GPS技术定位技术原理
GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。
它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。
GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。
首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。
这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。
其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。
接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。
通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。
最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。
GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。
接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。
二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。
下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。
2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。
3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。
4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。
5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。
gps定位原理是什么

gps定位原理是什么
GPS定位原理是什么。
GPS(Global Positioning System)即全球定位系统,是一种利用卫星进行定位的技术。
它可以精准地确定地球上任何一个点的位置,并且能够提供准确的时间信息。
GPS定位原理主要是通过卫星发射信号和接收器接收信号来实现的。
首先,GPS系统由一系列卫星组成,它们围绕地球轨道运行,每颗卫星都会定期发射信号。
这些信号包含了卫星的位置和时间信息。
接收器接收到这些信号后,就能够计算出卫星和接收器之间的距离。
其次,GPS接收器至少需要接收到三颗卫星的信号才能进行定位。
因为在三维空间中,确定一个点的位置至少需要三个坐标。
当接收器接收到至少三颗卫星的信号后,它就能够通过计算卫星和接收器之间的距离来确定自己的位置。
另外,GPS接收器还需要考虑卫星信号传播的时间。
由于信号传播的速度是已知的,接收器可以通过测量信号传播的时间来确定
卫星和接收器之间的距离。
通过测量多颗卫星的信号传播时间,接收器就能够确定自己的位置。
除了三维定位外,GPS还可以提供高度信息。
当接收器接收到四颗以上的卫星信号时,它就能够进行高度的定位。
这是因为四颗卫星的信号可以提供接收器所在位置的三维坐标,再加上卫星的高度信息,就能够确定接收器的高度。
总的来说,GPS定位原理是通过接收卫星发射的信号来确定接收器的位置和时间。
通过测量多颗卫星的信号传播时间,接收器就能够实现精准的三维定位和高度测量。
这种定位原理已经被广泛应用于航空、航海、地理测绘、军事等领域,并且在日常生活中也发挥着重要作用。
GPS定位原理和简单公式

GPS定位原理和简单公式GPS是全球定位系统的缩写,是一种通过卫星系统来测量和确定地球上的物体位置的技术。
