第二章极限与连续基础练习题含解答

合集下载

第二章极限习题及答案:函数的连续性

第二章极限习题及答案:函数的连续性

函数的连续性分段函数的极限和连续性例 设⎪⎪⎩⎪⎪⎨⎧<<=<<=)21( 1)1( 21)10( )(x x x x x f(1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间.分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续.解:(1)1lim )(lim 11==--→→x x f x x11lim )(lim 11==++→→x x x f∴1)(lim 1=→x f x函数)x f (在点1=x 处有极限. (2))(lim 21)1(1x f f x →≠=函数)x f (在点1=x 处不连续.(3)函数)x f (的连续区间是(0,1),(1,2).说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0x f x f x f x x x x x x →→→+-=才存在.函数的图象及连续性例 已知函数24)(2+-=x x x f ,(1)求)x f (的定义域,并作出函数的图象;(2)求)x f (的不连续点0x ;(3)对)x f (补充定义,使其是R 上的连续函数.分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0x f x x →,再让)(lim )(00x f x f x x →=即可.解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22,当2≠x 时,.224)(2-=+-=x x x x f其图象如下图.(2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 22-=-=-→-→x x f x x因此,将)x f (的表达式改写为⎪⎩⎪⎨⎧-=--≠+-=)2(4)2(24)(2x x x x x f 则函数)x f (在R 上是连续函数.说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致.利用函数图象判定方程是否存在实数根例 利用连续函数的图象特征,判定方程01523=+-x x 是否存在实数根.分析:要判定方程0)(=x f 是否有实根,即判定对应的连续函数)(x f y =的图象是否与x 轴有交点,因此只要找到图象上的两点,满足一点在x 轴上方,另一点在x 轴下方即可. 解:设152)(3+-=x x x f ,则)x f (是R 上的连续函数.又038)3(,1)0(<-=-=f f ,因此在[]0,3-内必存在一点0x ,使0)(0=x f ,所以0x 是方程01523=+-x x 的一个实根.所以方程01523=+-x x 有实数根.说明:作出函数)(x f y =的图象,看图象是否与x 轴有交点是判别方程0)(=x f 是否有实数根的常用方法,由于函数152)(3+-=x x x f 是三次函数,图象较难作出,因此这种方法对本题不太适用.函数在区间上的连续性例 函数24)(2--=x x x f 在区间(0,2)内是否连续,在区间[]2,0上呢?分析:开区间内连续是指内部每一点处均连续,闭区间上连续指的是内部点连续,左点处右连续,右端点处左连续.解:224)(2+=--=x x x x f (R ∈x 且2≠x )任取200<<x ,则)(2)2(lim )(lim 0000x f x x x f x x x x =+=+=→→∴ )(x f 在(0,2)内连续.但)(x f 在2=x 处无定义,∴ )(x f 在2=x 处不连续. 从而)(x f 在[]2,0上不连线说明:区间上的连续函数其图象是连续而不出现间断曲线.函数在某一点处的连续性例 讨论函数)0()11lim()(+∞<≤⋅+-=∞→x x xx x f nnn 在1=x 与21=x 点处的连续性分析:分类讨论不仅是解决问题的一种逻辑方法,也是一种重要的数学思想.明确讨论对象,确立分类标准,正确进行分类,以获得阶段性的结论,最后归纳综合得出结果,是分类讨论的实施方法.本题极限式中,若不能对x 以1为标准,分三种情况分别讨论,则无法获得)(x f 的表达式,使解答搁浅.讨论)(x f 在1=x 与21=x 点处的连续性,若作出)(x f 的图像,则可由图像的直观信息中得出结论,再据定义进行解析论证.由于)(x f 的表达式并非显式,所以须先求出)(x f 的解析式,再讨论其连续性,其中极限式中含n x ,故须分类讨论.解:(1)求)(x f 的表达式:①当1<x 时,x x x xxx f nn nn =⋅+-=⋅+-=∞→∞→0101lim 1lim 1)(②当1>x 时,x x x xx x f n nx -=⋅+-=⋅+-=∞→10101)1(1)1(lim )(③当1=x 时,01111lim)(=⋅+-=∞→x x f nn x∴⎪⎩⎪⎨⎧+∞<<-=<≤=x x x x x f 1,1,010,0)((2)讨论)(x f 在1=x 点处的连续性:1)(lim )(lim ,1lim )(lim 1111-=-===++→→-→-→x x f x x f x x x x∴)(lim 1x f x +→不存在,)(x f 在1=x 点处不连续(3)讨论)(x f 在21=x 点处的连续性:21lim )(lim ,21lim )(lim 21212121====-+--→→→→x x f x x f x x x x21lim )(lim ,21lim )(lim 21212121====-+--→→→→x x f x x f x x x x∴)21(21)(lim 21f x f x ==→,)(x f 在21=x 点处连续.根据函数的连续性确定参数的值例 若函数⎪⎩⎪⎨⎧=≠+0,0,)1()(3x a x x x f x 在0=x 处连续,试确定a 的值解:x x x x x f 3)1(lim )(lim +=→→,)0(,)1(lim 3310a f e x x x ==⎥⎦⎤⎢⎣⎡+=→ 欲)(x f 在0=x 处连续,必须使)0()(lim 0f x f x =→,故3e a =说明:利用连续函数的定义,可把极限转化为函数值求解.。

