浅谈学习线性代数的心得体会
线性代数心得体会

线性代数心得体会作为一门数学分支,线性代数一直是大学数学课程中的重头戏之一,它被广泛使用于科学、工程和经济学等许多领域。
在我大学的数学学习中,我也学习了线性代数,虽然在学习过程中也遇到了一些难以理解的部分,但最终还是能够掌握其中的精髓,今天就和大家分享一下我的心得体会。
线性代数的基础知识部分可以说是比较简单的,但必须掌握好线性空间、线性变换、矩阵及其运算这些概念,因为这些是后续内容的基础。
线性代数的核心就是线性方程组的求解,虽然这是高中数学学过的内容,但是在高维空间中依然是非常重要的。
在求解线性方程组时,可以通过高斯消元法、列主元法等方法来简化运算,但还需要注意矩阵的模型化表示方式。
此外,线性方程组的解不一定存在,解也不一定唯一,需要注意分类讨论,判断解的性质。
在学习线性代数的过程中,最抽象的内容可能是线性变换。
线性变换有很多种类型,比如旋转、幂等变换、逆变换等,需要通过几何图形进行理解。
例如,线性变换可以将空间中的点变成同一曲面上的点,这也就意味着线性变换可以保持点之间的任何关系不变,这一点在研究旋转、平移、缩放等问题时非常有用。
线性代数最常见的应用之一就是图像处理,在这个领域中,线性运算的应用尤为重要。
矩阵的储存方式对于图像处理的速度也有不小的影响。
线性代数可以将三维图像数据储存为二维矩阵,从而更加方便处理。
除此之外,在数据分析、机器学习、人工智能等领域中,线性代数也是基础而重要的学科。
总的来说,线性代数虽然看起来非常抽象,但其实是个低门槛的高深数学,掌握了基础理论,便可以探索许多令人惊奇的应用。
我个人认为,理解概念、掌握运算、熟记定理,三者缺一不可,要想在学习中达到更好的理解,也要学会多观察、多思考,从多个角度来审视问题,才能真正掌握线性代数这门学科的精髓。
线性代数实践报告心得(2篇)

第1篇一、前言线性代数作为一门重要的数学学科,在自然科学、工程技术、经济学、计算机科学等领域都有着广泛的应用。
为了更好地理解和掌握线性代数的理论知识,我们进行了一次线性代数的实践报告。
以下是我在实践过程中的心得体会。
二、实践内容1. 理论知识复习在实践报告开始之前,我们对线性代数的基本概念、性质、运算方法进行了复习。
通过复习,我们加深了对线性方程组、矩阵、行列式、向量空间等概念的理解。
2. 实践案例分析我们选取了几个具有代表性的线性代数实践案例进行分析,包括:(1)线性方程组的求解我们通过编写程序,利用高斯消元法求解线性方程组。
在实践过程中,我们学会了如何编写代码,实现了高斯消元法的计算过程。
(2)矩阵的特征值和特征向量我们通过编写程序,计算矩阵的特征值和特征向量。
在实践过程中,我们掌握了特征值和特征向量的计算方法,并了解了它们在科学计算中的应用。
(3)线性变换与矩阵我们通过编写程序,实现线性变换。
在实践过程中,我们学会了如何使用矩阵表示线性变换,并了解了线性变换在图像处理、计算机图形学等领域的应用。
3. 实践项目实施我们选取了一个线性代数实践项目,即利用线性代数知识解决实际问题。
项目包括以下步骤:(1)问题分析:明确问题的数学模型,确定所需的线性代数知识。
(2)模型建立:根据问题分析,建立相应的线性代数模型。
(3)求解方法:选择合适的线性代数方法求解模型。
(4)结果分析:对求解结果进行分析,验证其正确性和有效性。
三、心得体会1. 理论与实践相结合通过本次线性代数实践报告,我深刻体会到理论与实践相结合的重要性。
只有将理论知识应用于实际问题,才能真正掌握线性代数的应用技巧。
2. 程序编写能力提升在实践过程中,我们通过编写程序实现了线性代数的计算,这使我们学会了如何运用编程语言解决数学问题。
同时,我们的编程能力也得到了提升。
3. 团队合作精神本次实践报告是一个团队项目,我们需要相互协作,共同完成各项任务。
线性代数实训课程学习总结

线性代数实训课程学习总结线性代数是现代数学的一种重要分支,广泛应用于自然科学、工程技术和社会科学的各个领域。
作为一门重要的数学学科,线性代数在大学的数学教育中占据着重要的地位。
通过参加线性代数实训课程的学习,我对线性代数的相关知识和应用有了更深入的理解和掌握。
在本文中,我将对线性代数实训课程的学习经历进行总结和回顾。
首先,在线性代数实训课程中,我学习了向量、矩阵、线性方程组等基础概念和基本性质。
通过实际操作,我深刻理解了向量的加减法、数量积、向量积等运算规则,并能够熟练地应用于实际问题中。
