温室环境控制系统

合集下载

温室自动化控制系统设计与应用研究

温室自动化控制系统设计与应用研究

温室自动化控制系统设计与应用研究摘要:温室是一种通过人工手段改变温度、湿度、光照等环境条件以创造良好生长条件的建筑物,广泛应用于农业生产中。

随着科技的发展,温室自动化控制系统得到了不断的改进和应用,在提高农业生产效益、减少能源消耗等方面发挥着重要作用。

本文主要探讨了温室自动化控制系统的设计与应用,包括系统组成、功能要求、系统设计和实际应用等方面,旨在为温室自动化控制系统的研究和应用提供参考。

一、引言温室农业是解决世界农业发展面临的许多问题的重要途径之一,它能够改善农作物生产环境,提高作物的产量和质量。

然而,温室环境的控制要求十分复杂,需要保持适宜的温度、湿度、光照等条件,以满足不同作物的生长需求。

为了提高温室农业的效益和生产质量,温室自动化控制系统应运而生。

二、温室自动化控制系统的组成温室自动化控制系统主要由传感器、执行器、控制器和人机界面四部分组成。

其中,传感器用于采集温室内外的环境参数,如温度、湿度、光照强度等;执行器负责根据控制信号调整温室内的环境条件;控制器对传感器采集的数据进行处理,并根据预设的控制算法产生相应的控制信号;人机界面用于操作和监控温室自动化控制系统的运行状态。

三、温室自动化控制系统的功能要求温室自动化控制系统的功能要求包括环境监测、环境调控和数据记录等。

首先,系统应能够实时监测温室内外的环境参数,并对其进行准确的测量和分析。

其次,系统应能够根据预设的控制算法,自动调整温室内的环境条件,以满足作物的生长需求。

最后,系统应能够记录和存储温室内外环境参数的数据,并提供相应的数据查询和分析功能,以便于农业生产管理和决策的参考。

四、温室自动化控制系统的设计温室自动化控制系统的设计主要包括硬件设计和软件设计两个方面。

在硬件设计方面,需要选择适用的传感器和执行器,并设计相应的电路结构和电气连接。

在软件设计方面,需要编写控制算法和相应的人机界面程序,实现温室环境的实时监测、自动调控和数据记录等功能。

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书一、引言温室大棚是一种用于农业生产的重要设施,它能够为作物提供稳定的生长环境,改善生产效率。

