PLC变频调速恒压供水系统

合集下载

PLC控制变频调速恒压供水系统

PLC控制变频调速恒压供水系统

PLC控制变频调速恒压供水系统摘要:本文介绍了一种利用三菱变频器内部的PID功能的PLC控制恒压供水系统,该系统较好地解决了高层建筑生活、消防等供水需求,实行自动恒压供水,具有明显的经济效益和一定的推广应用价值。

关键词:恒压供水变频调速PLC PID控制一、引言随着变频调速技术的发展,变频恒压供水系统已逐渐取代传统的供水系统,广泛应用于高层建筑、工业、消防、住宅小区的生活供水系统。

与传统的恒速泵供水系统、水塔高位、水箱供水系统相比,变频调速压供水系统具有供水质量高、灵活性强、能耗少、无水锤效应等优点,从而获得了广泛的应用。

二、恒压供水要求和工作原理1.恒压供水要求根据用水量的变化(实际是压力的变化)自动调节系统的运行参数,在用水量变化时保持水压恒定。

2.恒压供水的工作原理(见图1)恒压供水系统为闭环控制系统,其工作原理为:供水的压力通过传感器采集给系统,再通过变频器的A/D转换模块将模拟量转换成数字量,同时变频器的A/D将压力设定值转换成数值量,两个数据同时经过PID控制模块进行比较,PID根据变频器的参数设置,进行数据处理,并将数据处理的结果以运行频率的形式控制输出。

PID控制模块具有比较和差分的功能,供水的压力低于设定压力,变频器就会将运行频率升高,相反则降低,并且可以根据压力变化的快慢进行差分调节。

PLC根据水压情况一方面控制水泵变频与工频的切换,另一方面控制水泵的工作数量。

三、系统介绍1.系统组成控制系统由一台三菱FR—A540型变频器、一台三菱FX2N-32MR可编程序控制器、压力传感器、显示报警装置及2台水泵和电气控制柜组成。

2.变频器的控制过程变频器采用三菱FRA540型变频器,该变频器配有PID功能。

通过外部电位器作为压力给定值,安装在出水总管上的压力传感器反馈来的压力信号(4∽20mA)作为压力反馈至变频器的辅助输入端4端、5端。

变频器时刻跟踪管网压力与设定压力值之间的偏差变化情况,经变频器内部PID运算,调节变频器的输出频率,改变水泵转速。

用PLC与变频实现恒压供水

用PLC与变频实现恒压供水

用PLC与变频实现恒压供水摘要:恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数。

在用水量发生变化时保持水压恒定以满足用水要求。

变频恒压供水技术变频恒压供水相关产品正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。

追求高度智能化、系列化、标准化是未来供水设备适应城镇建设中成片开发智能楼宇、网络供水调度和整体规划要求的必然趋势。

在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。

单泵产品系统设计简易可靠,但单泵电动机深度调速造成水泵、电动机运行效率低,而多泵型产品的投资更为节省,运行效率高,已发展成为主导产品。

变频恒压供水控制方式根据水泵工作原理,水泵消耗功率与转速的三次方成正比,即N=Kn,(其中Ⅳ为水泵消耗功率,为水泵运行时的转速,为比例系数)。

而水泵是按工频运行时速设计的,但供水时除高峰外,大部分时间流量较小,由于采用了变频技术及微机控制技术,因此可以使水泵运行的转速随流量的变化而变化,最终达到节能的目的。

实践证明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能效率可达20%~40%。

带PID回路调节器和/或PkO的控制方式在该方式中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。

传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望{直|压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输送给变频器一个频率控制信号。

还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个频率控制信号。

[b][align=center]详细内容请点击:用PLC与变频实现恒压供水[/align][/b]。

PLC控制变频调速恒压供水系统设计论文

PLC控制变频调速恒压供水系统设计论文

关于PLC控制变频调速恒压供水系统设计的探讨摘要:恒压供水是指用户端在任何时候,不管用水量的大小,总能保持管网中水压的基本恒定。

恒压供水系统的控制策略是采用可编程控制器(plc) 和变频调速装置优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时能达到稳定供水压力和节约电能的目的。