同时,通过矩阵的运算和转置,我掌握了矩阵的特征和性质,能够运用矩阵的特征值和特征向量解决相关的线性代数问题。
此外,我还学习了线性方程组的求解方法,包括高斯消元法、矩阵的化简等。
通过实践,我能够有效地解决线性方程组的求解问题。
其次,线性代数实训课程中,我对线性变换和矩阵的特征值与特征向量有了更深入的了解。
线性变换是线性代数的重要内容之一,通过学习线性变换的定义、性质和实例,我能够分析和理解线性变换的基本特征。
此外,通过学习矩阵的特征值和特征向量,我能够判断矩阵的类型,并应用特征值和特征向量进行矩阵的对角化和矩阵的相似性分析。
这些知识对于理解矩阵的性质和应用很有帮助。
然后,在线性代数实训课程中,我还学习了线性空间、子空间和线性变换的矩阵表示等内容。
线性空间是线性代数的核心概念之一,通过学习线性空间的定义和性质,我了解了线性空间的基数、基底、维数等概念,并能够分析和描述线性空间的性质和结构。
同时,通过学习子空间的定义和判定条件,我能够判断一个子集是否为线性空间。
此外,通过学习线性变换的矩阵表示,我能够将线性变换转化为矩阵运算,从而利用矩阵的运算特性解决线性变换相关的问题。
最后,在线性代数实训课程中,我通过实际应用案例的分析和解决,进一步巩固了线性代数的知识和技能。
通过对矩阵的运用,我能够解决线性代数在工程、物理等领域中的实际问题。
线性代数心得体会

线性代数心得体会线性代数,作为数学中最基础的一门学科之一,是现代科学技术和工程学科的一支重要的理论基础。
在大学数学课程中,也是一门必修的课程。
在学习这门课程的过程中,我也积累了一些心得体会。
第一,线性代数的基础内容非常重要。
从矩阵的定义和性质开始,逐渐学习行列式、向量空间、线性变换等概念。
这些基础内容是后续内容的重要基础,理解和掌握了这些,才能顺畅地学习后续内容。
第二,解题思路的重要性。
线性代数的习题通常是计算题和证明题。
对于计算题,要熟练掌握基本的计算方法和技巧,注意计算过程的精度和正确性。
对于证明题,要注重建立清晰的思维框架和逻辑链条,注意使用定理和定义来证明,尤其是一些重要且常用的定理,要能够灵活运用。
第三,应用的广泛性。
线性代数不仅是一门数学学科,更是现代科学技术和工程学科的基础。
在物理学、计算机科学、经济学等领域都有着广泛的应用。
比如在物理学中,矩阵和向量的概念被广泛运用于描述物理量和物理系统;在计算机科学中,线性代数被广泛应用于数据处理、机器学习等领域。
第四,独立思考的重要性。
在学习过程中,老师讲解的重点知识和习题答案很有参考价值,但是我们也要独立思考,理解知识背后的本质和规律。
只有当我们真正理解了知识的本质和规律,才能更好地应用它们去解决问题,并且在后续学习中更好地掌握新的知识。
最后,线性代数虽然是一门数学学科,但它的学习需要结合生活和实际问题去深入理解和应用。
理论和实践相结合,才能更好地完成学习任务和增强学术素养。
在学习和探索的过程中,依靠自己的思考和努力,与同学和老师相互交流,才能真正掌握线性代数的知识和技能。
线性代数的学习方法和心得体会

线性代数的学习方法和心得体会一、学习方法今天先谈谈对线形空间和矩阵的几个核心概念的理解..这些东西大部分是凭着自己的理解写出来的;基本上不抄书;可能有错误的地方;希望能够被指出..但我希望做到直觉;也就是说能把数学背后说的实质问题说出来..首先说说空间space;这个概念是现代数学的命根子之一;从拓扑空间开始;一步步往上加定义;可以形成很多空间..线形空间其实还是比较初级的;如果在里面定义了范数;就成了赋范线性空间..赋范线性空间满足完备性;就成了巴那赫空间;赋范线性空间中定义角度;就有了内积空间;内积空间再满足完备性;就得到希尔伯特空间..总之;空间有很多种..你要是去看某种空间的数学定义;大致都是“存在一个集合;在这个集合上定义某某概念;然后满足某些性质”;就可以被称为空间..这未免有点奇怪;为什么要用“空间”来称呼一些这样的集合呢大家将会看到;其实这是很有道理的..我们一般人最熟悉的空间;毫无疑问就是我们生活在其中的按照牛顿的绝对时空观的三维空间;从数学上说;这是一个三维的欧几里德空间;我们先不管那么多;先看看我们熟悉的这样一个空间有些什么最基本的特点..仔细想想我们就会知道;这个三维的空间:1. 由很多实际上是无穷多个位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动;这里我们所说的运动是从一个点到另一个点的移动变换;而不是微积分意义上的“连续”性的运动;认识到了这些;我们就可以把我们关于三维空间的认识扩展到其他的空间..