为了进一步提升温室大棚的管理水平和自动化程度,我们设计了一套温室大棚自动控制系统。

本文将对该系统的设计进行详细说明。

二、系统概述本系统旨在实现温室大棚内环境的自动监测和控制。

主要包括以下功能模块:1. 温度控制:通过温度传感器实时监测温室大棚内外温度,并根据设定的温度阈值自动调节温室大棚的通风和加热设备,以保持适宜的温度。

2. 湿度控制:利用湿度传感器监测温室大棚内外湿度,并通过控制喷水系统和通风设备,自动调节湿度水平,以满足作物的需求。

3. 光照控制:通过光照传感器实时检测温室大棚内外光照强度,并根据设定的光照阈值,自动控制灯光的开关以及遮阳网的卷取。

4. CO2浓度控制:利用CO2传感器监测温室大棚内CO2浓度,并通过控制通风设备和CO2供应系统,维持适宜的CO2浓度,促进光合作用。

三、硬件设计1. 传感器选择:根据温室大棚内环境监测需求,选择适当的温度传感器、湿度传感器、光照传感器和CO2传感器,并与控制器进行连接。

2. 控制器选择:选择一款功能强大、可靠稳定的控制器,用于接收传感器数据、进行数据处理和控制信号输出。

3. 执行器选择:根据温室大棚的需求,选择适当的通风设备、加热设备、喷水系统、灯光和CO2供应系统,并与控制器进行连接。

四、软件设计1. 数据采集:控制器通过与传感器的连接,实时采集温室大棚内环境的数据,包括温度、湿度、光照强度和CO2浓度。

2. 数据处理:通过对采集的数据进行处理,分析温室大棚内环境的变化趋势,判断当前是否需要进行调控。

3. 控制策略:制定合理的控制策略,根据设定的阈值和作物需求,自动调节通风、加热、喷水、灯光和CO2供应等设备的工作状态。

4. 用户界面:设计一个友好的用户界面,使操作人员能够方便地监控温室大棚内环境的数据,并进行手动控制。

温室环境自动监测控制系统

温室环境自动监测控制系统

28农业信息化模式分享Mode share温室环境自动监测控制系统一、基本情况石林锦苑花卉产业园由云南锦苑花卉产业股份有限公司自2008年12月起投资建设,园区位于石林县石林镇老挖村,属于云南昆明石林台湾农民创业园的花卉核心区,计划总投资7亿元,拟用五年时间形成核心区面积3000亩,生产区7000亩,集花卉生产、展示、物流、研发、旅游、休闲、观光、餐饮、住宿等于一体的现代花卉产业集群。

目前,石林锦苑花卉产业园还承担着国家发改委“2009年关键产业领域自主创新及高技术产业化专项——云南主要鲜切花新品种产业化示范工程”建设项目、国家农业部“2009年国家农业部农业综合开发项目——云南省昆明市花卉标准化示范基地”建设项目以及国家发改委 “国家地方联合——花卉工程研究中心”建设项目等多个国家级重点项目。

二、模式应用情况1.基本建设情况项目建设规模为15亩,远程计算机控制中心100m2,总投资180万元。

项目实施地水电路等配套设施完善,现有的配套设施能够较好地满足项目开展的需要。

2.物联网技术及产品使用情况温室自动控制系统,控制器采用YX-2010数据采集控制器。

控制器采用ARM为控制核心的控制器,具备4路模拟量输入,4个开关量输入和4个云南锦苑花卉产业股份有限公司模式分享29农业信息化开关量输出,并且具有模块化功能扩展,能够进行用户升级和功能扩展。

每台数据采集器连接温湿度、光照、CO 2多种传感器,从而实现多种信息的采集,复杂流程的实现。

整个自动控制系统将实现人机交互、实时显示环境的基本参数、实现控制参数的录入、信息采集、运行情况的监控等,从而实3.物联网技术应用解决方案截止目前,项目建设已完成投资176.3万元,完成建设内容及投资情况如下:大棚改造:已投入资金130万元,共完成大棚改造面积8660㎡,改造费用约150元/㎡。