关键词:plc;恒压供水;自动控制系统;设计要点引言:随着对住宅小区和企事业单位供水质量要求的不断提高,传统的水塔式供水方式和直接水泵加压等供水方式已经不能满足人们生产生活的需要。

由于用户用水在高峰和低谷时用水量相差很大,不利于设备的经济运行,降低了供水设备尤其是电机的使用寿命,浪费了大量的电能。

随着变频调速技术的不断发展,恒压变频供水设备开始应用到多层住宅小区及企事业单位的供水,提高了供水质量,节约了大量电能。

下面以一个住宅小区的变频恒压供水设备为例,介绍变频调速技术的恒压供水自动控制系统。

一、工程案例分析广东广州市某住宅小区共有住宅楼15 幢,最高为9层,每幢由两根dn50 水管并联供水,进入小区总管为一根dn100 水管。

设计流量为40t/h,需增补扬程20m,以保证出水压力达到0.31mpa。

二、恒压供水系统的组成及工作原理1、恒压供水系统小区的恒压供水系统由2 台变频电机拖动的水泵机组、1 台泵类专用变频器、1 台可编程控制器plc,再加上电磁阀、压力传感器等组成,如下图1 所示。

该系统的工作过程如下:蓄水池隔离市政的自来水网和小区供水系统,起到一定的缓冲作用。

小区供水系统由2 台水泵机组加压供水。

系统启动时,变频器控制1 台变频电机低转速启动,通过变频器逐步提高水泵转速,出水口压力传感器将水压信号反馈给plc 从而调节变频器输出频率,如果第1 台电机传速调节到最高时出水口压力仍然达不到设定值,则需要增加另一台水泵。

增加水泵时,首先将第1 台水泵从变频器供电通过接触器组转换到由电网直接供电,即由变频转换到工频。

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、本文概述随着工业技术的不断发展和城市化进程的加速,供水系统的稳定性和效率成为现代社会不可或缺的一部分。

传统的供水系统往往存在压力不稳定、能耗高等问题,难以满足现代社会的需求。

因此,基于PLC (可编程逻辑控制器)的变频恒压供水系统应运而生,成为解决这些问题的有效手段。

本文旨在探讨基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为提高供水系统的稳定性和效率提供理论和技术支持。

本文将介绍基于PLC的变频恒压供水系统的基本设计原理,包括PLC 的工作原理、变频器的控制原理以及恒压供水的实现原理。

文章将详细阐述该系统的构成部分,包括硬件组成和软件设计,以便读者能够全面了解系统的整体架构。

在此基础上,本文将深入探讨系统的控制策略,包括PLC的编程实现、变频器的调速控制以及恒压供水的控制算法等,以展示系统如何实现精准的压力控制和节能运行。

本文还将通过实际案例分析,展示基于PLC的变频恒压供水系统在实际应用中的表现,包括系统的稳定性、节能效果以及运行效率等方面的评估。

文章将总结该系统的设计经验和教训,并提出改进和优化的建议,以期为推动供水系统的技术进步和可持续发展做出贡献。

本文旨在全面介绍基于PLC的变频恒压供水系统的设计原理、系统构成、控制策略以及实际应用,以期为供水系统的稳定性和效率提升提供理论和技术支持。

二、PLC与变频技术基础PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专为工业环境设计的数字运算操作电子系统。

