应用光学李林第四版第三章习题资料

合集下载

应用光学习题

应用光学习题

应用光学习题应用光学习题.第一章 : 几何光学基本原理 ( 理论学时: 4 学时 )? 讨论题:几何光学和物理光学有什么区别?它们研究什么内容?? 思考题:汽车驾驶室两侧和马路转弯处安装的反光镜为什么要做成凸面,而不做成平面? ? 一束光由玻璃( n=1.5 )进入水( n=1.33 ),若以45 ° 角入射,试求折射角。

? 证明光线通过二表面平行的玻璃板时,出射光线与入射光线永远平行。

? 为了从坦克内部观察外界目标,需要在坦克壁上开一个孔。

假定坦克壁厚为200mm ,孔宽为 120mm ,在孔内部安装一块折射率为 n=1.5163 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围?? 一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40 °,求该棱镜材料的折射率。

? 构成透镜的两表面的球心相互重合的透镜称为同心透镜,同心透镜对光束起发散作用还是会聚作用? ? 共轴理想光学系统具有哪些成像性质?第二章 : 共轴球面系统的物像关系 ( 理论学时: 10 学时,实验学时: 2 学时 )? 讨论题:对于一个共轴理想光学系统,如果物平面倾斜于光轴,问其像的几何形状是否与物相似?为什么?? 思考题:符合规则有什么用处?为什么应用光学要定义符合规则?? 有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反光镜以后成像在投影物平面上。

光源高为 10mm ,投影物高为 40mm ,要求光源像高等于物高,反光镜离投影物平面距离为 600mm ,求该反光镜的曲率半径等于多少?? 试用作图法求位于凹的反光镜前的物体所成的像。

物体分别位于球心之外,球心和焦点之间,焦点和球面顶点之间三个不同的位置。

? 试用作图法对位于空气中的正透镜()分别对下列物距:求像平面位置。

? 试用作图法对位于空气中的负透镜()分别对下列物距:求像平面位置。

应用光学习题”、“物理光学习题”、“工程光学-练习题.doc

应用光学习题”、“物理光学习题”、“工程光学-练习题.doc

本习题供复习参考。

更多的内容请参考“应用光学习题”、“物理光学习题”、“工程光学+练习题”等。

所有资料均可在网络课件资源处下载。

一.选择题1、几何光学有三大基本定律,它们是是:(D )A、折射与反射定律,费马原理,马吕斯定律;B、直线传播定律,折射与反射定律,费马原理;C、独立传播定律,折射与反射定律,马吕斯定律;D、直线传播定律,独立传播定律,折射与反射定律。

2、对理想光学系统,下列表述正确的是:(C )A、位于光轴上的物点的共轨像点不在光轴上;B、物方焦点与像方焦点共觇;C、基点与基面为:焦点、主点、节点,焦平面、主平面、节平面;D、牛顿物像位置关系,它是以主点为坐标原点。

3、关于光阑,下列表述正确的是:(B )A、孔径光阑经其前面的光学系统所成的像称为入窗;B、若孔径光阑在光学系统的最前面,则孔径光阑本身就是入瞳;C、孔径光阑、入窗、出窗三者是物像关系;D、视场光阑是限制轴上物点孔径角的大小,或者说限制轴上物点成像光束宽度、并有选择轴外物点成像光束位置作用的光阑。

4、关于人眼,下列描述正确的是:(A )A、眼睛自动改变焦距的过程称为眼睛的视度调节;B、近视眼是将其近点矫正到明视距离,可以用负透镜进行校正;C、眼睛可视为由水晶体、视网膜和视神经构成的照相系统。

;D、人眼分辨率与极限分辨角成正比关系。

5、关于典型光学系统,下列表述正确的是:(B )A、增大波长可以提高光学系统的分辨率;B、显微镜的有效放大率,放大率高于1000NA时,称作无效放大率,不能使被观察的物体细节更清晰;C、目视光学仪器,其放大作用可以由横向放大率来表示;D、减小孔径可以提高光学系统的分辨率。