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案

函数、极限与连续测试卷带答案第一篇:函数、极限与连续测试卷带答案上海民航学院函数、极限与连续测试卷总分100分命题人:叶茂莹一、填空题(每空2分,共20分)1、函数y=3-2x|-4的定义域是;解:|3-2x|-4≥0,3-2x≥4,或3-2x≤-4 ∴-2x≥1,或-2x≤-717∴x≤-,或x≥ 2217∴x∈(-∞,-]⋃[,+∞)222、把复合函数y=earctan(1+x)分解成简单的函数________________________;解:y=eu,u=arctanv,v=1+x23、函数y=arcsin2x的反函数是_____________________;1⎡ππ⎤解:y=sinx,x∈⎢-,⎥ 2⎣22⎦⎛1+x⎫4、lim ⎪; x→∞⎝x⎭2x2⎛1+x⎫解:lim ⎪x→∞⎝x⎭2x⎡⎛1⎫x⎤=lim⎢1+⎪⎥=e2 x→∞⎝x⎭⎦⎢⎥⎣2(2x-1)15(3x+1)30=;5、limx→∞(3x-2)45(2x-1)15(3x+1)30215⨯330⎛2⎫==⎪解:lim4545x→∞(3x-2)3⎝3⎭x2-3x+26、lim2;x→2x+4x-12(x-1)(x-2)=lim(x-1)=1x2-3x+2lim解:lim2 x→2x+6x→2x+4x-12x→2x+6x-28157、x→1=;2解:lim=x→1x→x-12x→12=x→1 =x→13x-1==34x+2的连续区间为(x+1)(x-4)解:x+2≥0,且(x+1)(x-4)≠08、函数f(x)=∴x≥-2,x≠-1,x≠4,∴x∈[-2,-1)⋃(-1,4)⋃(4,+∞)ax2+bx-19、已知a,b为常数,lim=2,则a=,b=.x→∞2x+1ax2+bx-1解:因为x的最高次为2,lim=2 x→∞2x+1所以a=0,b=2,即b=42x≠0在点x=0处连续,则a=x=0x1-⎤⎡=lim⎢(1-x)x⎥x→0⎣⎦-22⎧x⎪10、已知f(x)=⎨(1-x)⎪a⎩解:limf(x)=lim(1-x)x→0x→0=e-2因为f(x)在点x=0处连续,f(0)=a=limf(x)=e-2,所以a=e-2。

高等数学基础形成性考核册答案(附题目)

高等数学基础形成性考核册答案(附题目)

【高等数学基础】形成性考核册答案【高等数学基础】形考作业1答案:第1章 函数第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(=D. 1)(+=x x f ,11)(2--=x x x g 分析:判断函数相等的两个条件(1)对应法则相同(2)定义域相同A 、2()f x x ==,定义域{}|0x x ≥;x x g =)(,定义域为R定义域不同,所以函数不相等;B 、()f x x ==,x x g =)(对应法则不同,所以函数不相等;C 、3()ln 3ln f x x x ==,定义域为{}|0x x >,x x g ln 3)(=,定义域为{}|0x x >所以两个函数相等D 、1)(+=x x f ,定义域为R ;21()11x g x x x -==+-,定义域为{}|,1x x R x ∈≠ 定义域不同,所以两函数不等。