它采用可编程的存储器,用于在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

随着微电子技术的发展,PLC的性能得到了不断提升,其应用领域也越来越广泛。

《2024年基于PLC的变频恒压供水系统的设计》范文

《2024年基于PLC的变频恒压供水系统的设计》范文

《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。

传统的供水系统往往存在能耗高、调节不精确等问题。

因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。

本文将详细介绍基于PLC的变频恒压供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。

具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。

2. 通过变频技术实现电机的节能运行。

3. 实现系统的自动化控制,降低人工干预。

4. 具备故障自诊断和保护功能,确保系统安全稳定运行。

三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。

2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。

3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。

4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。

5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。

四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。

2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。

3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。

4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。

5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。

6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。

五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。

PLC控制变频器的恒压供水系统的设计

PLC控制变频器的恒压供水系统的设计

PLC控制变频器的恒压供水系统的设计恒压供水系统是一种能够根据管网压力变化自动调节水泵运行速度的系统,常用于公共建筑、工业厂房和住宅小区的水供应系统中。

PLC(可编程逻辑控制器)控制变频器的恒压供水系统设计是一种自动化控制方案,能够有效地提高供水系统的稳定性和能效。

1.系统布局设计:需要根据实际的供水系统布局来确定变频器的安装位置和水泵的布置,以确保系统的整体效果最优。

通常情况下,变频器和PLC控制器会安装在一个控制柜中,方便集中控制和管理。

2.传感器选择与安装:恒压供水系统需要通过传感器来实时监测管网压力的变化,常用的传感器包括压力传感器和流量传感器。

这些传感器需要适当地安装在管道上,并与PLC控制器相连接,以便实时采集和反馈数据。

3.变频器选择与参数设置:根据水泵的功率和变频器的性能需求,选择合适的变频器,并进行参数设置。

在供水系统中,变频器的作用是通过控制电机的转速来调整水泵的出水量,从而满足恒压供水的需求。

4.PLC程序设计:根据实际的供水系统需求,编写PLC程序进行控制逻辑的设计。

程序中需要包括对传感器数据的采集和处理、对变频器的频率设置和控制、对水泵的启停控制等功能。

5.系统调试与优化:在完成PLC程序的设计后,需要进行系统的调试与优化。

通过实际操作和测试,确定系统的参数设置和控制策略是否满足恒压供水系统的要求,并对系统进行优化,提高供水系统的工作效率和稳定性。

6.联动控制与报警功能设计:为了确保供水系统的安全性和稳定性,在PLC控制变频器的恒压供水系统设计中,还需要考虑系统的联动控制和报警功能。

例如,当系统发生故障或异常情况时,PLC控制器可以发出报警信号,并采取相应的措施来保护设备和系统的运行。

总而言之,PLC控制变频器的恒压供水系统设计是一项复杂而重要的工作,它能够实现供水系统的自动化控制,提高系统的稳定性和能效。

要设计一个好的恒压供水系统,需要充分了解供水系统的要求和实际情况,并合理选择和配置设备,进行有效的控制策略设计和系统优化。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。

恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。

本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。

二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。

其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。

三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。

当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。

此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。

四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。

2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。

3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。

4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。

5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。

五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。

2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。

3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。

恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。

本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。

同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。

三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。

其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。

四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。

2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。

3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。

4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。

五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。

2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。

3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。

4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。

六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。

2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业实践<设计)任务书题目:PLC变频调速恒压供水系统中的应用班级:姓名:指导老师:完成日期:2018.04.30xxxxxxx 制年月包头钢铁职业技术学院毕业实践<设计)成绩及评语表摘要变频恒压供水系统是现代建筑中普遍采用的一种水处理系统,随着变频调速技术的发展和人们节能意识的不断增强,变频恒压供水系统的节能特性被厂泛地应用于住宅小区、高层建筑的生活及消防供水系统。

在智能建筑教案领域,恒压供水系统已成为一个研究的重要课题,其典型结构是由压力传感器、可编程控制器<PLC)、变频器、供水泵组等组成。

随着社会的飞速发展和城市建设规模的扩大,人口的增多以及人们生活水平的提高,对城市供水的质量、数量、稳定性等问题提出了越来越高的要求,我国中小城市供水的自动化配置相对落后,机组的控制主要依靠值班人员的手操作,控制过程烦琐,而且手动控制无法对供水管网的压力和水位变化及时做出恰当的反应。