6、关于光的电磁理论,下列表述正确的是:(D )A、两列光波相遇后又分开,每列光波不再保持原有的特性;B、两列光波叠加后其光强为两列光波的强度之和;C、等振幅面传播的速度称为相速度;D、两个振幅相同、振动方向相同、传播方向相同,但频率接近的单色光波叠加形成拍现象。

应用光学习题答案

应用光学习题答案
• 解: (1)x= -∝ ,xx′=ff′ 得到:x′=0 (2)x=-10,x′=0.5625 (3)x=-8m,x′=0.703 (4)x=-6m,x′=0.937 (5)x=-4m,x′=1.4 (6)x=-2m,x′=2.81
7、 设一物体对正透镜成像,其垂直放大率等于-1, 试求物平面与像平面的位置,并用作图法验证。
在轴上的孔径角L1大于L2,所以L2为系统的孔径光阑
入瞳即为L2对L1成像,在L1前方2.18cm处,口径为2y=2.9cm
出瞳为L2,视场光阑为L1
3.照相物镜,f ' 50mm, D / f ' 1/ 5 2m远处目标照相, 假定底片上像点弥散斑直径小于0.05mm仍可认为成像清 晰,问物空间能清晰成像的最远、最近距离各位多少?
解:
y
f
' 1
tg
y' f2'tg
y'
f
' 2
y
f
' 1
15. 电影放映机镜头的焦距f′=120mm,影片画面的 尺寸为22×16mm2,银幕大小为6.6 ×4.8m2,问电 影机应放在离银幕多远的地方?如果把放映机移到 离银幕50m远处,要改用多大焦距的镜头?
解:
6600
300
22
l' 36.12m
• 解:
8、已知显微镜物平面和像平面之间距离180mm, 垂直放大率-5,求该物镜组的焦距和离开物平面的 距离。
• 解:
9. 已知航空照相机物镜的焦距f′=500mm,飞机 飞行高度为6000m,相机的幅面为300×300mm2, 问每幅照片拍摄的地面面积。
解:
f f f ' 8.3 105

应用光学作业题答案

应用光学作业题答案
第一章(P10 )
第二题: (1)光线由水中射向空气,求在界面处发生全反射的临界角。
解: 全反射的临界角Im arcsin(n '/ n)
光线由水中射向空气,n’=1,n=1.333
则 Im arc sin(n '/ n)=arc sin(1/1.333)=48.61
(2)光线由玻璃内部射向空气,求发生全反射的临界角。
1 l2
'
-
1 130
=
1 120
l2'=-62.4mm
A”成象于透镜2左侧62.4mm处。
(2)等效光组成象的方法:
解: H’
A
F1
F2’
F1’
F2
f1’=120mm f2’=-120mm d=70mm △= d-f1’- f2’=70mm
f ' f1 ' f2 ' 120 (120) 205.714mm
n0sini1=nsini1’ sini1=0.6552 i1=40.93° 由三角形内角和可求出太阳和幻
日之间的夹角
α=180 °-2×(i1-i1’) =158.14 °
第七题:
为了从坦克内部观察外界目标,需要在坦克上开一个孔,假 定坦克壁厚250mm,孔宽150mm,在孔内装一块折射率 n=1.52的玻璃,厚度与装甲厚度相同,问能看到外界多大的 角度范围?
O’
A’
解:(1)对于在球心的气泡,以O作为 球面顶点,根据符号规则,
O L’A=-200mm,n’=1,n=1.52
由 n ' n n ' n l' l r
1 -1.52 = 1-1.52 l=-200mm -200 l -200