故选C⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =分析:奇函数,()()f x f x -=-,关于原点对称偶函数,()()f x f x -=,关于y 轴对称()y f x =与它的反函数()1y f x -=关于y x =对称,奇函数与偶函数的前提是定义域关于原点对称设()()()g x f x f x =+-,则()()()()g x f x f x g x -=-+=所以()()()g x f x f x =+-为偶函数,即图形关于y 轴对称故选C⒊下列函数中为奇函数是(B ).A. )1ln(2x y += B. x x y cos = C. 2xx a a y -+= D. )1ln(x y += 分析:A 、()()()()22ln(1)ln 1y x x x y x -=+-=+=,为偶函数B 、()()()cos cos y x x x x x y x -=--=-=-,为奇函数或者x 为奇函数,cosx 为偶函数,奇偶函数乘积仍为奇函数C 、()()2x xa a y x y x -+-==,所以为偶函数D 、()ln(1)y x x -=-,非奇非偶函数故选B⒋下列函数中为基本初等函数是(C ).A. 1+=x yB. x y -=C. 2x y =D. ⎩⎨⎧≥<-=0,10,1x x y 分析:六种基本初等函数(1) y c =(常值)———常值函数(2) ,y x αα=为常数——幂函数(3) ()0,1x y a a a =>≠———指数函数(4) ()log 0,1a y x a a =>≠———对数函数(5) sin ,cos ,tan ,cot y x y x y x y x ====——三角函数 (6) [][]sin ,1,1,cos ,1,1,tan ,cot y arc x y arc x y arc x y arc x=-=-==——反三角函数分段函数不是基本初等函数,故D 选项不对对照比较选C⒌下列极限存计算不正确的是(D ). A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim =∞→x x x D. 01sin lim =∞→xx x 分析:A 、已知()1lim 00n x n x→∞=> 2222222211lim lim lim 1222101x x x x x x x x x x x→∞→∞→∞====++++ B 、0limln(1)ln(10)0x x →+=+= 初等函数在期定义域内是连续的C 、sin 1limlim sin 0x x x x xx →∞→∞== x →∞时,1x 是无穷小量,sin x 是有界函数, 无穷小量×有界函数仍是无穷小量D 、1sin1lim sin lim 1x x x x x x →∞→∞=,令10,t x x =→→∞,则原式0sin lim 1t t t →== 故选D⒍当0→x 时,变量(C )是无穷小量. A. xx sin B. x 1C. xx 1sin D. 2)ln(+x 分析;()lim 0x af x →=,则称()f x 为x a →时的无穷小量 A 、0sin lim 1x x x→=,重要极限 B 、01lim x x→=∞,无穷大量 C 、01lim sin 0x x x →=,无穷小量x ×有界函数1sin x仍为无穷小量 D 、()0limln(2)=ln 0+2ln 2x x →+= 故选C⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

第二章_极限与连续_习题解答

第二章_极限与连续_习题解答

1习题2-11. 观察下列数列的变化趋势,讨论有界性和单调性。

如果有极限请写出极限值:(1)13nn x ⎛⎫=- ⎪⎝⎭;解:{}n x 的前五项为:11111,,,,392781243⎧⎫---⎨⎬⎩⎭,从趋势可知,{}n x 不单调;11()33n -≤ ,故{}n x 有界。

{}n x 有极限值0。

(2)1n nx n =+; 解: {}01nx <<,所以有界。

111021(1)(2)n n n n xx n n n n ++-=-=>++++,所以单调递增, {}n x 有极限值1 (3)()10.1nn x =-; 解:{}01nx <<,所以有界。

()0.1n随着n 值的增大而减小,所以相应的n x 的值增大,所以为单调递增。

{}n x 的极限值为1 (4)cos2n n x n π=; 解:分别取)(2+∈=N k k n 和)(12+∈+=N k k n ,显然cos2n n x n π=是无界不单调的,故没有极限值。

(5)1n x n =-。

解:是无界的,且单调递减。

不存在极限2. 用极限定义证明::对于任意的正数2,即(3)3limn +3. 对下面情况进行讨论,对得到的结论作出论证:(1) 数列{}n x 和{}n y 都发散,{}n n x y ±和{}n n x y 的收敛性如何?解:{}n n x y ±,{}n n x y 可能收敛,可能发散。

如sin ,n n x n y n ==,n n n n x y n n x y n n ±±⋅⋅=s i n 、=s i n 均发散的。

又如1,n n x n y n ==,1n n x y n n±±=是发散的,n n x y ⋅=1是收敛的。

({}n n x y ±收敛需要再举个例子) (2) 数列{}n x 、{}n y 中有一个收敛,另一个发散,{}n n x y ±、{}n n x y 的收敛性如何? 解:{}n n x y ±一定发散,而{}n n x y 可能收敛可能发散。

第二章-极限与连续--基础练习题(含解答)