事实上;不管是什么空间;都必须容纳和支持在其中发生的符合规则的运动变换..你会发现;在某种空间中往往会存在一种相对应的变换;比如拓扑空间中有拓扑变换;线性空间中有线性变换;仿射空间中有仿射变换;其实这些变换都只不过是对应空间中允许的运动形式而已..因此只要知道;“空间”是容纳运动的一个对象集合;而变换则规定了对应空间的运动..下面我们来看看线性空间..线性空间的定义任何一本书上都有;但是既然我们承认线性空间是个空间;那么有两个最基本的问题必须首先得到解决;那就是:1. 空间是一个对象集合;线性空间也是空间;所以也是一个对象集合..那么线性空间是什么样的对象的集合或者说;线性空间中的对象有什么共同点吗2. 线性空间中的运动如何表述的也就是;线性变换是如何表示的我们先来回答第一个问题;回答这个问题的时候其实是不用拐弯抹角的;可以直截了当的给出答案..线性空间中的任何一个对象;通过选取基和坐标的办法;都可以表达为向量的形式..通常的向量空间我就不说了;举两个不那么平凡的例子:L1. 最高次项不大于n次的多项式的全体构成一个线性空间;也就是说;这个线性空间中的每一个对象是一个多项式..如果我们以x0; x1; ...; x n为基;那其么任何一个这样的多项式都可以表达为一组n+1维向量;其中的每一个分量ai实就是多项式中x i-1项的系数..值得说明的是;基的选取有多种办法;只要所选取的那一组基线性无关就可以..这要用到后面提到的概念了;所以这里先不说;提一下而已..下面来回答第二个问题;这个问题的回答会涉及到线性代数的一个最根本的问题..线性空间中的运动;被称为线性变换..也就是说;你从线性空间中的一个点运动到任意的另外一个点;都可以通过一个线性变化来完成..那么;线性变换如何表示呢很有意思;在线性空间中;当你选定一组基之后;不仅可以用一个向量来描述空间中的任何一个对象;而且可以用矩阵来描述该空间中的任何一个运动变换..而使某个对象发生对应运动的方法;就是用代表那个运动的矩阵;乘以代表那个对象的向量..简而言之;在线性空间中选定基之后;向量刻画对象;矩阵刻画对象的运动;用矩阵与向量的乘法施加运动..是的;矩阵的本质是运动的描述..如果以后有人问你矩阵是什么;那么你就可以响亮地告诉他;矩阵的本质是运动的描述..chensh;说你呢可是多么有意思啊;向量本身不是也可以看成是n x 1矩阵吗这实在是很奇妙;一个空间中的对象和运动竟然可以用相类同的方式表示..能说这是巧合吗如果是巧合的话;那可真是幸运的巧合可以说;线性代数中大多数奇妙的性质;均与这个巧合有直接的关系..接着理解矩阵、、、我们说“矩阵是运动的描述”;到现在为止;好像大家都还没什么意见..但是我相信早晚会有数学系出身的网友来拍板转..因为运动这个概念;在数学和物理里是跟微积分联系在一起的..我们学习微积分的时候;总会有人照本宣科地告诉你;初等数学是研究常量的数学;是研究静态的数学;高等数学是变量的数学;是研究运动的数学..大家口口相传;差不多人人都知道这句话..但是真知道这句话说的是什么意思的人;好像也不多..简而言之;在我们人类的经验里;运动是一个连续过程;从A点到B点;就算走得最快的光;也是需要一个时间来逐点地经过AB之间的路径;这就带来了连续性的概念..而连续这个事情;如果不定义极限的概念;根本就解释不了..古希腊人的数学非常强;但就是缺乏极限观念;所以解释不了运动;被芝诺的那些著名悖论飞箭不动、飞毛腿阿喀琉斯跑不过乌龟等四个悖论搞得死去活来..因为这篇文章不是讲微积分的;所以我就不多说了..有兴趣的读者可以去看看齐民友教授写的《重温微积分》..我就是读了这本书开头的部分;才明白“高等数学是研究运动的数学”这句话的道理..“矩阵是线性空间里跃迁的描述”..可是这样说又太物理;也就是说太具体;而不够数学;也就是说不够抽象..因此我们最后换用一个正牌的数学术语——变换;来描述这个事情..这样一说;大家就应该明白了;所谓变换;其实就是空间里从一个点元素/对象到另一个点元素/对象的跃迁..比如说;拓扑变换;就是在拓扑空间里从一个点到另一个点的跃迁..再比如说;仿射变换;就是在仿射空间里从一个点到另一个点的跃迁..附带说一下;这个仿射空间跟向量空间是亲兄弟..做计算机图形学的朋友都知道;尽管描述一个三维对象只需要三维向量;但所有的计算机图形学变换矩阵都是4 x 4的..说其原因;很多书上都写着“为了使用中方便”;这在我看来简直就是企图蒙混过关..