应用光学李林第四版第三章习题

应用光学李林第四版第三章习题


即瞄准角误差约为 .5。 0
提醒:叉丝、夹线眼睛对准精度10″ 视放大率符号为Г ,不能写成γ
0.5
望远系统的特点:
1、望远系统的垂轴放大率、轴向放大率都与共轭面的位 置无关,入射光线可以看作是从一定高度的任意物平面上 发出,也就是与物像的远近无关。 2、视放大率与角放大率相等,感觉目标与我们的距离近 了,也就是视角被放大了 问题1、望远镜将物体放大了,大的物体感觉近。 问题2、望远镜将物体成像在物镜的焦平面上,我们看 到的是前移了的像。
y 250tg眼=f 仪=8.25 10 4 mm tg
Δl F f′ Δα
解法2、瞄准误差约为 l f 10 1 l 10 17 8.25 10 4 mm 206000 即、瞄准误差约为 .825um。 0
解: 目镜的放大率为 f目=25mm 又 总= 物 目
眼镜焦距等于远点距离
解:由已知条件 5,f目=25mm SD 根据移动量公式得: 2 SDf目 X=- = 3.125mm 1000 即目镜的总移动量为 .35mm。 6
求的是总移动 量
解:对有限远的物体观察,首先不应是望远系统,其次显微 系统仅适应于对明视距离物体观察,此设计也不能用,不能 直接应用公式。
解法2:利用望远镜原理图及 参量关系 y物 y目 y目 y tg = tg - =- 目 f目 400 f物 2000 f物 tg 2000 =- =-5 tg f目 400
-ω´ y目
f物′
-f目
ω
用眼睛直接观察视角为 tg眼= :
y l y l
y , l
tg仪=
l y lf目 l 即 = -4 y f - l f物l 1 1 1 又 l l l f物 l f物

应用光学课件习题

应用光学课件习题
y = f1' tgω − y'= f 2' tgω = f 2' y' β = =− ' y f1
由两个同心的反射球面(二球面球心重合) 13. 由两个同心的反射球面(二球面球心重合)构成 的光学系统, 的光学系统,按照光线反射的顺序第一个反射球 面是凹的,第二个反射球面是凸的,要求系统的 面是凹的,第二个反射球面是凸的, 像方焦恰好位于第一个反射球面的顶点, 像方焦恰好位于第一个反射球面的顶点,求两个 球面的半径r 和二者之间的间隔d之间的关系。 球面的半径r1,r2和二者之间的间隔d之间的关系。
d1 = 78.87 f ' = 173.19 ∆ = 28.87
d 2 = 21.13 f ' = −173.19 ∆ = −28.87 舍去
如果将上述系统用来对10m远的物平面成像, 10m远的物平面成像 11. 如果将上述系统用来对10m远的物平面成像, 用移动第二组透镜的方法, 用移动第二组透镜的方法,使像平面位于移动 前组合系统的像方焦平面上, 前组合系统的像方焦平面上,问透镜组移动的 方向和移动距离。 方向和移动距离。
解: − 6600 β= = −300
22
l'= 36.12m =
若l'= 50m =
l' β = = −300 l
1 1 1 − = l' l f '
50 × 103 f '= = 166.11mm 301
一个投影仪用5 的投影物镜, 16. 一个投影仪用5×的投影物镜,当像平面与投影屏不重合 而外伸10mm时 则须移动物镜使其重合, 而外伸10mm时,则须移动物镜使其重合,试问物镜此时应 10mm 向物平面移动还是向像平面移动?移动距离多少? 向物平面移动还是向像平面移动?移动距离多少?

应用光学总复习与习题解答

应用光学总复习与习题解答

总复习第一章 几何光学的基本定律 返回内容提要有关光传播路径的定律是本章的主要问题。

折射定律(光学不变量)及其矢量形式反射定律(是折射定律当时的特殊情况)费马原理(极端光程定律),由费马原理导出折射定律和反射定律(实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例第二章 球面与球面系统 返回内容提要球面系统仅对细小平面以细光束成完善像基本公式:阿贝不变量放大率及其关系:拉氏不变量反射球面的有关公式由可得。

第三章 平面与平面系统返回内容提要平面镜成镜像夹角为 α 的双平面镜的二次像特征 平行平板引起的轴向位移反射棱镜的展开,结构常数,棱镜转像系统折射棱镜的最小偏角,光楔与双光楔关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。

第四章 理想光学系统返回内容提要主点、主平面,焦点、焦平面,节点、节平面的概念高斯公式与牛顿公式:当时化为,并有三种放大率,,拉氏不变量,,厚透镜:看成两光组组合。