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业)§2.1 数列的极限一、观察并写出下列数列的极限:1.4682,,,357极限为1 2.11111,,,,,2345--极限为03.212212⎧-⎪⎪=⎨+⎪⎪⎩n nn nnn a n 为奇数为偶数极限为1§2.2 函数的极限一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞xx e极限为零 2.2lim tan x x π→无极限3.lim arctan →-∞x x极限为2π-4.0lim ln x x +→ 无极限,趋于-∞二、设2221,1()3,121,2x x f x x x x x x +⎧⎪=-+<⎨⎪->⎩,问当1x →,2x →时,()f x 的极限是否存在?211lim ()lim(3)3x x f x x x ++→→=-+=;11lim ()lim(21)3x x f x x --→→=+= 1lim () 3.x f x →∴=222lim ()lim(1)3x x f x x ++→→=-=;222lim ()lim(3)53x x f x x x --→→=-+=≠ 2lim ()x f x →∴不存在。

三、设()111xf x e=+,求 0x →时的左、右极限,并说明0x →时极限是否存在.()101lim lim 01x x xf x e ++→→==+()11lim lim 11x x x f x e--→→==+lim ()x f x →∴不存在。

四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在§2.3 无穷小量与无穷大量一、判断对错并说明理由: 1.1sinx x是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。

