最新 湘教版 八年级数学下册 公开课课件:期中检测卷ppt课件

合集下载

部审湘教版八年级数学下册精品ppt课件5.2频数直方图

部审湘教版八年级数学下册精品ppt课件5.2频数直方图

(3)统计每组中数据出现的次数(频数)
分组 1750~2000 2000~2250 2250~2500 2500~2750 2750~3000
人数
1 1
1 3 9
分组 3000~3250 3250~3500 3500~3750 3750~4000 4000~4250
人数
7 15 10
9 4
(4)绘制频数直方图
A.5~10元 B.10~15元 C.15~20元 D.20~25元
2.一个样本有100个数据,最大值为7.4,最小值为
4.0,如果取组距为0.3,那么这组数据可分成( B )
A.11组
B.12组
C.13组
D.以上答案均不对
3.为了提高学生书写汉字的能力,增强保护汉字的意 识,我市举办了首届“汉字听写大赛”,经选拔后有 50名学生参加决赛,这50名学生同时听写50个汉字, 若每正确听写出一个汉字得1分,根据测试成绩绘制出 频数分布表和频数直方图(不完整)如下:
39
(1)请用你所学的数学统计知识,补全频数直方图;
(2)如果此地汽车时速不低于80千米/时即为违章,求 这组汽车的违章频数;
解:18+22=40.
(3)如果请你根据调查数据绘制扇形统计图,那么时 速在70~80范围内的车辆数所对应的扇形圆心角的 度数是___1_4_4_°__.
练一练
为了解某校九年级男生的身高情况,该校从九
以内,一般分5至12组) (3)统计每组中数据的频数.
(4)根据分组和频数,绘制频数直方图.
典例精析
例1 某校一学生社团参加数学实践活动,和交警一 起在金山大道入口用移动测速仪监测一组汽车通过的 时速(千米/时),在数据整理统计绘制频数直方图的过 程中,不小心墨汁将表中的部分数据污染(见下表), 请根据下面不完整的频数分布表和频数直方图,解答 问题:(注:50~60指时速大于等于50千米/时而小于 60千米/时,其他类同)

湘教版八年级数学下册《1.1直角三角形的性质和判定》公开课精品课件

湘教版八年级数学下册《1.1直角三角形的性质和判定》公开课精品课件

腰三角形“三线合一”的性质解题.
课堂小结
直角三角 形的性质 与判定
性 质
直角三角形的两个锐角互余
判 有两个角互余的三 定 角形是直角三角形
直角三角形斜边上的 中线等于斜边的一半.
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第2课时 含30°角的直角三角形的性质及其应用
学习目标
1.理解和掌握有关30°角的直角三角形的性质和应用; (重点)
总结归纳
有两个角互余的三角形是直角三角形.
A
应用格式:
在△ABC 中,
∵ ∠A +∠B =90°,
∴ △ABC 是直角三角形.B
C
典例精析 例3 如图,∠C=90 °, ∠1= ∠2,△ADE是直角三
角形吗?为什么?
解:在Rt△ABC中,
∠2+ ∠A=90 °. ∵ ∠1= ∠2,
∴∠1 + ∠A=90 °. 即△ADE是直角三角形.
可得BC=CD=
1 2
AB.
B
C
D
证法1
证明:取线段AB的中点D,连接CD.
∵CD为Rt△ABC斜边AB上的中线,
CD

1 2
AB =
BD
C
∵∠BCA =90°,且∠A=30°,
∴∠B=60°,
B
∴△CBD为等边三角形,
BC
=
BD

1 2
AB.
证明方法: 中线法
30° A D
证法2
证明:在△ABC 中, ∵ ∠C =90°,∠A =30°, ∴ ∠B =60°.
第1章直角三角形
1.1直角三角形的性质和判定(Ⅰ)