它利用一组卫星围绕地球轨道运行,通过接收来自卫星的信号来确定接收器(GPS设备)的位置、速度和时间等信息。
GPS定位原理基于三角测量原理和时间测量原理。
1.三角测量原理:GPS定位主要是通过测量接收器与卫星之间的距离来确定接收器的位置。
GPS接收器接收到至少4颗卫星的信号,通过测量信号的传播时间得知信号的传播距离,进而利用三角测量原理计算出接收器的位置。
2.时间测量原理:GPS系统中的每颗卫星都具有一个高精度的原子钟,接收器通过接收卫星信号中的时间信息,利用接收时间和发送时间之间的差值,计算出信号传播的时间,从而进一步计算出接收器与卫星之间的距离。
简单的GPS定位公式:1.距离计算公式:GPS接收器与卫星之间的距离可以通过测量信号传播时间得到。
假设接收器与卫星之间的距离为r,光速为c,传播时间为t,则有r=c×t。
2.三角测量公式:GPS定位是通过测量与至少4颗卫星的距离,来计算接收器的位置。
设接收器的位置为(x,y,z),卫星的位置为(x_i,y_i,z_i),与卫星的距离为r_i,根据三角测量原理,可得到以下方程:(x-x_1)^2+(y-y_1)^2+(z-z_1)^2=r_1^2(x-x_2)^2+(y-y_2)^2+(z-z_2)^2=r_2^2...(x-x_n)^2+(y-y_n)^2+(z-z_n)^2=r_n^2这是一个非线性方程组,可以通过迭代方法求解,求得接收器的位置。
3.定位算法:GPS定位一般使用最小二乘法来进行计算。
最小二乘法是一种数学优化方法,用于最小化误差的平方和。
在GPS定位中,通过最小化测量距离与计算距离之间的差值的平方和,来确定接收器的位置。
总结:GPS定位原理基于三角测量和时间测量原理,通过测量接收器与卫星之间的距离,利用三角测量公式和最小二乘法来计算接收器的位置。
gps定位原理

gps定位原理
GPS定位原理是通过接收来自卫星的信号,计算其传播时间
差来确定接收器的位置。
GPS系统由一组位于地球轨道上的
卫星和接收器组成。
GPS接收器同时接收多颗卫星发出的信号,并测量从卫星到
接收器的信号传播时间。
每颗卫星均有精确的位置和时间信息,并将这些信息作为导航信号传输。
接收器会计算接收到信号的时间差,并使用三角定位法来确定自身的位置。
三角定位法是基于两个卫星定位位置和一个接收器位置的几何关系进行计算。
接收器首先计算出与两个卫星的距离,然后通过将这两个距离与对应卫星的位置信息进行匹配,从而确定接收器的位置。
通常至少需要接收到来自3颗卫星的信号才能准确确定位置,当接收到更多的卫星信号时,会使定位结果更加精确。
此外,定位还可能受到其他因素的影响,例如信号的传播速度可能会受到大气层中的湿度和温度变化的影响。
因此,定位时会校正这些因素,以获得更加准确的位置信息。
总体来说,GPS定位原理是基于卫星和接收器之间的信号传
播时间差来计算位置的。
通过接收多颗卫星的信号并利用三角定位法来确定位置,GPS系统能够提供人们准确的定位服务。
gps定位原理是什么

gps定位原理是什么GPS定位原理是什么。
GPS(全球定位系统)是一种通过卫星信号来确定地理位置的技术。
它由一组24颗卫星组成,这些卫星围绕地球轨道运行,每颗卫星都携带有原子钟和GPS接收机,能够向地面发射无线信号。
通过接收这些信号,GPS设备可以计算出自己的位置,速度和时间。
那么,GPS定位的原理是什么呢?首先,GPS定位需要至少四颗卫星的信号。
通过接收这些卫星的信号,GPS设备可以确定自己与每颗卫星的距离。
当GPS设备接收到来自卫星的信号时,它会记录下信号发射的时间,并且知道信号传播的速度是光速。
通过测量信号传播的时间差,GPS设备可以计算出自己与卫星的距离。
其次,GPS定位利用三角测量原理来确定位置。
假设我们知道自己与三颗卫星的距离,那么我们可以将自己的位置确定在三颗卫星所在的球面上。
当我们知道自己与第四颗卫星的距离时,我们可以将自己的位置确定在第四颗卫星所在的球面上。
而这两个球面的交点就是我们所在的位置。
另外,GPS定位还需要考虑时间的影响。