专升本高等数学(二)-极限和连续

专升本高等数学(二)-极限和连续

专升本高等数学(二)-极限和连续(总分:100.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:19,分数:20.00)1.下列各组函数中,两个函数相同的是______A. B.f(x)=x,C.f(x)=ln|x|,g(x)=lnx D.f(x)=1nx3,g(x)=3lnx(分数:2.00)A.B.C.D. √解析:[解析] 选项A中,D(f)=(-∞,-1)∪(-1,+∞),D(g)=(-∞,+∞),定义域不相同;选项B中,f(x)=x,g(x)=[*]=|x|,对应规律不相同;选项C中,D(f)=(-∞,0)∪(0,+∞),D(g)=(0,+∞),定义域不相同;选项D中,D(f)=(0,+∞),D(g)=(0,+∞),且lnx3=3lnx,即两个函数的定义域相同且对应规律相同,为相同函数.2.______∙ A.(0,5]∙ B.(1,5]∙ C.(1,5)∙ D.(1,+∞)(分数:1.00)A.B. √C.D.解析:[解析] 使函数解析式有意义,自变量x应满足 [*]解得1<x≤5,即D(f)=(1,5].3.下列函数为奇函数的是______A.y=x4+x-2 B.y=tax+C. D(分数:1.00)A.B.C.D. √解析:[解析] 根据函数的奇偶性的定义,应选D.4.已知f(x)是(-∞,+∞)上的单调增加函数,则F(x)=e-f(x)是______∙ A.单调增加∙ B.单调减少∙ C.不单调但有界∙ D.不单调但无界(分数:1.00)A.B. √C.D.解析:[解析] 因为f(x)在(-∞,+∞)上单调增加,f(x)在(-∞,+∞)上一定单调减少,则F(x)=e-f(x)在(-∞,+∞)上一定单调减少.5.函数的反函数是______A.y=3log2x+1 B.y=3log2(x+1)C.y=log23x+1 D.y=log+1(分数:1.00)A.B.C. √D.解析:[解析] 由[*],得x=log23y+1,即y=log23x+1.6.函数y=cos3(5x+2)的复合过程是______∙ A.y=cos3u,u=5x+2∙ B.y=u3,u=cos(5x+2)∙ C.y=u3,u=cosv,v=5x+2∙ D.y=cosu3,u=5x+2(分数:1.00)A.B.C. √D.解析:[解析] y=u3,u=cosv,v=5x+2.7.当x→0时,sin(2x+x)与x比较是______∙ A.较高价的无穷小量∙ B.较低价的无穷小量∙ C.等价的无穷小量∙ D.同阶无穷小量(分数:1.00)A.B.C.D. √解析:[解析] 因为[*]所以当x→0时,sin(2x+x2)与x比较是同阶无穷小量.8.等于______ A.0 B.1 D.5(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限[*].9.等于______ A.0 B.1 D.2(分数:1.00)A. √B.C.D.解析:[解析] 注意到当x→∞时,[*]不存在,但|sin2x|≤1,即sin2x是一个有界变量,而当x→∞时,[*],根据无穷小量的性质:“有界变量乘无穷小量仍为无穷小量”,则有 [*].10.下列极限中,正确的是______ A. B. C. D(分数:1.00)A.B.C. √D.解析:[解析] 选项A,[*];选项B,[*];选项C,[*];选项D,[*](有界变量与无穷小量的乘积仍为无穷小量).11.等于______ A.0 B. C.1(分数:1.00)A.B. √C.D.解析:[解析] 将分母分解因式后,再运用极限的四则运算法则及重要极限Ⅰ,求极限. [*] 另解:(等价无穷小量代换)当x→2时,sin(x-2)~x-2,则 [*].______∙ A.e2∙ B.e∙ C.e-1∙ D.e-2(分数:1.00)A.B.C.D. √解析:[解析] 根据重要极限Ⅱ:有[*]13.下列各式中,正确的是______ A. B. C. D(分数:1.00)A.B. √C.D.解析:[解析] 根据重要极限Ⅱ:[*].14.∙ A.-1∙ B.0∙ C.1∙ D.不存在(分数:1.00)A.B.C.D. √解析:[解析] [*] 因为f(0-0)≠f(0+0),所以[*]不存在.15.在x=0处连续,则a=______∙ A.-1∙ B.1∙ C.2∙ D.3(分数:1.00)A.B.C.D. √解析:[解析] [*],因为[*]f(x)=f(0),所以a=3.16.下列函数中在点x=0处不连续的是______ A. B. C. D (分数:1.00)A. √B.C.D.解析:[解析] 选项A中,f(0)=0,[*]f(x)在点x=0处不连续;选项B中,f(0)=0,[*],f(x)在点x=0处连续;选项C中,f(0)=1.[*],f(x)在点x=0处连续;选项D中,f(0)=1.[*],f(x)在点x=0处连续.17.______∙ A.1∙ B.0∙ C.3∙ D.2(分数:1.00)A.B.C.D. √解析:[解析] f(x)的间断点为x=-1,x=1.18.函数f(x)=ln(4-x2)的连续区间是______∙ A.(-∞,-2)∙ B.(-2,2)∙ C.(2,+∞)∙ D.[-2,2](分数:1.00)A.B. √C.D.解析:[解析] 由4-x2>0,解得-2<x<2,函数f(x)=ln(4-x2)的连续区间是(-2,2).19.x=1处______∙ A.有定义∙ B.无定义且无极限∙ C.有极限但不连续∙ D.连续(分数:1.00)A.B.C. √D.解析:[解析] 函数f(x)点x=1处无定义. [*] 所以函数f(x)点x=1处有极限但不连续.二、{{B}}填空题{{/B}}(总题数:18,分数:20.00)20.设f(x)=3x+5,则f[f(x)-2]= 1.(分数:2.00)填空项1:__________________ (正确答案:9x+14)解析:f[f(x)-2]=3[f(x)-2]+5=3[3x+5-2]+5=9x+14.21.设,则(分数:1.00)填空项1:__________________ (正确答案:[*])解析:由[*],得[*] 所以[*]22.设f(x+1)=x2-3x+4,则f(x)=______.(分数:1.00)填空项1:__________________ (正确答案:x2-5x+8)解析:令x+1=t,则x=t-1,得f(t)=(t-1)2-3(t-1)+4=t2-5t+8.即f(x)=x2-5x+8.23.f(0)= 1.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当x≤0时,f(x)=cosx,则f(0)=cos0=1.24.当x∈(-∞,+∞)时,f[f(x)]=______.(分数:1.00)填空项1:__________________ (正确答案:1)解析:当|x|≤1时,f(x)=1,则f[f(x)]=f(1)=1;当|x|>1时,f(x)=0,则f[f(x)]=f(0)=1. 综上所述,当x∈(-∞,+∞)时,f[f(x)]=1.25.y=______.(分数:1.00)填空项1:__________________ (正确答案:y=ln(x2+1)(x≥0))解析:由[*],解得x=ln(y2+1)(y≥0),所以[*]的反函数为y=ln(x2+1)(x≥0).26.