八年级数学下学期期中考试卷 湘教版

八年级数学下学期期中考试卷 湘教版

八年级期中数学考试卷-4-13一.选择题 (每小题4分,共108分) 1. 下列运算中正确的是 A.a 2·a 3=a5B.(a 2)3=a5C.a 6÷a 2=a3D.a 5+a 5=2a 102. 计算3x x ÷的结果是 A.4xB.3xC.2xD.33. 把多项式b a ab -+-1因式分解的结果是A.()()11++b aB.()()11--b aC.()()11-+b aD.()()11+-b a 4. 下列各式由左边到右边的变形中,是分解因式的为:A .a (x +y )=ax +ay B.x 2-4x +4=x (x -4)C.10x 2-5x =5x (2x -1)D.x 2-16+3x =(x+4)(x -4)5. 已知532++x x 的值为3,则代数式1932-+x x 的值为A.0B.-7C.-9D.3 6. 分解因式的结果是A.(1)(1)a b b +-B.2(1)a b + C.2(1)a b - D.(1)(1)b b +-7. 生物学家发现一种病毒和长度约为0.000043mm ,用科学记数法表示这个数的结果为A.4.3×10-4B.4.3×10-5C.4.3×10-6D.43×10-58. 如果长方形的周长为m 4,一边长为n m -,则另一边长为A.n m +3B.n m 22+C.n m +D.n m 3+ 9. 下列运算正确的是 A.221-=- B.623)(mn mn = C.39±= D.426m m m =÷10. 化简分式2bab b +的结果为A.1a b+ B.11a b +C.21a b+ D.1ab b+ 11. 如果分式2xx-的值为0,那么x 为A.-2B.0C.1D.212. 某商店进了一批商品,每件商品的进价为a 元,若要获利20%,则每件商品的零售价应定为A.20%a (元)B.(1—20%)a (元)C.%201+a(元) D.(1+20%)a (元)13. 函数11-=x y 的自变量x 的取值范围是 A.1≠x . B.x 1>. C.1<x . D.0≠x14. 若分式231-+x x 的值为零,则x 等于a ab -2A. 0B. 1C.32 D. -115. 使分式13-x x无意义的 x 的值是 A. x = 0 B. x ≠ 0 C. x =31 D. x ≠31 16. 下列等式从左到右的变形正确的是A.11++=a b a b B.am bm a b = C.a baab =2 D.22a b a b =17. 方程132+=x x 的解为 A.2 B.1 C.-2 D.-118. 一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x 千米/时,可列出的方程是 A.260290-=+x x B. 260290+=-x x C. x x 60390=+ D. xx 90360=+ 19. .已知ABCD 是平行四边形,下列结论中,不一定正确的是 A.AB=CD B.AC=BD C.当AC ⊥BD 时,它是菱形 D.当∠ABC=90º时,它是矩形A.有一个角是直角的四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形21. 对角线互相垂直并且互相平分的四边形是 A.平行四边形 B.矩形 C.菱形 D.以上都不对22. 菱形具有而平行四边形不具有的性质是 A.对边平行 B.对角相等 C.对角线互相平分 D.对角线互相垂直23. 能判断四边形是菱形的条件是 A.对角线相等且互相垂直 B.有一条对角线平分一组对角 C.对角线相等且对角线 D.两组对角分别相等,且一条对角线平分有一组对角 24. 如图,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则______=平行四边形S . A.6 B.10 C.12 D.1525. 如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF=13BC, 则长方形ABCD 的面积是阴影部分面积的( )倍.A. 2B. 3C. 4D. 526. 下列说法不正确的是A. 平行四边形对边平行B. 两组对边平行的四边形是平行四边形C. 平行四边形对角相等D. 一组对角相等的四边形是平行四边形27. 顺次连结菱形各边中点所得的四边形是 A. 矩形 B. 菱形 C. 正方形 D. 平行四边形 第Ⅱ卷(非选择题 共22道填空题17道解答题) 请将你认为正确的答案代号填在下表中A DB C FDC二.简答题 (每小题3分,共66分) 28. 分解因式:22a a -= 29. 分解因式:5x +5y = .30. 若05n 1m 2=)-+(-,分解因式mx 2-ny 2=___________.31. 当x =________时,分式31-x 没有意义 32. 当 x = ______ 时 ,分式2211x x +-的值等于033. =---22)2(b a _________.34. 化简(m1+n 1)÷n n m +的结果是_______ 35. 如果分式392--x x 的值为零,那么=x _________36. 不改变分式的值,把b a ba 25.04321-+的分子、分母中各项系数化为整数为________37.=---1112a a _______. 38. 方程x x 527=-的解是39. 化简:22193m m m -=-+_________40. 平行四边形ABCD 的面积为12,AB 边上的高是3,则DC 的长是_________. 41. 如图一,在平行四边形ABCD 中,AC 、BD 相交于点O ,如果AC =14㎝,BD =18㎝,AB =10㎝,那么△COD的周长为 ㎝.42. 如图,在平行四边形ABCD,∠B=110º,延长AD 至F,延长CD 至E,连结EF,则∠E +∠F =_______ 43. 如图,E,F 是平行四边形ABCD 对角线BD 上的两点,请你添加一个适当的条件:________. 44. 顺次连接任意四边形各边中点所得到的四边形一定是____________。