为了保证供水,机组常保持在超压的状态下运行,爆损现象也挺严重。

本论文结合现状,设计了一套基于PLC的变频调速恒压供水系统。

本课题满足了变频恒压供水系统中的基本要求,是由储水系统、动力系统,回水系统和控制系统(手动控制、自动控制>组成。

它利用流量与转速成正比的关系来实现节能,即当需求的压力降低时,电动机转速降低,泵出口流量减少,电动机的消耗功率大幅度下降,从而达到节能的目的。

对象系统由四台不同功率的水泵机组组成,都为常规变频循环泵,用于模拟正常模式下的生活供动力系统。

回水系统采用有机玻璃材料结构,以使实验系统具有可观察性。

控制系统采用手动和自动两种控制方式,在自动控制器失效的状态下,用手动控制系统也能保证系统地可靠运行。

在系统投入自动运行前,手动控制还可用于检验动力线路和动力设备的工况。

在有变频和工频两种运行状态的设备间,采用机械互锁和逻辑互锁的双重保护设计,以保障设备的安全运行;该系统同时采用过载保护、漏电保护、接地保护等多重保护机制,充分保障了操作者的人身安全和设备的运行安全。

关键词:恒压供水变频调速 PLC 泵机切换,目录第一章绪论31.1本课题设计的背景31.2本课题设计的内容3第二章系统控制方案的确定52.1变频调速52.1 .1变频调速的工作原理52.1 .2变频器主要功能的预置62.2系统控制方案6第三章系统硬件设计83.1 可编程控制器(PLC>的选型83.1.1 PLC概述83.1.2 PLC的选型93.2变频器的选型103.3水泵的选型113.4压力传感器的选型113.5 PLC及变频器控制电路123.6硬件接线图143.7I/O分配表14第四章系统软件设计154.1 PLC梯形图概述154.2系统工作过程分析164.3控制系统程序设计174.3.1启动程序174. 3. 2水泵切换程序174 .3 .3逐台停泵程序184.3 .4故障处理18第五章结论18参考文献20第1章绪论1.1本课题设计的背景随着变压器调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统,然而,因为新系统多会继续使用原有系统的部分旧设备(水泵>,在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题.本课题介绍的变频控制恒压供水系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的实现节水、节电、节省人力,最终达到高效率的运行目的。

1969年美国数字设备公司<DEC)研制出世界第一台可编程控制器,并成功地应用在美国(GM>的生产线上。

但当时只能进行逻辑运算,故称为可编程逻辑控制期,简称PLC(programmable logic controller>。

70年代后期,随着微电子技术和计算机的迅猛发展,使PLC从开关量的逻辑控制扩展到数字控制及生产过程控制中,真正成为一种电子计算机工业控制装置,故称为可编程控制器,简称PC(programmable controller>。

但因为PC容易与个人计算机<programmable computer)相混淆,故人们仍习惯地用PLC作为可编程器的缩写。

1985年国际电工委员会(IEC>对PLC的定义如下:可编程控制器是一种进行数字运算的电子系统,是专为在工业环境下的应用而设计的工业控制器,它采用了可以编程的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字或模拟式的输入和输出,控制各种类型机械的生产过程。

PLC是继电器逻辑控制系统发展而来,所以它在数学处理、顺序控制方面具有一定优势。

继电器在控制系统中主要起两种作用:(1>逻辑运算(2>弱电控制强电。

PLC是集自动控制技术,计算机技术和通讯技术于一体的一种新型工业控制装置,已跃居工业自动化三大支柱(PLC ROBOT COT/COM>的首位。

可编程控制器,简称PLC。

它在集成电路、计算机技术的基础上发展起来的的一种新型工业控制设备。

具有1.可靠性高、抗干扰能力强2.设计、安装容易,维护工作量少4功能强、通用性好5.开发周期短,成功率高6体积小,重量轻、功耗低等特点。

具有功能强、可靠性高、配置灵活、使用方便以及体积小、重量轻等优点,已经广泛应用于自动化控制的各个领域,并已成为实现工业生产自动化的支柱产品。

与继电接触器系统相比系统更加可靠;占位空间比继电接触器控制系统小;价格上能与继电接触器控制系统竞争;易于在现场变更程序;便于使用、维护、维修;能直接推动电磁阀、接触器与之相当的执行机构;能向中央执行机构;能向中央数据处理系统直接传输数据等。