设f(x)=e x,g(x)=cosx,则f[g(x)]= 1.(分数:1.00)填空项1:__________________ (正确答案:f[g(x)]=e cosx.)解析:27.设y=lnu,u=cosv,v=x2+x+1,则复合函数y=f(x)= 1.(分数:1.00)填空项1:__________________ (正确答案:y=ln cosv=ln cos(x2+x+1).)解析:(分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:2)解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:[*])解析:[*](分数:1.00)填空项1:__________________ (正确答案:e-2)解析:[*]33.设,(分数:1.00)填空项1:__________________ (正确答案:1)解析:[*] 因为f(0-0)=f(0+0)=1,所以[*]34.x=1处连续,则常数a=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:f(1)=a,f(1-0)=[*] 因为函数f(x)在x=1处连续,所以f(1-0)=f(1+0)=f(0),因此a=3.35.x=0处连续,则常数k=______.(分数:1.00)填空项1:__________________ (正确答案:2)解析:f(0)=2,f(0-0)=[*] f(0+0)=[*] 因为函数f(x)在x=0处连续,则有f(0-0)=f(0+0)=f(0),所以k=2.36.x=______.(分数:1.00)填空项1:__________________ (正确答案:3)解析:已知函数为分式函数,当x=3时,函数无定义.所以函数[*]的间断点为x=3.37.x=0处______.(分数:2.00)填空项1:__________________ (正确答案:连续)解析:f(0)e0-1=0,f(0-0)=[*]f(0+0)=[*],因为f(0-0)=f(0+0)=f(0)=0,所以函数[*]在点x=0处连续.三、{{B}}解答题{{/B}}(总题数:5,分数:60.00)求下列极限.(分数:9.00)(1). 3.00)正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:(先对数列用拆项法求前n项之和,再求极限. [*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:(本题为∞-∞型未定式的极限,要用有理化的方法进行恒等变形后再求极限. [*])解析:求下列极限.(分数:9.00)(1). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:求下列极限.(分数:12.00)3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3). 3.00)__________________________________________________________________________________________ 正确答案:([*])解析:(4). 3.00)正确答案:(解法Ⅰ[*] 解法Ⅱ[*])解析:(1). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)≠f(0+0),所以[*]不存在.)解析:(2). 3.00)__________________________________________________________________________________________ 正确答案:([*] 因为f(0-0)=f(0+0)=2,所以[*])解析:求解下列极限的反问题.(分数:24.00)(1).k的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2-2x+k)=32-2×2+k=0,解得k=-3.)解析:(2).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:([*](x2+ax+6)=1+a+6=0,解得a=-7)解析:(3).a,b的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(令x2+ax+b=(x-2)(x+m)=x2+(m-2)x-2m,得a=m-2,b=-2m,又[*]解得m=6,于是有a=4,b=-12.)解析:(4).a的值.(分数:3.00)__________________________________________________________________________________________ 正确答案:(此极限为∞-∞型未定式应转化为[*]型未定式,再求解.[*][*](-x2-x+a)=-1-1+a=0,解得a=2.)解析:(5).b的值,使f(x)在点x=1处连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(由于f(1)=2,且有[*] 依题意f(x)在点x=1处连续,则必有[*] 于是1+b=2,解得b=1.即当b=1时,f(x)在点x=1处连续.)解析:(6).k的值,使f(x)在其定义域上连续.(分数:3.00)__________________________________________________________________________________________ 正确答案:(函数f(x)的定义域为(-∞,+∞).因为当x<0时,[*]连续,当x>0时,f(x)=x2-2x+3k连续,为使f(x)在其定义域上连续,则必使f(x)在点x=0处连续.[*]因为f(0-0)=f(0+0)=f(0),于是3k=2,得[*]即当[*]时,f(x)在其定义域上连续.)解析:(7).证明方程x5+5x-1=0至少有一个正根.(分数:3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=x5+5x-1,则f(x)=x5+5x-1在区间[0,1]上连续,f(0)=-1<0,f(1)=15+5-1=5>0.根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈(0,1),使得f(ζ)=ζ5+5ζ-1=0.即方程x5+5x-1=0在区间(0,1)内至少有一个实根.亦即方程x5+5x-1=0至少有一个正根.)解析:(8).证明方程1+x+sinx=0 3.00)__________________________________________________________________________________________ 正确答案:(证明:令f(x)=1+x+sinx,则f(x)=1+x+sinx;在区间[*]上连续, [*] 根据闭区间上连续函数的零点定理可知,至少存在一点ζ∈[*],使得 f(ζ)=1+ζ+sinζ=0.即方程1+x+sinx=0在区间[*]内至少有一个根.)解析:。