【最新】湘教版八年级数学下册第四章《4.4用待定系数法确定一次函数的解析式》公开课课件.ppt

【最新】湘教版八年级数学下册第四章《4.4用待定系数法确定一次函数的解析式》公开课课件.ppt

其下滑时间t(秒)的关系如图所示。
(1)写出v与t之间的关系式;
正比例函数的表达式为:v kt
当t=2时,v=5
5t2
(2, 5)
5 k
2 v 5t
2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
新知归纳
确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
范例讲解
例1、一条直线经过点(0, 1)和(–1, 0),请你写出y 与x之间的函数关系式。
巩固练习
3、如图,直线l是一次函数 y kx b的图象,求 k与b的值。
巩固练习
4、如图,直线l是一次函数 y kx b 的图象,
填空:
(1) b=
,k=

(2) 当x=30时,y=

(3) 当y=30时,x=
14.5 k 0 b
b 14.5
16 k 3 b
k1
1
2
y k 14.5
2
要求出k、b值,需要两组对应变量值(两点的坐标)。
新知归纳
确定一次函数y kx b的表达式: 需要一次函数 y kx b的两组对应变量值(图
象上两点的坐标)。
巩固练习
2、若一次函数 y 2x b的图象经过点A(–1, 1), 则b= ,该函数经过点B(1, )和点C( , 0)。

巩固练习
5、y与x–1成正比例,当x=3时,y=4。写出y与x 关系式。
巩固练习
6、从地面竖直向上抛射一个物体,在落地之前, 物体向上的速度v(米/秒)是运动时间t(秒)的一次 函数。经测量,该物体的初速度(t=0时物体是速 度)为25米/秒,2秒后物体的速度为5米/秒。 (1)写出v、t之间的关系式; (2)经过多长时间后,物体将达到最高点?(此时 物体的速度为0)

湘教版数学八年级下册全册教学课件(2021年春修订)

湘教版数学八年级下册全册教学课件(2021年春修订)

求证:△ABC是直角三角形.【教材P4】
证明:∵CD=
1 2
AB=AD=BD,
A
∴∠1=∠A,∠2=∠B.
(等边对等角)
D
∵∠A+∠B+∠ACB=180°,(三角形内角和的性质) ∠ACB=∠1+∠2 ∴∠A+∠B +∠1+∠2 =180°.
1
B
2C
图1-5
∴2( ∠A+∠B )=180°.
∴∠A+∠B=90°.
那么△ABC是直角三角形吗?
B
A 图1-2 C
由此得到:
解:在△ABC中,∵ ∠A+∠B +∠C=180°, 又∠A+∠B=90°,所以∠C=90°. 于是△ABC是直角三角形.
[选自教材P4 练习 第2题 第1问]
随堂跟练
(3)如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点, 那么△AHC是直角三角形吗?为什么?
判定
有一个角是直角的三角形是直角三角形.
有两个角互余的三角形是直角三角形.
三角形一边上的中线等于这条边的一半的三角形 是直角三角形.
新课引入
如图是某商店营业大厅电梯示意图.电梯AB的倾斜角为30°, 大厅两层之间的高度BC为6 m.你能算出电梯AB的长度吗?
B
30°
A
C
探究新知
如图1-6,在Rt△ABC中,∠BCA =90°,
如果∠A=30°,那么直角边BC与斜边AB有什
么关系呢?
B
D 30°
图1-6
A
证明:如图1-6,取线段AB的中点D,连接CD.
∵CD是Rt△ABC斜边AB上的中线,
∴CD= 1 AB=BD.
于是,我们得到:
2

最新湘教版八年级数学下全册实用优质课件(五单元共641页ppt)

最新湘教版八年级数学下全册实用优质课件(五单元共641页ppt)
在Rt△AOD中, AO =30 3 海里,∠AOD=30°. 北 于是 AD = 1 AO 2 = 1 30 3 30 3 2 ≈ 25.98( 海里 ) . 60° >20(海里) 所以轮船不会触礁.
图1-8
东 D B
练习
1.如图是某商店营业大厅电梯示意图.电梯AB的 倾斜角为30°,大厅两层之间的距离BC为6米. 你能算出电梯AB的长度吗?
动脑筋
如图1-6,在Rt△ABC中,∠BCA=90°, 如果∠A=30°,那么直角边BC与斜边AB 有什么关系呢?
图1-6
如图1-6,取线段AB的中点D,连接CD.
∵ CD是Rt△ABC斜边AB上的中线,
AB BD. ∴ CD 1 2
∵ ∠BCA=90°,且∠A=30°, ∴ ∠B=60°. ∴ △BDC为等边三角形.
1 AB. 2
图1-4
结论
由此得到:
直角三角形斜边上的中线等于斜边的一半.
例1 已知:如图1-5,CD是△ABC的AB边上的中 线,且CD 1 AB . 2 求证:△ABC是直角三角形.
图1-5
证明:因为 CD 1 AB= BD= AD , 2 所以 ∠1=∠A,(等边对等角) ∠2=∠B .
解:在Rt△ABC中,
B
BC=6 , ∠BAC=30°, ∴ AB=2BC=2×6=12图,在Rt△ABC中,∠ACB = 90°,CD垂直于 BC ,求∠A的度数. AB,垂足为点D,DB = 1 2
解:∵ 在Rt△BDC中,∠BDC= 90°, DB = 1 BC , 2 ∴ ∠BCD=30°.
根据三角形内角和性质,有 ∠A+∠B+∠ACB =180°, 即得∠A+∠B+∠1+∠2=180°, 2(∠A+∠B)=180°. 所以