++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。

--组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。

第五章 光学系统中的光束限制 返回内容提要本部分应与典型光学系统部分相结合进行复习。

孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴第六章 光能及其计算 返回内容提要本章重点在于光能有关概念、单位和像面照度计算。

辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失, 通过光学系统的光通量,像面照度总之,第七章 典型光学系统 返回内容提要本章需要熟练掌握各类典型光学系统的成像原理、放大倍率、光束限制、分辨本领以及显微镜与照明 系统、望远镜与转像系统的光瞳匹配关系,光学系统的外形尺寸计算。

物理光学与应用光学习题解第三章

物理光学与应用光学习题解第三章

第三章习题3-1. 由氩离子激光器发出波长λ= 488 nm 的蓝色平面光,垂直照射在一不透明屏的水平矩形孔上,此矩形孔尺寸为0.75 mm ×0.25 mm 。

在位于矩形孔附近正透镜〔f = 2.5 m 〕焦平面处的屏上观察衍射图样。

试描绘出所形成的中央最大值。

3-2. 由于衍射效应的限制,人眼能分辨某汽车两前灯时,人离汽车的最远距离l = ?〔假定两车灯相距1.22 m 。

〕3-3. 一准直的单色光束〔λ= 600 nm 〕垂直入射在直径为1.2 cm 、焦距为50 cm 的汇聚透镜上,试计算在该透镜焦平面上的衍射图样中心亮斑的角宽度和线宽度。

3-4. 〔1〕显微镜用紫外光〔λ= 275 nm 〕照明比用可见光〔λ= 550 nm 〕照明的分辨本领约大多少倍?〔2〕它的物镜在空气中的数值孔径为0.9,用用紫外光照明时能分辨的两条线之间的距离是多少?〔3〕用油浸系统〔n = 1.6〕时,这最小距离又是多少?3-5. 一照相物镜的相对孔径为1:3.5,用λ= 546 nm 的汞绿光照明。

问用分辨本领为500线 / mm 的底片来记录物镜的像是否合适?3-6. 用波长λ= 0.63m μ的激光粗测一单缝的缝宽。

若观察屏上衍射条纹左右两个第五级极小的间距是6.3cm ,屏和缝之间的距离是5m ,求缝宽。

3-7. 今测得一细丝的夫琅和费零级衍射条纹的宽度为 1 cm ,已知入射光波长为0.63m μ,透镜焦距为50 cm ,求细丝的直径。

3-8. 考察缝宽b = 8.8×10-3 cm ,双缝间隔d = 7.0×10-2 cm 、波长为0.6328m μ时的双缝衍射,在中央极大值两侧的两个衍射极小值间,将出现多少个干涉极小值?若屏离开双缝457.2 cm ,计算条纹宽度。

3-9.在双缝夫琅和费衍射实验中,所用波长λ= 632.8nm ,透镜焦距f = 50 cm ,观察到两相邻亮条纹之间的距离e = 1.5 mm ,并且第4级亮纹缺级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


tg眼=
y 250
y 250tg眼=f tg仪=8.25104 m m
解法2、瞄准误差约为l • f
Δl
10
l 1017 1 8.25104 m m
F f′
Δα
206000
即、瞄准误差约为0.825um。
解:目镜的放大率为
目=
250 f目
=10
f目=25m m
又 总=物 • 目
总= 4010= 400
即目镜的焦距为25mm,显微镜总放大率为400倍。
放大镜和显微镜目镜的视放大率均为正,显微镜的物 镜垂直放大率是负值。
解: 望远镜的视放大率为
= tg仪 = tg仪 仪 tg眼 tg
=仪 0.5
即瞄准角误差约为0.5。
提醒:叉丝、夹线眼睛对准精度10″
视放大率符号为Г,不能写成γ