真正的原因;是因为在计算机图形学里应用的图形变换;实际上是在仿射空间而不是向量空间中进行的..想想看;在向量空间里相一个向量平行移动以后仍是相同的那个向量;而现实世界等长的两个平行线段当然不能被认为同一个东西;所以计算机图形学的生存空间实际上是仿射空间..而仿射变换的矩阵表示根本就是4 x 4的..又扯远了;有兴趣的读者可以去看《计算机图形学——几何工具算法详解》..一旦我们理解了“变换”这个概念;矩阵的定义就变成:“矩阵是线性空间里的变换的描述..”到这里为止;我们终于得到了一个看上去比较数学的定义..不过还要多说几句..教材上一般是这么说的;在一个线性空间V 里的一个线性变换T;当选定一组基之后;就可以表示为矩阵..因此我们还要说清楚到底什么是线性变换;什么是基;什么叫选定一组基..线性变换的定义是很简单的;设有一种变换T;使得对于线性空间V中间任何两个不相同的对象x和y;以及任意实数a和b;有:Tax + by = aTx + bTy;那么就称T为线性变换..接着往下说;什么是基呢这个问题在后面还要大讲一番;这里只要把基看成是线性空间里的坐标系就可以了..注意是坐标系;不是坐标值;这两者可是一个“对立矛盾统一体”..这样一来;“选定一组基”就是说在线性空间里选定一个坐标系..就这意思..好;最后我们把矩阵的定义完善如下:“矩阵是线性空间中的线性变换的一个描述..在一个线性空间中;只要我们选定一组基;那么对于任何一个线性变换;都能够用一个确定的矩阵来加以描述..”同样的;对于一个线性变换;只要你选定一组基;那么就可以找到一个矩阵来描述这个线性变换..换一组基;就得到一个不同的矩阵..所有这些矩阵都是这同一个线性变换的描述;但又都不是线性变换本身..但是这样的话;问题就来了如果你给我两张猪的照片;我怎么知道这两张照片上的是同一头猪呢同样的;你给我两个矩阵;我怎么知道这两个矩阵是描述的同一个线性变换呢如果是同一个线性变换的不同的矩阵描述;那就是本家兄弟了;见面不认识;岂不成了笑话..好在;我们可以找到同一个线性变换的矩阵兄弟们的一个性质;那就是:若矩阵A与B是同一个线性变换的两个不同的描述之所以会不同;是因为选定了不同的基;也就是选定了不同的坐标系;则一定能找到一个非奇异矩阵P;使得A、B之间满足这样的关系:A = P-1BP线性代数稍微熟一点的读者一下就看出来;这就是相似矩阵的定义..没错;所谓相似矩阵;就是同一个线性变换的不同的描述矩阵..按照这个定义;同一头猪的不同角度的照片也可以成为相似照片..俗了一点;不过能让人明白..而在上面式子里那个矩阵P;其实就是A矩阵所基于的基与B矩阵所基于的基这两组基之间的一个变换关系..关于这个结论;可以用一种非常直觉的方法来证明而不是一般教科书上那种形式上的证明;如果有时间的话;我以后在blog里补充这个证明..这样一来;矩阵作为线性变换描述的一面;基本上说清楚了..但是;事情没有那么简单;或者说;线性代数还有比这更奇妙的性质;那就是;矩阵不仅可以作为线性变换的描述;而且可以作为一组基的描述..而作为变换的矩阵;不但可以把线性空间中的一个点给变换到另一个点去;而且也能够把线性空间中的一个坐标系基表换到另一个坐标系基去..而且;变换点与变换坐标系;具有异曲同工的效果..线性代数里最有趣的奥妙;就蕴含在其中..理解了这些内容;线性代数里很多定理和规则会变得更加清晰、直觉..二、学习心得线性代数是一门对理工科学生极其重要数学学科..线性代数主要处理的是线性关系的问题;随着数学的发展;线性代数的含义也不断的扩大..它的理论不仅渗透到了数学的许多分支中;而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用..同时;该课程对于培养学生的逻辑推理和抽象思维能力、空间直观和想象能力具有重要的作用..线代课本的前言上就说:“在现代社会;除了算术以外;线性代数是应用最广泛的数学学科了..”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少;课本上涉及最多的只能算解线性方程组了;但这只是线性代数很初级的应用..我自己对线性代数的应用了解的也不多..但是;线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用..没有应用到的内容很容易忘;就像现代一样;我现在高数还基本记得..因为高数在很多课程中都有广泛的应用;比如在开设的大学物理课中..所以;如果有时间的话;要尽可能地到网上或图书馆了解线性代数在各方面的应用..