初二期中数学考试试卷分析总结与反思PPT

针对以上问题,教师和学生应共同努力,加强基础知识的学习和掌握,提高解题思路和计算 能力。同时,教师还应注重培养学生的思维能力和创新精神,引导学生在学习中不断总结和 反思,提升数学素养和综合能力。
05
反思与建议
对教学内容的反思
知识点覆盖不全
试卷反映出部分重要知识 点在授课过程中没有得到 充分重视,导致学生掌握 不扎实。
难度把握不准确
部分试题难度过高,超出 了学生的接受能力,反映 出对教学内容的难度把握 不够准确。
与实际应用脱节
试卷中部分题目过于理论 化,缺乏与实际应用的联 系,不利于培养学生的数 学应用意识。
对教学方法的反思
教学方法单一
在教学过程中,过于依赖传统的讲授法,缺乏对学生主动性的调 动和多样化的教学方法尝试。
解题方法不熟练
学生对于一些常用解题方法和技巧掌握不够熟练,无法在有 限的时间内快速找到问题的解决方案。
计算能力不足
计算错误:部分学生在计算过程中粗心大意,导致简单的计算错误,如加减乘除运算错误、 符号错误等。
计算速度较慢:学生计算速度较慢,无法在有限的时间内完成试卷中的所有题目,影响了整 体成绩。
重点突出
在全面覆盖的基础上,试卷对重点知 识点进行了深入考察,如二次根式、 一元二次方程等。
学生答题情况
基础题掌握较好
大部分学生在基础题方面掌握较好,得分率较高。
综合题解答能力有待提高
部分学生在综合题的解答上存在一定困难,需要加强训练和指导。
03
各题型答题情况分析
选择题答题情况
得分情况
改进措施
学习方法不当
部分学生在学习过程中缺乏有效的方法和策略, 导致学习效率低下,成绩提升缓慢。
缺乏自主学习能力

湘教版八年级下册数学期中考试试卷(带答案)