因此,进行变频恒压供水系统的PLC控制系统的设计,可以推动变频恒压供水系统行业的发展,扩大PLC在自动控制领域的应用,具有一定的经济和理论研究的价值。

1.2本课题设计的内容本设计将在以下几个方面对恒压供水控制系统进行研究和论证。

1.恒压供水系统的选型该系统是由储水系统、动力系统,回水系统和控制系统(手动控制、自动控制>组成。

对象系统由四台不同功率的水泵机组组成,都为常规变频循环泵,用于模拟正常模式下的生活供水动力系统:回水系统采用有机玻璃材料结构,以使实验系统具有可观察性。

2.系统的硬件设计PLC变频恒压供水控制系统由4台水泵,一台智能型电控柜(包括变频器、PLC、交流接触器、继电器等>,一套压力传感器、缺水保护器、断相相序保护装置以及供电主回路等构成。

3.系统的软件设计系统的软件设计包括PLC的程序设计和变频器的功能参数设定。

这里主要讨论PLC的程序设计。

PLC的程序设计包括手动控制和自动控制的程序设计,手动部分是通过按钮控制水泵在工频下运行和停止,主要考虑系统调试或检修时用。

当选择开关打到”自动”时,系统能够进入自动工作状态,由PLC和变频器联合控制各台电机的投入或切除、工频或变频运行方式。

供水系统共有4台泵组电机,在根据水压决定投入泵组台数后,只有最初投入的电机进行变频调速,其它后投入的电机则在工频下全速运行,泵组电机的切换过程由逻辑控制单元PLC实现。

1.3本课设计的目的和意义随着电力技术的发展,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动半稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击:因为泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。

其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。

用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。

而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。

保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。

PLC恒压供水系统对于某些工业或特殊用户是非常重要的。

例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。

又如发生火灾时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。

所以,某些用水区采用PLC恒压供水系统,具有较大的经济和社会意义。

PLC是面向工业生产过程控制的,特别是中小容量PLC成功地取代了传统的继电器一接触器控制系统,使控制装置的可靠性大为提高,在改造传统工业控制设备和”发研制机电一体化高新技术产品中发挥了巨人作用。

而变频器能节能和凋速,并能实现自动控制程度高精度控制,还能在恒压恒温控制应用实现了智能控制等。

本课程的基本要求是在了解PLC一般性硬软件基本构成和工作原理的基础上,掌握利用PLC技术实现生产过程顺序控制或程序控制开发应用的方法步骤和全过程真正掌握此项新技的开发和应用,并和变频器综合利用,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的。

改造提高了系统的工作稳定性,得到了良好的控制效果。

第二章系统控制方案的确定2.1变频调速2.1 .1变频调速的工作原理变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

变频器的电路一般由整流环节、中间直流环节、逆变环节和控制环节4个部分组成。

整流部分为二相桥式小可控整流器,逆变部分为TGRT二相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。

从评论上可知电机的转速N与供电频率f有以下关系n=2x60f/q(1-s> (q一电机极数。

S一转差率> (2一1>由上式可知,转速n与频率f成正比,如果不改变电动机的级数,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。

变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。

变频器在工频以下和工频以上工作时的情况:(1>变频器小于50Hz时,因为I*R很小,所以U/F=E/F不变时,磁通为常数,转矩和电流成正比,这也就是为什么通常用变频器的过流能力来描述其过载(转矩>能力,并成为恒转矩调速。

(2>变频器50Hz以上时,通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。

因此在额定频率之下的调速称为恒转矩调速。

(T=Te,P<=Pe>变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。

当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。

相关文档
最新文档