如:《线性代数》居余马等编;清华大学出版社上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面的应用..也可以试着用线性代数的方法和知识证明以前学过的定理或高数中的定理;如老的高中解析几何课本上的转轴公式;它就可以用线性代数中的过渡矩阵来证明..线性代数被不少同学称为“天书”;足见这门课给同学们造成的困难..在这门课的学习过程中;很多同学遇到了上课听不懂;一上课就想睡觉;公式定理理解不了;知道了知识但不会做题;记不住等问题..我认为;每门课程都是有章可循的;线性代也不例外;只要有正确的方法;再加上自己的努力;就可以学好它..一定要重视上课听讲;不能使线代的学习退化为自学..上课时干别的会受到老师讲课的影响;那为什么不利用好这一小时四十分钟呢上课时;老师的一句话就可能使你豁然开朗;就可能改变你的学习方法甚至改变你的一生..上课时一定要“虚心”;即使老师讲的某个题自己会做也要听一下老师的思路..上完课后不少同学喜欢把上课的内容看一遍再做作业..实际上应该先试着做题;不会时看书后或做完后看书..这样;作业可以帮你回忆老师讲的内容;重要的是这些内容是自己回忆起来的;这样能记得更牢;而且可以通过作业发现自己哪些部分还没掌握好..作业尽量在上课的当天或第二天做;这样能减少遗忘给做作业造成的困难..做作业时遇到不会的题可以问别人或参考同学的解答;但一定要真正理解别人的思路;绝对不能不弄清楚别人怎么做就照抄..适当多做些题对学习是有帮助的..数学上的方法是相通的..比如;考虑特殊情况这种思路..线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组;这些都是先考虑特殊情况..高数上解二阶常系数线性微分方程时先解其对应的齐次方程;这用的也是这种思路..方法真的很难讲;而方法包含许多细节的内容很难讲出来甚至我都意识不到;但它们会对学习起很大的作用..我感觉“做完题要总结”;“上课想到老师前面”;“注重知识之间的联系”很重要..以上就是我学习线性代数的心得..。
线性代数学习心得

线性代数学习心得
学习线性代数,对于我这个大三学生来说是一件很有意思,也有很多收获的事情。
在
这一学期里,我了解了很多有关线性代数的知识,也有更多地深刻地认识到它在我们日常
生活中的重要性。
首先,我学习了线性代数的基本知识,掌握了线性方程组,向量,矩阵,行列式以及
其它基本概念,解决了一些相关的问题,深入了解了基要事实的原理和正确的计算方法。
另外,我也学习了矩阵的性质及其内容,掌握了基于矩阵的一些游戏,探索了矩阵的特殊
性质,丰富了我对矩阵的理解。
此外,学习线性代数时,我非常体会到它在实际应用中的重要性。
比如,在经济、工程、心理学等诸多领域,线性代数的技术已被广泛采用。
另外,线性代数的技术也可用于
解决极大的计算机数学,虚拟现实技术、机器学习等领域中的复杂问题。
因此,线性代数
在日常生活中十分重要。
在学习过程中,对于新概念,我会有着一定的坚持精神和探究精神,尤其是对于很多
复杂的问题,会采取分析、比较和考虑不同角度,努力探究真相,再以最佳的方式来解决
问题。
总而言之,线性代数是一门重要的学科,它的技术已被广泛应用到日常的科学技术领域,并且有着十分巨大的潜力发挥,所以,为了澳游我们的能力,我们更应该深入学习线
性代数的相关知识,充分利用线性代数的技术,不断提高学习成果,为自己的学习贡献力。
浅谈线性代数学习感想

浅谈线性代数学习感想从线性代数知识内容感想浅谈当代应用一、前言感想从大学大一下半学期开始,学校就开设了这门课程,经过一个学期的学习,对其中的一些知识要点也有了深刻的认识与体会。
在我的身边,线性代数被不少同学排斥,足见这门课给同学们造成的困难。
在这门课的学习过程中,很多同学上课听不懂,一上课就想睡觉{包括我自己},公式定理理解不了,知道了知识但不会做题,记不住等问题。
慢慢的,我发现,只要有正确的方法,再加上自己的努力,就可以学好它。
一定要重视上课听讲,不能使线代的学习退化为自学。
上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的生。
上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
当然,说句实话,线性代数给我个人的感觉是要比高数《微积分》要难许多。