高等数学作业集第2章极限与连续及答案

高等数学作业集第2章极限与连续及答案

x+ x �
(4) 1 + x − 1 − x � x , 1 阶,等价 x = x1/8 ,1/8 阶,
12.求下列极限 (1) lim
x →+∞
x sin x 2x + 3
x sin x 2x + 3 1 sin x lim = � 0 (无穷小与有界量的乘积) x →+∞ x (2 + 3 / x)
(1/ 2) n 4 4n +1 + 2n 4 + (1/ 2) n 4 + nlim →+∞ 解: = lim lim = = n →+∞ 3 ⋅ 4 n − 3n n →+∞ 3 − (3 / 4) n 3 − lim(3 / 4) n 3
n →∞
(3) lim ( n + 1 − n − n )
2 1/2
− 1 (3) cos( x 2 ) − 1 ,(4) tan( x3 )
x�
3 3 (4) tan( x ) � x [3 阶]; (3) x [1/2 阶]; (2) (1 + x 2 )1/2 − 1 � x 2 / 2 [2 阶];
cos( x 2 ) − 1 � − x 4 / 2 [4 阶]

2 3 − x x2 2 3 − =1 + 0 − 0 =1 x x2

(5) lim
4 x3 + 3x 2 x →∞ 5 x 4 + 2 x
4 x3 + 3x 2 1 4 + 3(1/ x) 1 4 + 3(1/ x) 4 解: lim =lim =lim �lim =0 × =0 x →∞ 5 x 4 + 2 x x →∞ x 5 + 2(1/ x 3 ) x →∞ x x →∞ 5 + 2(1/ x 3 ) 5

高等数学习题详解-第2章 极限与连续(精品范文).doc

高等数学习题详解-第2章 极限与连续(精品范文).doc

【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。

(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。

(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。

(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。

(2) 错误 例如数列{}(-1)n 有界,但它不收敛。

(3) 正确。

(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。

*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 极限与连续 基础练习题(作业)§2.1 数列的极限一、观察并写出下列数列的极限:1.4682,,,357极限为1 2.11111,,,,,2345--极限为03.212212⎧-⎪⎪=⎨+⎪⎪⎩n nn nnn a n 为奇数为偶数极限为1§2.2 函数的极限一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞xx e极限为零 2.2lim tan x x π→无极限3.lim arctan →-∞x x极限为2π-4.0lim ln x x +→ 无极限,趋于-∞二、设2221,1()3,121,2x x f x x x x x x +⎧⎪=-+<⎨⎪->⎩,问当1x →,2x →时,()f x 的极限是否存在?211lim ()lim(3)3x x f x x x ++→→=-+=;11lim ()lim(21)3x x f x x --→→=+= 1lim () 3.x f x →∴=222lim ()lim(1)3x x f x x ++→→=-=;222lim ()lim(3)53x x f x x x --→→=-+=≠ 2lim ()x f x →∴不存在。

三、设()111xf x e=+,求 0x →时的左、右极限,并说明0x →时极限是否存在.()101lim lim 01x x xf x e ++→→==+()11lim lim 11x x x f x e--→→==+lim ()x f x →∴不存在。

四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在§2.3 无穷小量与无穷大量一、判断对错并说明理由: 1.1sinx x是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。

当0x →时,1sin0x x →;当1x →时,1sin sin1x x→不是无穷小量。

2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量.对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。

3.无穷大量一定是无界变量,而无界变量未必是无穷大量.对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。

二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量:1.221x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。

2.1ln tan x, k Z ∈()2x k ππ-→+时,tan x →+∞,则ln tan x →+∞,从而+10ln tan x→为无穷小量;x k π+→时,tan 0x +→,则ln tan x →-∞,从而10ln tan x-→为无穷小量;4x k ππ→+时,tan 1x →,则ln tan 0x →,从而1ln tan x→∞为无穷大量;三、当0+→x 时,2x 们之间最高阶和最低阶的无穷小量分别是谁?200lim lim 01x x x ++→→==,所以当0+→x 时,2x22300lim lim 01x x x x ++→→==,所以当0+→x 时,2x30lim lim 0x x x x++→→==,所以当0+→x 时, 的高阶无穷小量。

通过比较可知,当0+→x 时,2x 2x 的高阶无穷小量,因此2x 是三者中最高阶的无穷小量。

2x 的高阶无穷小量,四、利用无穷小量与极限的关系证明:0lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→=.证明:设0lim ()x x f x A →=,0lim ()x x g x B →=,则由无穷小量与极限的关系,()f x A α=+,()g x B β=+,其中,αβ为0x x →时的无穷小量。