湘教版八年级下册数学期中考试试题一、单选题1.下列汽车标志中既是轴对称图形又是中心对称图形的是A.B.C.D.2.Rt ABC中,∠ACB=90°,AC=6cm,BC=8cm,D为斜边AB的中点,则CD的长是A.3cm B.4cm C.4.8cm D.5cm3.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为A.6B.5C.4D.34.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为A.6B.5C.4D.35.如图,在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是A.∠E=∠CDF B.BE=2CF C.AD=2BF D.EF=DF 6.如图,在 ABC中,∠B=50°,点D在BC上,且AB=BD,AD=CD,则∠C的度数为A .30°B .32.5°C .45°D .60°7.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为A .30°B .60°C .90°D .120°8.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形9.如图,∠BAC=90°,AD ⊥BC ,则图中与∠ABD 互余的角有A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的对角线AC 、BD 交于点O .AC =4,∠AOD =120°,则BC 的长为A .3B .4C .3D .2二、填空题11.在ABC 中,5AC =,12BC =,13AB =,则ABC 的面积为________.12.某多边形的每个内角均为120°,则此多边形的边数为____.13.在平行四边形ABCD 中,∠B =70°,则∠D =_______.14.矩形的长为6厘米,宽为8厘米,则它的对角线长为_________.15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为_____.16.如图,在平行四边形ABCD中,若AB=4,BC=6,∠B=30°,则此平行四边形ABCD 的面积是_______.17.如图,菱形的对角线AC、BD交于点O,E为AD边中点,OE的长为3,则菱形ABCD 的周长为______.18.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为____________.三、解答题19.如图,在 ABC中,∠ACB=90°,CD⊥AB于点D,AC=12cm,BC=16cm,求CD 的长.20.如图,DB∥AC,且DB=1AC,E是AC的中点,2(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?21.如图,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,M是 ABC的边BC的中点,已知AB=10,BC=16,MN=4.(1)求证:BN=DN(2)求 ABC的周长.22.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,OE=OF.(1)求证:AE//CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:O是BD的中点;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=2时,求AE的长.24.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图,并简单叙述理由.(1)在图1中,画出一个平行四边形ABCD,使其面积为6;(2)在图2中,画出一个菱形ABCD,使其面积为4;(3)在图3中,画出一个矩形ABCD,使其邻边不等,且都是无理数.25.已知:正方形ABCD的边长为6,点E,F分别在边AD,边AB的延长线上,且DE=BF.(1)如图1,连接CE,CF,EF,请判断△CEF的形状;(2)如图2,连接EF交BD于M,当DE=2时,求AM的长;(3)如图3,点G,H分别在边AB,边CD上,且EF与GH的夹角为45°时,求DE的长.26.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.参考答案1.C2.D3.A4.D5.B6.B7.B8.C9.A10.C11.30【详解】解:在△ABC中,AC=5,BC=12,AB=13,∴AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴△ABC的面积=12×5×12=30,故答案为:30.12.6【详解】解:180°-120°=60°,360°÷60°=6.即此多边形的边数为6.故答案为:6.13.70°【详解】∵∠B=70°,∴∠D=70°,故答案为:70°.14.10cm【详解】如图所示:已知CD=6,AD=8,∠D=90°,AC==,∴10∴对角线为:10cm,故答案为:10cm.15.60°【详解】解:延长AB交直线b于点E,∵a∥b,∴∠AEC=∠1=60°,∵四边形ABCD是矩形,∴AB∥CD,∴∠2=∠AEC=60°,故答案为60°.16.12【详解】解:过点A作AE⊥BC于E,∵直角△ABE中,∠B=30°,∴AE=12AB=12×4=2∴平行四边形ABCD面积=BC•AE=6×2=12,故答案为:12.17.24【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,∵E为AD边中点,∴OE是Rt△AOD的斜边中线,∴AD=2OE=6,∴菱形ABCD的周长=4×6=24;故答案为:24.18.6.【详解】试题分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°.∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10.在Rt△CDF中,由勾股定理得:6=.考点:1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理.19.9.6cm【详解】∵∠ACB=90°,AC=12cm,BC=16cm,∴AB=20cm,根据直角三角形的面积公式,得:9.6AC BC CD cm AB== ,∴9.6CD cm =.20.(1)证明见解析(2)添加AB=BC 【详解】试题分析:(1)要证明BC=DE ,只要证四边形BCED 是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.试题解析:(1)证明:∵E 是AC 中点,∴EC=AC .∵DB=AC ,∴DB ∥EC .又∵DB ∥EC ,∴四边形DBCE 是平行四边形.∴BC=DE .(2)添加AB=BC .理由:∵DB ∥AE ,DB=AE∴四边形DBEA 是平行四边形.∵BC=DE ,AB=BC ,∴AB=DE .∴▭ADBE 是矩形.考点:矩形的判定;平行四边形的判定与性质.21.(1)见解析;(2)44【详解】解:(1)证明:∵AN 平分∠BAC∴∠1=∠2∵BN ⊥AN∴∠ANB=∠AND=90°在△ABN 和△ADN 中,12AN AN ANB AND∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ),∴BN=DN .(2)∵△ABN ≌△ADN ,∴AD=AB=10,又∵点M 是BC 中点,∴MN 是△BDC 的中位线,∴CD=2MN=8,故△ABC 的周长=AB+BC+CD+AD=10+16+8+10=44.22.(1)见解析;(2)【详解】解:(1)证明:∵四边形ABCD 是矩形∴OA=OC ,在△AOE 和△COF 中,OA OCAOE COF OE OF=⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (SAS ),∴∠OAE=∠OCF ,∴AE //CF ;(2)∵OA=OC ,OB=OD ,AC=BD ,∴OA=OB ,∵∠AOB=∠COD=60°,∴△AOB 是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt △ABC 中,=∴矩形ABCD 的面积=AB•BC=6⨯=23.(1)见解析;(2)6【详解】解:(1)∵四边形ABCD 是平行四边形,∴DC //AB ,∴∠OBE=∠ODF .在△OBE 与△ODF 中,OBE ODFBOE DOF BE DF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴BO=DO ,即O 是BD 的中点;(2)∵EF ⊥AB ,AB //DC ,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD ⊥AD ,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO ,∴OF=FG=2,由(1)可知,OE=OF=2,∴GE=OE+OF+FG=6,∴AE=6.24.(1)见解析;(2)见解析;(3)见解析【详解】解:(1)在图1中,平行四边形ABCD 如图所示;(2)在图2中,菱形ABCD 如图所示;(3)在图3中,矩形ABCD 如图所示;25.(1)△CEF 是等腰直角三角形,理由见解析;(2)25(3)3.【详解】(1)如图1,△CEF 是等腰直角三角形,理由是:在正方形ABCD 中,BC=DC ,∠FBC=∠D=90°,∵BF=DE ,∴△FBC ≌△EDC ,∴CF=CE ,∠ECD=∠FCB ,∴∠ECF=∠ECB+∠FCB=∠ECB+∠ECD=90°,∴△CEF 是等腰直角三角形;(2)如图2,过E 作EN ∥AB ,交BD 于N ,则EN=ED=2,∵EN ∥AB ,∴∠F=∠MEN ,∵∠BMN=∠EMN ,∴△FBM ≌△ENM ,∴EM=FM ,在Rt △EAF 中,224(62)++5∴AM=125(3)如图3,连接EC 和FC ,由(1)得∠EFC=45°,∵∠EMH=45°,∴∠EFC=∠EMH ,∴GH ∥FC ,∵AF ∥DC ,∴四边形FCHG 是平行四边形,∴由勾股定理得:,∴DE=BF=3.26.(1)见解析;(2)①5;②【详解】(1)∵矩形ABCD 折叠使A ,C 重合,折痕为EF ,∴OA =OC ,EF ⊥AC ,EA =EC ,∵AD ∥AC ,∴∠FAC =∠ECA ,在△AOF 和△COE 中,FAO ECOAO CO AOF COE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF ≌△COE ,∴OF =OE ,∵OA =OC ,AC ⊥EF ,∴四边形AECF 为菱形;(2)①设菱形的边长为x ,则BE =BC ﹣CE =8﹣x ,AE =x ,在Rt △ABE 中,∵BE 2+AB 2=AE 2,∴(8﹣x )2+42=x 2,解得x =5,即菱形的边长为5;②在Rt △ABC 中,AC∴OA =12AC =在Rt △AOE 中,AE =5,OE∴EF =2OE =。