首先,它涉及到的知识内容有很多,很多都是前后关联的;其次,它其中的定义概念很多,重点知识也要熟记才能够得心应手的应用;第三,概念抽象,很难去理解,只能是通过做题来理解加深印象;最后,计算繁琐,一步错,步步错,需要耐心仔细等等。
这些都是个人的一些感受。
而我课余为了多加强练习,也从网上找了很多试题来练习等等方法。
下面就说说一些个人感觉线性代数的基本应用。
二、当代应用矩阵。
应该说矩阵是一种非常常见的数学现象。
从学校的课表、工厂里的生产进度表、价目表、数据分析表等等都可以看到它的影子,它是表述或处理大量的生活、生产与科研问题的有力的工具。
矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,并通过矩阵的运算或变各种换来揭示事物之间的内在联系。
矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。
向量组的线性相关,向量空间,向量组的秩等,这些都是线性代数的核心概念。
如我们土木老师所说的,通过计算机并广泛应用于解决桥梁设计,交通规划,石油勘探,经济管理等科学领域。
当然,线性代数也应用于自然科学和社会科学中。
线性代数在数学、物理学和技术学科中也有各种重要应用,因而它在各种代数分支中占居首要地位;线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。
线性代数期末自我总结

线性代数期末自我总结作为一门重要的数学基础课程,线性代数在我大学学习生涯中起到了关键性的作用。
在经过一个学期的学习之后,我深刻体会到线性代数的重要性,并且在这门课程中取得了一些收获和提高。
以下是我对线性代数期末的自我总结。
首先,我对线性代数概念的理解有了很大的提高。
在课堂上,老师讲授了线性代数的基本概念和基本原理,包括矩阵、向量空间、线性变换等。
通过课堂的示范和实例分析,我对这些概念有了更清晰的认识,并且能够运用这些概念解决具体的问题。
我学会了使用矩阵进行线性方程组的求解,使用向量空间的性质来证明一些线性代数问题,以及使用线性变换解决具体的应用问题。
这些基本概念和原理是线性代数学习的基石,我相信在以后的学习和工作中会发挥重要的作用。
其次,我在计算线性方程组的过程中提高了自己的计算能力。
在学习线性代数的过程中,我们需要经常求解线性方程组。
线性方程组是线性代数的一个重要应用,解决实际问题的时候经常会遇到。
通过大量的练习和计算,我提高了自己的计算速度和准确性。
我掌握了高斯消元法和矩阵求逆的方法,能够迅速将线性方程组化简为最简形式,并求得其解。
在实践中,我学会了如何选择消元的顺序和方程组的pivot,以提高计算的效率和准确性。
这些计算技巧将会在我的数学学习和工程实践中发挥重要的作用。
另外,在学习线性代数的过程中,我也加强了自己的逻辑推理能力。
线性代数是一门很抽象的数学学科,需要运用逻辑推理来证明一些定理和性质。
在课堂上,老师经常布置一些证明题,要求我们用逻辑推理来证明某个结论。
通过这些练习,我学会了如何通过逻辑推理合理地组织证明过程,使得论证的过程更加严谨和严密。
逻辑推理是一种思维方式,通过学习线性代数,我不仅提升了数学推理能力,也对其他学科的推理和证明有了更深入的认识。
此外,在线性代数的学习中,我也通过完成一些实际例题,培养了一定的应用能力。
线性代数不仅仅是一门纯粹的理论学科,也是一门可以应用到实际问题中的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳药科大学选修课结课论文沈阳药科大学浅谈学习线性代数的心得体会学校:沈阳药科大学姓名:***学号:********专业:药物制剂年级:2010级班级:03班一、内容摘要线性代数是一门较抽象的数学课程,但是线性代数除了其抽象之外还具有另外一个重要的特点:“实用性”,由于计算机的飞速发展和广泛应用,线性代数已成为越来越多的科技工作者必不可少的数学工具。
掌握线性代数的基本概念、基本理论与基本方法,为解决工科各专业的实际问题,为进一步学习相关课程及扩大数学知识都将奠定必要的数学基础。
在初步学习了高等数学这门课程后,里面涉及了一些线性代数的求解方法,听老师说,某些题目用线性代数的方法求解更容易,但是由于我们还未系统的学习这门课程,老师也是一带而过,并未深讲。
致使我对线性代数这门学科有了浓厚的兴趣,在首先简单了解了这门学科的背景后,发现线性代数是一门丰富多彩充满未知的科学,在看到学校开设了这门课程的选修课后,我义无反顾的叫我们全寝室的人都选修了这门奇妙的课程。
