数,或增函数,此区间叫做函数的单调递增区间。
随着x 的增加,y 值增加,为增函数。
2、)(1x f >)(2x f ,则函数)(x f y =在此区间上是单调减少函数,或减函数,此区间叫做函数的单调递减区间。
随着x 的增加,y 值减少,为减函数。
解析:分别在其定义区间上任取两个值,代入,如果得到的y 值增加了,为增函数;相反为减函数。
考点:函数的奇偶性 定义:设函数)(x f y =的定义域为D ,如果对任意的x ∈D ,有-x ∈D 且:1、)()(x f x f -=-,则称)(x f 为奇函数,奇函数的图像关于原点对称2、)()(x f x f =-,则称)(x f 为偶函数,偶函数的图像关于y 轴对称解析:判断时先令x x-=,如果得出的y 值是原函数,则是偶函数;如果得出的y 值是原函数的相反数,则是奇函数;否则就是非奇非偶函数。
考点:一次函数 定义:函数b kx y +=叫做一次函数,其中k ,b 为常数,且0≠k 。
当b=0是,kx y =为正比例函数,图像经过原点。
当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限 考点:二次函数定义:c bx ax y ++=2为二次函数,其中a ,b ,c 为常数,且0≠a ,当a>0时,其性质如下:定义域:二次函数的定义域为R图像:顶点坐标为(a b ac ab 44,22--),对称轴a bx 2-=,图像为开口向上的抛物线,如果a<0,为开口向下的抛物线单调性:(-∞,a b 2-]单调递减,[a b2-,+∞)单调递增;当a<0时相反.最大值、最小值:a b ac y 442-=为最小值;当a<0时a b ac y 442-=取最大值韦达定理:a cx x a b x x =⋅-=+2121,考点:反比例函数定义: x ky =叫做反比例函数定义域:0≠x是奇函数当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数 当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数 考点:指数函数定义:函数)10(≠>=a a a y x且叫做指数函数定义域:指数函数的定义域为R 性质:图像:经过点(0,1),当a>1时,函数单调递增,曲线左方与x 轴无限靠近;当0<a<1时,函数单调递减,曲线右方可与x 轴无限靠近。
(详细见教材12页图) 考点:对数函数 定义:函数)10(log ≠>=a a x y a 且叫做对数函数定义域:对数函数的定义域为(0,+∞) 性质:零和负数没有对数图像:经过点(1,0),当a>1时,函数单调递增,曲线下方与y 轴无限靠近;当0<a<1时,函数单调递减,曲线上方与y 轴无限靠近。