18.2
即使用一个25倍的物镜就足够了。
注意符号:ω仪 ω眼符号相反;物镜倍数16×以上是25×。
方法2、
用人眼的分辨率极限线度来除以实际线度,也可 以得到放大率。但要注意人眼分辩极限0.006mm,是 视网膜上的像距离,应该折算成对明视距离上物体的 分辩极限线度。
这个线度大约0.1mm左右(250tg60″=0.073)。
解:人眼观察0.0005mm长的物体,其对应视角为:tg眼=
0.0005 250
人眼的视角分辨率为60,即使tg仪=60
由此得显微镜的视放大率= tg仪 tg眼
=-
2
60 10-6

1 =145.6 206000
即显微镜的放大率应高于146。
采用8倍目镜时,由显微镜视放大率公式=物目得:
物=
146 8
代入l 1,
在显微放大时使 用
这也是显微镜用 的放大率公式
望远系统的特点:
1、望远系统的垂轴放大率、轴向放大率都与共轭面的位 置无关,入射光线可以看作是从一定高度的任意物平面上
发出,也就是与物像的远近无关。
2、视放大率与角放大率相等,感觉目标与我们的距离近 了,也就是视角被放大了
问题1、望远镜将物体放大了,大的物体感觉近。
问题2、望远镜将物体成像在物镜的焦平面上,我们看 到的是前移了的像。
解:由题意知250度的近视眼视度SD 2.5
由SD 1 得:l 0.4m l
即远点距离为眼前0.4m处。
由透镜的成像公式1 1 பைடு நூலகம்1 l l f
注意视度 为负值
l 0.4, l
f 0.4m
眼镜焦距等于远点距离
即眼镜的焦距为 400mm
解:由已知条件SD 5,f目=25mm 根据移动量公式得: X=- SDf目2 = 3.125mm 1000
ω
用眼睛直接观察视角为:
tg眼=
y l
使用望远镜观察2km处的物体视角为:tg仪=
y l
要求都能看清,即tg 仪=tg眼
y y y l 2000 5 l l y l 400
虽然结果相同,但l的意义不明确。
解法1、将测微目镜视为放大镜,其视放大率为
= tg仪 = 250 tg眼 f
tg仪=tg10
主要原因是因为虹彩扩展和缩小不及时造成的。 基本和眼睛焦距的变化无关。 注意眼睛保护
应用视度公式就可以了
SD 1 1 1 l 1
注意符号,这里是-1
解:眼睛直接观察的最小视角为:
tg =0.0003(rad ) y
l 如果观察2km处的同一个物体,则视角为:
tg= y 0.0003 400 0.00006
式得:f
物 =
l
4
f目 l 4 f目

4 25(100)=91m 100 4 25
m
即物镜的焦距是91mm。
讨论问题 高云峰
求目镜视放
大率:目=
250=10 f目
求物镜放大率:物=总 / 目= 0.4
由放大率公式= x 或者 l
f物
l
利用高斯物像式(或牛顿物像式)
11 1
l l f物 得f物 =29mm
由系统视放大率定义得:= tg仪 tg
tg y ,
l
y
f目 tg仪,
物=
y y
l , l
tg仪=
ly lf目
ly
即= lf目 l -4 -y f l
Г正负对系统影响,如果是正的, 物镜为负透镜,像距为负?目镜
受物镜阻挡。
又 1 1 1 l l f物
l f物 l l f物
将此式代入上
即目镜的总移动量为6.35mm。
求的是总移动 量
解:对有限远的物体观察,首先不应是望远系统,其次显微
系统仅适应于对明视距离物体观察,此设计也不能用,不能 直接应用公式。
物体先经物镜成像,成像位置应该在目镜的物方焦平面
上,出射光为平行光束。
物镜
y′ 目镜 -l

ω仪
-y
-l -ω
-y
物镜
y′ 目镜 ω仪
l
2000
要求都能看清,也就是要求望远镜的视放大率
= tg仪 = tg 0.0003 =5 tg眼 tg 0.00006
解法2:利用望远镜原理图及参量关系
tg y目 = y目
f目 400
tg - y物 =- y目
f物
2000
tg f物 =-2000=-5
tg f目
400
-ω´
y目
f物′ -f目
相关文档
最新文档