由于信号传播的时间非常短,所以GPS设备必须非常精确地测量信号的传播时间。
任何微小的时间误差都会导致位置计算的巨大误差。
因此,GPS设备需要使用非常精确的原子钟来测量时间,以确保定位的准确性。
最后,GPS定位还需要考虑信号的多路径效应。
当卫星信号在传播过程中遇到建筑物、树木或其他障碍物时,会产生反射和散射,导致信号的多路径传播。
这会使GPS设备接收到多个信号,从而影响位置的准确性。
为了解决这个问题,GPS设备会使用信号处理算法来滤除多路径信号,以提高定位的精度。
总的来说,GPS定位的原理是通过接收卫星信号,测量信号传播的时间和距离,利用三角测量原理确定位置,并考虑时间精度和信号多路径效应,最终计算出自己的地理位置。
这种技术已经被广泛应用在汽车导航、航空航海、地图绘制和户外运动等领域,成为现代社会不可或缺的一部分。
GPS定位原理及介绍

GPS定位原理及介绍GPS(Global Positioning System,全球定位系统)是一种利用人造卫星进行导航和定位的技术。
它由多颗卫星和地面控制站组成,可以提供全球范围内的三维定位服务。
GPS的原理是基于三角定位原理。
GPS接收器接收到来自多颗卫星的信号,并测量信号的传播时间来计算距离。
通过同时接收多颗卫星的信号,接收器可以利用三角定位原理计算出自己的位置。
GPS系统主要由三部分组成:卫星系统、地面控制站和用户接收器。
卫星系统是GPS系统的核心部分,由24颗运行在中轨道上的卫星组成。
这些卫星以几乎相同的轨道和速度运行,并在全球范围内分布,以确保至少有四颗卫星同时可见。
地面控制站用于监控卫星的运行状态和轨道参数,并传输相关数据给卫星。
用户接收器是GPS系统的终端,用于接收卫星信号并进行定位计算。
GPS定位的过程包括信号传播延迟补偿、距离计算、定位计算和坐标转换。
首先,接收器需要对接收到的卫星信号进行补偿,以消除信号传播过程中的延迟,得到准确的传播时间。
接下来,通过测量接收到的卫星信号的传播时间,可以计算出接收器与卫星之间的距离。
通过同时测量多颗卫星的距离,可以利用三角定位原理计算出接收器的二维位置。
最后,通过测量接收到的卫星信号的相位差,可以计算出接收器与卫星之间的高度差,从而得到接收器的三维位置。
GPS定位具有精度高、全球覆盖、实时性好等特点,已广泛应用于航空航天、军事、交通、测绘、导航、地质勘探等领域。
在航空航天领域,GPS技术可以用于导航系统、卫星轨道确定、导弹制导、飞行控制等方面,为飞行员提供准确的定位和导航信息。
在军事领域,GPS技术可以用于士兵定位、导弹导航、军舰航行等方面,提升军队的作战能力。
在交通运输领域,GPS技术可以用于车辆导航、交通监控、路况预测等方面,提供准确的导航服务和交通管理信息。
在测绘领域,GPS技术可以用于地图制作、地质勘探、土地测量等方面,提高测绘精度和效率。
GPS定位技术的使用方法和注意事项

GPS定位技术的使用方法和注意事项引言:GPS(全球定位系统)已经成为我们日常生活中广泛应用的定位技术,不仅在导航领域得到了广泛应用,还在其他诸如运输、物流、射频识别、农业和环境监测等领域发挥着重要作用。
本文将介绍GPS定位技术的使用方法和注意事项,以帮助读者更好地理解和应用GPS定位技术。
一、GPS定位技术的原理GPS定位技术是利用地球上的卫星系统,通过接收卫星发出的信号来确定一个特定位置的技术。
GPS定位系统由三个关键组件构成:卫星组成的星座,地面站和用户设备。
二、GPS定位技术的使用方法1. 确定信号强度:在使用GPS定位技术前,我们需要确定信号的强度。
在开放的区域,GPS信号通常很强,但在高楼大厦、深山、室内或其他有障碍物的地方,信号会受到干扰,在这种情况下,我们应尽量选择开阔的地方使用GPS。
2. 选择适当的设备:根据使用场景的不同,我们可以从手机、车载导航、手持式导航仪等多种设备中选择合适的GPS设备。
手机通常是最常用的GPS定位设备,但在一些特殊场景下,可能需要使用专业的设备来获取更准确的定位信息。
3. 学习使用设备的功能:不同的GPS设备可能具有不同的功能和操作方式。