2023-2024学年湘教版八年级数学下册期中练习课件


图14
提示:证明CO//BA,AE//CB
(2)如图14(b),将图14(a)中的四边形ABCO折叠,使点C与点A
重合,折痕为FG,求OG的长. [答案] 1
25.如图15,在▱ABCD中,点E,F分别是边AB,
CD的中点,BD是对角线,AG//DB交CB的延长线
于点G.
(1)求证:△ ADE ≌△ CBF.
八年级下册
期中练习
一、选择题
1.下列四组线段中,能组成直角三角形的是( D ) .
A.a = 1,b = 2,c = 3
B.a = 2,b = 3,c = 4
C.a = 2,b = 4,c = 5
D.a = 3,b = 4,c = 5
2.如图1,BC ⊥ AE于点C,CD//AB,∠B = 50∘ ,则∠1等于(
③EG = DE + BG;④BG = GC.其中正确的有___①__③__④_
图8
(填序号).
三、解答题
19.如图9,在△ ABC中,∠BAC = 90∘ ,AD是 △ ABC的高,∠C = 30∘ ,BC = 4,求BD的长. [答案] 1
20.如图10所示,如果▱ABCD的一内角∠BAD的平 分线交BC于点E,且AE = BE,求▱ABCD各内角 的度数. [答案] ∠B = ∠D = 60∘ ,∠BAD = ∠C = 120∘
图15
[答案] ∵ 四边形ABCD是平行四边形,∴ ∠DAB = ∠C,AD = CB,
AB = CD. ∵
点E,F分别是AB,CD的中点,∴
AE
=
1 2
AB,
CF
=
1 2
CD.