则0lim ()()x x f x g x →=0lim()()lim()x x x x A B AB B A αβαβαβ→→++=+++AB =lim ()lim ()x x x x f x g x →→=§2.4 极限的性质与运算法则一、如果0lim ()0→=>x x f x A ,则存在0x 的空心邻域,使得(1)(2)(4)成立.(1)()f x 有界;(2)()f x 非负;(3)()f x 落入其中;(4)|()|ε-<f x A ,>0ε∀. 二、求下列函数的极限1.113(2)lim 3(2)n nn n n ++→∞+-+- 2.()⎥⎦⎤⎢⎣⎡++⋯+⋅+⋅∞→11321211lim n n n3.2134lim 1x x x x →+-- 4.3113lim 11x x x →-⎛⎫- ⎪++⎝⎭5.)lim 2x xx →+∞6.(lim x x →∞+原式lim x →∞=原式x =14x -==2003x === 三、求,a b ,使得21lim 0.1x x ax b x →∞⎛⎫+--= ⎪+⎝⎭2211lim lim 0111x x bx ax a b x ax ax bx b x x x x→∞→∞+----+----===++原式 必有1()a =→∞否则原式;同时有0(0)a b +=→否则原式;四、若3214lim1x x ax x b x →---+=+为有限值,求,.a b321lim 404x x ax x a →---+=⇒=由题意必有(否则商的极限不可存在)321144(1)(1)(4)lim =lim 1011x x x x x x x x b b x x →-→---++--==⇒=++原式§2.5 极限存在性定理与两个重要极限一、判断题: 1.1sin lim1x xx→=错2.1sin(1)lim11x x x →-=-对3.sin lim 1x x x→∞=错4.1lim sin 1x x x→∞=对5.01lim sin 1x x x→=错6.01lim(1)xx e x→+=对7.当0x →时,sin ,arcsin ,tan ,arctan ,ln(1),1xx x x x x e +-都是x 的等价无穷小.对 二、求下列函数极限:1.0sin 2lim tan 3x x x → 2.22sin(4)lim2x x x →--sin 220tan 33x xx x x→,220sin(4)4x x x →--,00sin 222lim lim .tan 333x x x x x x →→∴== 224lim4.2x x x →-∴==-原式 3.0lim arctan x x x → 4.1lim 1xx x x →∞+⎛⎫⎪-⎝⎭0arctan x xx →, 2112222lim 1111x x x x -→∞⎡⎤⎛⎫⎛⎫⎢⎥=++ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦00lim lim 1.arctan x x x x x x →→∴== 21122222lim 11.11x x e x x -→∞⎡⎤⎛⎫⎛⎫⎢⎥=++= ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦5.111lim xx x-→111lim(11)xx x -→=+- 6.22lim 1xx x x →∞⎛⎫ ⎪-⎝⎭lim 11x xx x x x x →∞⎛⎫⎛⎫= ⎪ ⎪-+⎝⎭⎝⎭ 1111lim(11).x x x e ---→=+-= 111lim 11 1.xxx ee x x ---→∞⎛⎫⎛⎫=-+== ⎪ ⎪⎝⎭⎝⎭7.2301limln(1)x x x x x→+++ 8. 0sin(sin )lim ln(1)x x x →+2323ln(1)(0)x x x x x x x +++++→sin(sin )sin ;ln(1)(0)x x x x x +→2323001lim ln(1)lim 1x x x x x x x x x x→→++∴+++==00sin(sin )sin limlim 1.ln(1)x x x x x x →→∴==+ 三、求极限22212lim()12n nn n n n n n n→∞+++++++++ . 22222121212121n n nn n n n n n n n n n n n ++++++≤+++≤++++++++++ 2212(1)/21lim lim ,2n n n n n n n n n n n →∞→∞++++==++++2212(1)/21lim lim .112n n n n n n n n n →∞→∞++++==++++且 由两面夹法则222121lim().122n n n n n n n n n →∞+++=++++++ 四、设222111123n u n=+++⋅⋅⋅+,证明数列{}n u 的极限存在.1210,{}(1)n n n u u u n +-=>∴+为单调递增数列. 22222111111112323n u n n=+++⋅⋅⋅+<+++⋅⋅⋅+又 由单调有界定理,数列{}n u 的极限存在.五、设0>a ,10>x ,且有11()2+=+n n nax x x ,(1,2,)=n ,证明数列{}n x 的极限存在,并求极限.{}11()2n n n nax x x x +=+≥∴有下界.{}2111()()0,22n n n n n n na x a x x x x x x +--=-=≤∴又单调递减(从第二项起).由单调有界定理,数列{}n x 的极限存在1lim ()2n n a x A A A A A→∞==+=若,有,可解得 §2.6 函数的连续性一、填空题 1.设函数()()xx x f -=1ln ,若补充()=0f -1 可使()x f 在0=x 处连续. 2.1=x 是函数23122+--=x x x y 的第 1 类间断点,且为 可去 间断点.3.0=x 是函数tan =xy x的第 1 类间断点,且为 可去 间断点. ()⋯±±==2,1k k x π是函数tan =xy x的第 2 类间断点,且为 无穷 间断点.()⋯±±=+=2,12k k x ππ是函数tan =x y x 的第 1 类间断点,且为 可去 间断点. 4.a x =是函数ax a x y --=的第 1 类间断点,且为 跳跃 间断点.5.0=x 是函数xy 1cos2=的第 2 类间断点. 二、研究下列各函数的连续性,找出其间断点,并判断其类型:1.221cos ,0()1,0xx f x x x x -⎧<⎪=⎨⎪+≥⎩22001cos 1lim lim(1)12x x x x x -+→→-=+=;,0x ∴=为第一类跳跃间断点。

相关文档
最新文档