学习线性代数的初步感受就是它的概念多,推理论证多,基本理论与结论多,线性代数在内容上,思想方法上及论证方法上都与“高等数学”有所区别。
它具有较强的逻辑性和抽象性,一开始就要高度重视。
它又与中学所学的代数有一定的联系,所以有些内容并不是完全陌生的。
我相信只要我每节每章地,一步一个脚印的弄懂、弄通,记住有关的概念和结论,并通过反复的应用(练习)来掌握它,循序渐进掌握这门课程是容易的。
关键词:数学线性代数背景应用计算方法感受二、绪论2.1 线性代数的发展史由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。
1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。
托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。
线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。
不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
“代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,之后一直沿用。
2.2 线性代数在数学中的地位线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
① 性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。
② 计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。
③ 线性代数这门学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。
④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
2.3 课程主要内容㈠ 行列式①阶与三阶行列式的计算——对角线法则例: 解线性方程组解:由于方程组的系数行列式⎪⎩⎪⎨⎧=-+-=-++-=+-.0,132,22321321321x x x x x x x x x 111312121----=D ()111-⨯⨯=()()()132-⨯-⨯-+121⨯⨯+()111-⨯⨯-()()122-⨯⨯--()131⨯-⨯-5-=,0≠同理可得故方程组的解为: ② 全排列及其逆序数例:用两种方法求排列16352487的逆序数。
解:方法1 1 6 3 5 2 4 8 7方法2 由前向后求每个数的逆序数。
③ n 阶行列式的定义: n 阶行列式(定义1)设有n^2个数,排成n 行n 列的表 ,作出表中位于不同行不同列的n 个数的乘积,并冠以符号(-1)t ,的形式如下的项,其中为自然数1,2,...,n 的一个排列,t 为这个排列的逆序数.由于这样的排列共有n!个,这n!项的代数和称为n 阶行列式。
④ 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换。
将相邻两个元素对调,叫做相邻对换。
⑤ 行列式的性质及应用⑥ 克拉默法则的应用㈡ 矩阵① 矩阵及矩阵的运算② 逆矩阵的概念和性质及其求法③ 分块矩阵的运算法则④ 矩阵的初等变换及消元法⑤ 线性方程组的解 例 求解齐次线性方程组 解: 对系数矩阵A 实施初等行变化 13122r r r r --1103111221----=D ,5-=1013121212----=D ,10-=0111122213---=D ,5-=,111==D D x ,222==D D x .133==D D x 01012130+++++++=t 8=.810231100=+++++++=t .034022202432143214321⎪⎩⎪⎨⎧=---=--+=+++x x x x x x x x x x x x ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221A ⎪⎪⎪⎭⎫ ⎝⎛------463046301221⎪⎪⎪⎪⎭⎫ ⎝⎛0000342101221⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--00003421035201即得与原方程组同解的方程组 由此即得 ⑥ 初等矩阵的概念及其应用㈢ N 维向量① N 