AE
=

湘教版八年级下册数学期中试卷1

湘教版八年级下册数学期中试卷一.选择题(共12小题,每小题3分,共36分)1.(3分)下面的性质中,平行四边形不一定具有的是( )A.内角和为360°B.邻角互补C.对角线相等D.对角相等2.(3分)如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PD=PE,则△APD与△APE 全等的理由是( )A.SAS B.AAA C.SSS D.HL3.(3分)下列条件中,不能判定一个四边形为平行四边形的是( )A.一组对边相等且平行B.一组对边平行,另一组对边相等C.两条对角线互相平分D.两组对边分别相等4.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A.5B.25C.7D.155.(3分)如图,Rt△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,AD=10,则点D到AB的距离是( )A.8B.5C.6D.46.(3分)用两块完全相同的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,一定能拼成的图形是( )A.①④⑤B.②⑤⑥C.①②③D.①②⑤7.(3分)如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E,若AE=2,平行四边形ABCD的周长等于24,则线段AB的长为( )A.5B.6C.7D.88.(3分)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是( )A.B.C.D.9.(3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM =PN,若MN=2,则OM=( )A.3B.4C.5D.610.(3分)如图,P为正方形ABCD的对角线AC上任意一点,PE⊥AB于E,PF⊥BC于F,若AC=,则四边形PEBF的周长为( )A.B.2C.2D.111.(3分)如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为( )A.16cm2B.8cm2C.16cm2D.32cm212.(3分)如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为( )A.4s B.3s C.2s D.1s二.填空题(共6小题,每小题3分,共18分)13.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B= .14.(3分)若一个直角三角形的其中两条边长分别为6和8,则第三边长为 .15.(3分)平行四边形ABCD中,AB、BC、CD的长度分别为2x+1,3x,x+4,则平行四边形ABCD的周长 .16.(3分)已知正方形的一条对角线长为4cm,则它的面积是 cm2.17.(3分)如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为 .18.(3分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…以此类推,则△A2021B2021C2021的周长是.三.解答题(总分66分)19.(6分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.20.(6分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且AF=CE.求证:△ADF≌△CBE.21.(8分)如图,在△ABC中,∠C=90°,∠A=30°,点D在AC上,且∠BDC=60°,AC=12,求BD、BC的长.22.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点.求证:DE∥BF.23.(8分)如图,四边形ABCD是边长为13的菱形,其中对角线AC的长为10.计算:(1)对角线BD的长度.(2)菱形ABCD的面积.24.(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.25.(10分)已知,如图,在Rt△ABC中,∠ACB=90°,E是两锐角角平分线的交点,ED ⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.26.(12分)如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一.选择题(共12小题,每小题3分,共36分)1.【分析】利用平行四边形的性质依次判断可求解.【解答】解:∵平行四边形的性质有对角相等,邻角互补,内角和为360°,∴平行四边形的性质不一定具有对角线相等,故选:C.2.【分析】根据题中的条件可得△ADP和△AEP是直角三角形,再根据条件DP=EP,AP =AP可根据HL定理判定△APD≌△APE.【解答】解:∵PD⊥AB,PE⊥AC,∴∠ADP=∠AEP=90°,在Rt△ADP和△AEP中,∴Rt△ADP≌△AEP(HL),故选:D.3.【分析】根据平行四边形的判定方法一一判断即可.【解答】解:A、一组对边相等且平行的四边形是平行四边形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,可能是等腰梯形,故本选项符合题意;C、两条对角线互相平分是平行四边形,故本选项不符合题意;D、两组对边分别相等的四边形是平行四边形,故本选项不符合题意;故选:B.4.【分析】本题可根据“两个非负数相加和为0,则这两个非负数的值均为0”解出x、y的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【分析】作DE⊥AB于E,根据角平分线的定义得到∠CAD=30°,根据直角三角形的性质得到CD=5,根据角平分线的性质得到答案.【解答】解:作DE⊥AB于E,∵∠C=90°,∠B=30°,∴∠CAB=60°,又AD是∠BAC的平分线,∴∠CAD=30°,∴CD=AD,又AD=10,∴CD=5,∵AD是∠BAC的平分线,∠C=90°,DE⊥AB∴DE=CD=5,故选:B.6.【分析】此题需要动手操作或画图,用两块完全相同的直角三角形可以拼成平行四边形、矩形、等腰三角形.【解答】解:根据题意,能拼出平行四边形、矩形和等腰三角形.故选D.7.【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE =DC=AB求出即可.【解答】解:在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,AD=BC,∴∠DEC=∠DCE,∴DE=DC=AB,∵四边形ABCD的周长等于24,AE=2,∴AB+AD=12,∴AB+AE+DE=12,∴AB=5.故选:A.8.