在使用GPS设备前,我们应该仔细阅读设备的说明书,学习如何使用设备的各种功能,以便更好地利用GPS技术。
4. 确定目标位置:根据我们要定位的目标位置,我们可以在设备上输入相应的地址信息或坐标,GPS设备就能够根据这些信息确定目标位置,并给出导航指引。
5. 跟随导航指引:一旦我们输入了目标位置信息,GPS设备将给出详细的导航指引。
我们只需按照导航指示前进,GPS设备会实时更新定位并提供正确的导航信息,以确保我们准确到达目的地。
三、GPS定位技术的注意事项1. 隐私问题:GPS定位技术在为我们提供便利的同时,也可能涉及到个人隐私问题。
在使用GPS设备时,我们应注意保护个人信息,避免将位置信息泄露给不需要的人。
2. 信号干扰:GPS信号可能受到建筑物、山脉、树木等因素的干扰,从而导致定位不准确。
gps的原理

gps的原理
GPS即全球定位系统,是一种基于卫星导航技术的定位系统。
其原理是通过接收来自卫星发送的信号来确定接收器的位置。
具体原理如下:
1. 卫星发射:地球轨道上的GPS卫星通过板载的高精度原子
钟发射信号,信号携带了卫星的位置和时间数据。
2. 接收器接收:GPS接收器接收到来自至少四颗卫星的信号,接收器会检测和识别信号,并计算信号传播时间。
3. 三角定位:GPS接收器通过测量接收到信号的传播时间差,计算出从接收器到卫星的距离。
由于至少需要三个卫星才能确定三个维度的位置,所以GPS接收器需要接收来自至少三颗
卫星的信号。
4. 位置计算:GPS接收器使用接收到的卫星距离信息,结合
卫星位置数据,进行三角测量计算,最终确定接收器的位置。
5. 校正:GPS接收器还需要对信号传播的时间延迟进行校正,因为信号会在大气层中传播时发生折射,导致延迟。
总结来说,GPS的原理就是通过接收卫星发射的信号,并计
算信号的传播时间来确定接收器的位置。
通过多个卫星的信号测量和计算,可以达到较高的定位精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.GPS定位概述
3.GPS的系统组成
由空间部分、地面部分和用户部分等组成
二.GPS定位概述
3.1 空间部分 (Space Segment)
– GPS卫星星座 • 设计星座:21+3 • 21颗正式的工作卫星+3颗活动的备 用卫星 • 6个轨道面,平均轨道高度20200km, 轨道倾角55,周期11h 58min(顾及 地球自转,地球-卫星的几何关系每天 提前4min重复一次) • 保证在24小时,在高度角15°以上, 能够同时观测到4至8颗卫星 • 当前星座:28颗
154
120
1575.42MHz L2载波 1227.60MHz
二.GPS定位概述
3.2 地面监控部分 (Ground Segment)
– – – – 主控站:1个 监测站:5个 注入站:3个 通讯与辅助系统
二.GPS定位概述
– 主控站: 除协调和管理地面监控系统外,主要任务: 1)根据观测资料,推算编制各卫星的星历、卫星钟差和大气修正参 数,并将数据传送到注入站。 2)提供全球定位系统的时间基准。 3)调整偏离轨道的卫星,使之沿预定轨道运行。 4)启用备用卫星代替失效工作卫星 – 监测站:是主控站直接控制下的数据自动采集中心。观测资料由计 算机进行初步处理,存储并传输到主控站,以确定卫星轨道。 1)对卫星进行跟踪观测 2)记录气象数据 3)将数据传送到主控站 – 注入站:主要任务是在主控站的控制下,将主控站推算和编制的卫 星星历、钟差、导航电文和其它控制指令等,注入到相应卫星的存 储系统,并监测注入信息的正确性。
•
一.概述
2. 常规(地面)定位方法的局限性
• • • • • 观测点之间需要保证通视 需要事先布设大量的地面控制点/地面站 无法同时精确确定点的三维坐标 难以确定地心坐标 平面、高程控制网破坏严重、很多点位难以寻找 观测受气候、环境条件限制 控制网存在误差积累、精度不高 控制网点位分布不均匀 平面点多在山顶并远离测区 平面与高程控制分离、没有统一的控制系统