维向量的概念及其表示方法② 向量组线性相关性的概念及判定③ 向量组的秩与矩阵的关系④ 向量空间的概念及其基与维数⑤ 线性方程组的解的结构㈣ 相似矩阵与二次型① 矩阵的特征值与特征向量及其求法② 相似矩阵及其性质③ 矩阵对角化的充要条件及其方法④ 实对称矩阵的相似对角矩阵⑤ 二次型及其矩阵表示⑥ 线性无关的向量组正交规范化的方法⑦ 正交变换与正交矩阵的概念及性质⑧ 用正交变换化二次型为标准形⑨ 用配方法化二次型为平方和,二次型的规范形 212r r -)3(223-÷-r r r ⎪⎪⎩⎪⎪⎨⎧=++=--,0342,0352432431x x x x x x ⎪⎪⎩⎪⎪⎨⎧--=+=,342,352432431x x x x x x ).可任意取值,(43x x 形式,把它写成通常的参数,令2413c x c x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=+=,,,342,3522413222221c x c x c c x c c x .1034350122214321⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∴c c x x x x⑩惯性定理、二次型的秩、二次型的正定性及其判别三、心得体会从素未谋面到一知半解,或许将来会有相见恨晚。
总之到现在为止,经过将近一个30个学时的学习,我对线性代数有了一些小小的感想。
首先,我从一些资料了解到线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
其次,通过查阅资料、阅读课本及其目录,我知道了线性代数的主要内容是研究代数学中线性关系的经典理论。
由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下,可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。
尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
而线代不同于高等数学的是,它几乎从一开始就是一个全新的概念,至少给我的感觉是这样。
我们都知道,线性代数研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。
给我们上课的姜老师对细节的要求比较高,他会时不时询问学生对知识的理解情况,经常会多次讲解,这真的是一个好现象。
不过说实话,由于课时的限制,老师不可能把所有东西都讲解得很透彻,尽管老师尽力讲解了,可每次上完课我仍会有些许疑惑。
第一堂课,姜老师介绍过,线性代数主要研究了三种对象:矩阵、方程组和向量。
这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。
因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质。
如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。
俗话说得好:“学而不思则罔”。
记得姜老师说过,当给你一个信息的时候,尤其是一些不太明显的信息,你要能立刻理解它的内涵,也就是说能够马上联想到与它等价的一些信息。
比如说,告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的•,还有一点,在线性代数的学习过程中,有些定理或推论是没有必要去背的,因为它们就是另外某个定理的特殊情况,只要我们稍微思考一下,完全可以自己概括,没有必要多记几个来增加自己的记忆负担。
比如说向量组的线性相关性的定理6的推论2:“当m>n时,m个n维向量一定线性无关”,看过定理6后你会觉得这完全就是废话嘛,所以要善于总结提高效率。
再有就是在记忆一些定理概念的时候,不一定非得按原文记忆,我们可以按照自己的理解来记忆。
在学习线性代数的过程中,联想和思考是非常重要的,通过联想和思考,把学过的知识点串起来,深化理解,我们才能把线性代数学得更好。
到现在为止,我们的线性代数课程已经快接近尾声了,但是我相信大多数同学跟我一样只感受到了线性代数的较强的逻辑性和超强的抽象性,对于所谓的广泛的实用性,并没有太深刻的体会。
说得更加“肤浅”一点,从我们的专业相关性来说,我们并不是很清楚线性代数对我们今后的专业学习有多大的帮助,我想这是许多学生对线性代数的学习热情不高的原因之一吧。