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.9.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD 的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.10.【分析】首先根据正方形的性质和勾股定理可求出AB的长,再由条件可知:四边形PEBF 为矩形,三角形AEP和三角形PFC为等腰直角三角形,所以PE+PF+BE+BF=2AB,问题得解.【解答】解:∵四边形ABCD是正方形,∴∠A=90°,AB=BC,∴AB2+BC2=AC2,∵AC=,∴AB=BC=1,∵四边形ABCD是正方形,∴∠BAC=∠BCA=45°,∵PE⊥AB于E,PF⊥BC于F,∴四边形PEBF为矩形,△AEP和△PFC为等腰直角三角形,∴PF=BE,PE=AE,∴PE+PF+BE+AE=2AB=2,即四边形PEBF的周长为2,故选:C.11.【分析】根据直角三角形斜边上的中线等于斜边的一半求出BC,再根据直角三角形两锐角互余求出∠BCE=60°,判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质求出EG,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵F是BC中点,∠BEC=90°,∴EF=BF=FC,BC=2EF=2×4=8cm,∵∠ECD=30°,∴∠BCE=90°﹣∠EBC=90°﹣30°=60°,∴△CEF是等边三角形,过点E作EG⊥CF于G,则EG=EF=×4=2cm,∴矩形的面积=8×2=16cm2.故选:C.12.【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【解答】解:由题意,点P在CD上,设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选:B.二.填空题(共6小题,每小题3分,共18分)13.【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.14.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.15.【分析】根据平行四边形的对边相等可列出方程,从而解出x,这样就可得出各边的长,继而得出周长.【解答】解:∵平行四边形的对边相等,∴2x+1=x+4解得:x=3,即得AB=7、BC=9、CD=7、DA=9,∴平行四边形ABCD的周长是:AB+BC+CD+DA=32,故答案为:32.16.【分析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可知正方形的边长,进而可得这个正方形的面积.【解答】解:设这个正方形的边长为xcm,则根据正方形的性质可知:x2+x2=42=16,解可得x=2cm;则它的面积是x2=8cm2,故答案为8cm2.17.【分析】根据题意作图,连接O1B,O1C,可得△O1BF≌△O1CG,那么可得阴影部分的面积与正方形面积的关系,同理得出另两个正方形的阴影部分面积与正方形面积的关系,从而得出答案.【解答】解:连接O1B、O1C,如图:∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴O1、O2两个正方形阴影部分的面积是S正方形=1,同理另外两个正方形阴影部分的面积也是S正方形=1,∴把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为(n﹣1).故答案为:n﹣118.【分析】由三角形的中位线定理得:B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出结论.【解答】解:∵△A1B1C1中,A1B1=4,A1C1=5,B1C1=7,∴△A1B1C1的周长是16,∵A2,B2,C2分别是边B1C1,A1C1,A1B1的中点,∴B2C2,A2C2,A2B2分别等于A1B1、B1C1、C1A1的,∴△A2B2C2的周长是×16=8,同理,△A3B3C3的周长是××16=×16=4,…,以此类推,△A n B n∁n的周长是×16=,∴△A2021B2021C2021的周长是=.故答案是:=.三.解答题(总分66分)19.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形的边数是n,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.20.【分析】根据矩形的性质得出∠D=∠B=90°,AD=CB,根据直角三角形全等的判定定理推出即可.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=CB,在Rt△ADF和Rt△CBE中,∴Rt△ADF≌Rt△CBE(HL).21.【分析】先根据三角形外角的性质得出∠ABD=30°,则∠A=∠ABD,再由等角对等边得出BD=AD,设CD=x,则BD=AD=2x,求出x=4,即可求出BC的值.【解答】解:∵∠A=30°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=30°.∴∠A=∠ABD=30°,∴BD=AD.在Rt△BCD中,∠C=90°,∠DBC=30°,∴BD=2CD,设CD=x,则BD=AD=2x,∴x+2x=12,∴x=4,∴BD=8,∴BC===4.22.【分析】由平行四边形的性质可得AB=CD,AB∥CD,由中点的性质可得DF=BE,可得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点.∴DF CD,BE=AB,∴DF=BE,又∵DF∥BE,∴四边形DFBE是平行四边形,∴DE∥BF.23.【分析】(1)由菱形的性质可知AC⊥BD,在Rt△ABE中可求得BE的长,则可求得BD 的长;(2)利用菱形的面积公式即可求得答案.【解答】解:(1)∵四边形ABCD为菱形,∴AC⊥BD,且AE=EC=AC=5,且BE=DE=BD,∵菱形的边长为13,∴AB=13,在Rt△ABE中,BE===12,∴BD=2BE=24;(2)∵AC=10,BD=24,∴S菱形ABCD=AC•BD=×10×24=120.24.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.25.【分析】过E作EM⊥AB,根据角平分线的性质可得EF=ED=EM.再证明四边形EFDC 是矩形,可根据邻边相等的矩形是正方形得到四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形CDEF是矩形,∵EF=ED,∴四边形CDEF是正方形.26.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档