GPS定位原理及其在测量中的 应用和现状
目录
一.概述 二.GPS定位概述 三.GPS定位原理
四.测量定位的应用现状及其发展
一.概述
1.近、现代的常规(地面)定位方法
• 采用的仪器设备 – 尺:铟钢尺 – 光学仪器:经纬仪,水准仪 – 激光和红外仪器:测距仪 – 综合多种技术的仪器:全站仪 – 无线电、微波仪器:Loran-C,雷达 观测方法 – 角度或方向观测 – 距离观测 – 距离差观测
Block IIA
Block IIF
二.GPS定位概述
– GPS卫星
•
作用:
– 接收、存储导航电文 – 生成用于导航定位的信号(测距码、 载波) – 发送用于导航定位的信号(采用双 向调制法调制在载波上的测距码和 导航电文) – 接受地面指令,进行相应操作 – 其他特殊用途,如通讯、监测核暴 等。 • 主要设备 – 太阳能电池板 – 原子钟(2台铯钟、2台铷钟) – 信号生成与发射装置
•
四.南方CORS的发展与特点
1. 从单基站起步,打破国外技术垄断
单基站CORS—基础测绘低投入高 收益的解决方案。 • 适用于在固定区域内作业的测量单 位。 • 连续运行,无需人员职守。 • 作用半径可达基站为中心40km,覆 盖一般中小城市及其周边区域。 • 无需反复求取转换参数。
四.南方CORS的发展与特点
– 组成 • 用户接收设备 。 • 接收GPS发射的无线电信号,获得必要的定位i信息和观测量, 经数据处理完成定位工作。 • GPS接收机和数据处理软件、微处理机和终端设备组成。
二. GPS林业应用的发展方向
1.测绘行业技术手段迅猛发展的启示。
测绘技术手段的三个阶段; 1. 经典测量阶段:光学仪器、激 光仪器。
二.GPS定位概述
卫星的载波信号与调制 GPS卫星信号包含三种信号分量:载波、测距码和数据码。信号分量 的产生都是在同一个基本频率f0=10.23MHz的控制下产生,GPS卫星信 号示意图如下
基本频率 10.23MHz
204600 10
L1载波 C/A码 1.023MHz P码 10.23MHz P码 10.23MHz 数据码 50BPS 数据码 50BPS
连续运行参考站系统可以定义为一个或若干个固定的、连续运行的 GPS参考站,利用现代计算机、数据通信和互联网(LAN/WAN)技术 组成的网络,实时地向不同类型、不同需求、不同层次的用户自动地 提供经过检验的不同类型的GPS观测值(载波相位,伪距),各种改正 数、状态信息,以及其他有关GPS服务项目的系统。 CORS集网络RTK技术、GPS主板技术、计算机网络技术、数据通讯 技术的发展成就于一身,是目前GPS测量技术发展的一个方向,促进 了GPS在测量和其他领域的应用。
三.CORS原理应用与发展
5. 投资大,建设时间长。
• • • 网络CORS站的定位模式虽然控制范围大,但需要的投资也是巨大的。 1. 此项技术长期被国外的一、两个品牌的公司垄断。 2 . 国内代理在没有竞争的情况高额收费,在国内建设动则需要几百万 的资金,且服务费用高,时间长。 3 . 严重阻碍了发展,前期只有少量的行业和地区能够建设。
• 数据加密技术
四.南方CORS的发展与特点
南方NRS系统兼容PS发展简史
– 1957年10月4日 第一颗人造卫星 Sputnik I (苏)发射成功。 – 1958年12月开始设计 NNSS(Navy Navigation Satellite System) – TRANSIT,即子午卫星系统。1964年1月该系统正式运行。1967年 7月系统解密以供民用。 – 1973年12月,美国国防部(DOD)批准研制GPS。 – 1978年2月22日,第1颗GPS试验卫星发射成功。 – 1989年2月14日,第1颗GPS工作卫星发射成功。 – 1991年,在海湾战争中,GPS首次大规模用于实战。 – 1993年,IGS成立。 – 1995年7月17日,GPS达到FOC – 完全运行能力(Full Operational Capability)。 – 1999年1月25日,美国副总统戈尔宣布,将斥资40亿美圆,进行 GPS现代化。 – 1999年8月21/22日子夜,GPS发生GPS周结束翻转(EOW)问题。 – 2000年1月1日,Y2K问题。 – 2000年5月1日,美国总统克林顿宣布,GPS停止实施SA。(实际 停止实施SA是5月2日)
• • • •
一.概述
3.GPS 技术的广泛应用。
全球定位系统( Global Positioning System GPS) 是全方位实时三维导航与定位能力 的新一代卫星 导航与定位系统。 在通信行业 ,交通、运输部门, 地理信息系统 ,电子商务领域,电 脑制造商、通信设备商 均有长足的 应用 被誉为即通讯、互联网之后的 第三个信息技术增长点。
三.CORS原理应用简介
2. CORS网络技术的兴起。
• GPS技术应用的日益广泛和不断发展,各种用途的连续运行参考站 系统(CORS)相继建成 随着互联网的高速发展,区域和世界范围内的信息和数据交换已变 得相当容易,这就决定了由多基站构成网络式的GPS服务体系成为 GPS技术发展的最终目标, 这种影响在实时动态定位领域产生了革命性的进步。
•
•
三.CORS原理应用简介
3. CORS的原理图解。
方 式 图 解
三.CORS原理应用简介
4. 作业示意图
三.CORS原理应用简介
世界上许多国家和地区,先后建立了不同技术水平或不同应用层次的 CORS系统。 美国连续运行参考站网系统(CORS) 加拿大的主动控制网系统(CACS) 澳大利亚悉尼网络RTK系统(SydNet) 德国卫星定位与导航服务系统(SAPOS) 瑞士永久性GPS定位导航系统(SCORS) 日本GPS连续运行站网的综合服务系统(GeoNet)
二.GPS定位概述
Block IIA – GPS卫星 • 类型 试验卫星:Block Ⅰ 工作卫星:Block Ⅱ Block Ⅱ:存储星历能力为14天,具有SA和AS Block ⅡA (Advanced):卫星间可相互通讯,存 储星历能力为180天,SV35和SV36带有激光反 Block ⅡR (Replacement/Replenishment):卫 星间可相互跟踪相互通讯 Block ⅡF(Follow On):新一代的GPS卫星,增设 第三民用频率 Block IIR
二.GPS定位概述
二.GPS定位概述
3.3 用户部分 (User Segment)
– 组成 • 用户接收设备 。 • 接收GPS发射的无线电信号,获得必要的定位i信息和观测量, 经数据处理完成定位工作。 • GPS接收机和数据处理软件、微处理机和终端设备组成。
三.GPS定位原理
1.3 用户部分 (User Segment)
1. 从单基站起步,打破国外技术垄断
• 10多万的投入,安装简单 方便,两三个工作日即可完 成,中小单位皆可自建。 • 南方130多家省地级公司随 时提供CORS技术服务。
南方单基站CORS成熟应用于200多个单位,以小、快、灵的方式解决
中小区域的网络化测量,成为国内建站最多的公司之一。
四.南方CORS的发展与特点
2. GPS测量阶段:单独的测量设 备的应用。
3. 网络测量阶段:融合各种测量 手段的网络化阶段。
二. GPS林业应用的发展方向
2.新的测量技术手段给林业测绘的影响。
1. 高精度、低价格的测量设备 必然广泛应用。
2. 林业应用必然会走向网络化、 数字化、现代化。
三.CORS原理应用简介
1.什么是GPS的网络cors技术。
二.GPS定位概述
1. GPS定位系统的概述
• 什么是全球定位系统 – 全球定位系统 GPS 的英文全称是 NAVigation Satellite Timing And Ranging Global Position System(导航星测时与测距全球定位系 统),简称 GPS 有时也被称作NAVSTAR GPS。根据Wooden 1985 年所给出的定义:NAVSTAR全球定位系统(GPS)是一个空基全天侯 导航系统,它由美国国防部开发,用以满足军方在地面或近地空间内获 取在一个通用参照系中的位置、速度和时间信息的要求。