自动灌溉及肥水系统:已完成投资43.3万元,项目区内已全面完成自动灌溉及水肥系统,建设单价约50元/㎡。

温室大棚空调环境控制系统设计

温室大棚空调环境控制系统设计

温室大棚空调环境控制系统设计温室大棚空调环境控制系统设计随着现代农业技术的发展,温室大棚的使用越来越广泛。

然而,温室大棚的环境控制却成为了一个挑战。

温室大棚内部的温度、湿度、光照等因素对植物的生长和产量有着重要的影响。

为了保证温室大棚内部环境的稳定和优化,温室大棚空调环境控制系统应运而生。

首先,温室大棚空调环境控制系统需要能够实时监测和调节温室内的温度。

通过安装温度传感器,系统可以不断地获取温室内的温度信息,并根据设定的温度范围进行自动调节。

当温度过高时,系统会自动启动降温设备,如风扇或空调,以降低温室内的温度。

反之,当温度过低时,系统会启动加热设备,如加热器或地暖,以提高温室内的温度。

这样可以保持温室内的温度在一个适宜的范围内,为植物的生长提供最佳的条件。

其次,湿度也是温室大棚环境控制的重要因素。

高湿度会导致病菌滋生,影响植物的健康生长。

因此,温室大棚空调环境控制系统还需要能够监测和调节温室内的湿度。

通过湿度传感器,系统可以准确地监测到温室内的湿度,并根据设定的湿度范围进行调节。

当湿度过高时,系统会启动除湿设备,如除湿机或通风系统,以降低温室内的湿度。

反之,当湿度过低时,系统会启动加湿设备,如加湿器或喷雾装置,以提高温室内的湿度。

这样可以保持温室内的湿度在一个适宜的范围内,为植物的生长提供良好的湿度条件。

此外,光照是植物生长的关键因素之一。

温室大棚空调环境控制系统还需要能够监测和调节温室内的光照强度。

通过光照传感器,系统可以实时地监测到温室内的光照情况,并根据植物的需求进行调节。

当光照不足时,系统会启动补光设备,如LED灯或日光灯,以提供足够的光照。

反之,当光照过强时,系统会启动遮光设备,如遮阳网或百叶窗,以降低温室内的光照强度。

这样可以保证温室内的光照在一个适宜的范围内,为植物的光合作用提供最佳的条件。

综上所述,温室大棚空调环境控制系统的设计是为了实现温室内环境的稳定和优化。

通过监测和调节温室内的温度、湿度和光照等因素,系统可以为植物的生长提供最佳的条件。

智能温室环境监测系统在现代农业中的应用

智能温室环境监测系统在现代农业中的应用

智能温室环境监测系统在现代农业中的应用随着科技的不断发展,农业生产方式也在发生着变革。

智能温室环境监测系统作为一种新兴技术,在现代农业中的应用越来越广泛。

本文将探讨智能温室环境监测系统在现代农业中的应用及其优势。

一、智能温室环境监测系统的组成二、智能温室环境监测系统在现代农业中的应用1.提高作物产量和品质通过智能温室环境监测系统,可以实时掌握温室内的环境状况,精确控制温度、湿度、光照等条件,为作物生长提供最适宜的环境。

系统还可以根据作物的生长需求,自动调节灌溉、施肥等农业措施,从而提高作物产量和品质。

2.节省资源和成本智能温室环境监测系统可以实现对温室内的环境进行精细化管理,降低农业资源的浪费。

例如,系统可以根据土壤湿度和作物生长需求,自动调节灌溉水量,节省水资源;通过对温室内的温度、湿度、通风等进行实时调节,降低能耗。

3.减少病虫害的发生智能温室环境监测系统可以实时监测温室内的环境状况,及时发现和处理病虫害。

例如,系统可以通过监测温度、湿度等环境参数,判断温室是否存在病虫害发生的隐患,并自动采取措施,如调整温度、湿度、通风等,减少病虫害的发生。

4.实现远程监控和管理智能温室环境监测系统可以通过互联网实现远程监控和管理。

农户可以通过手机或电脑实时查看温室内的环境数据,远程控制温室内的农业措施。

系统还可以实现数据的存储和分析,为农户提供决策依据。

三、智能温室环境监测系统的优势1.精准化智能温室环境监测系统可以实时监测和精确控制温室内的环境参数,为作物生长提供最适宜的环境,从而提高作物产量和品质。

2.自动化系统可以自动调节温室内的农业措施,如灌溉、施肥等,降低农户的劳动强度。

3.节省资源通过实时监测和精确控制温室内的环境,智能温室环境监测系统可以降低农业资源的浪费,节省生产成本。

4.远程管理农户可以通过互联网实现远程监控和管理,提高农业生产效率。

4.智能化智能温室环境监测系统可以根据作物生长需求和环境数据,自动调节温室内的环境,实现智能化管理。

温室大棚中温室自动化控制系统解决方案设计

温室大棚中温室自动化控制系统解决方案设计

温室大棚中温室自动化控制系统解决方案设计温室自动化控制系统简介温室自动控制系统是专门为农业温室、农业环境控制、气象观测开发生产的环境自动控制系统。

可测量风向、风速、温度、湿度、光照、气压、雨量、太阳辐射量、太阳紫外线、土壤温湿度等农业环境要素,根据温室植物生长要求,自动控制开窗、卷膜、风机湿帘、生物补光、灌溉施肥等环境控制设备,自动调控温室内环境,达到适宜植物生长的范围,为植物生长提供最佳环境。

智能温室自动化控制系统是根据温室大棚内的温湿度、土壤水分、土壤温度等传感器采集到的信息,接到上位计算机上进行显示,报警,查询。

监控中心将收到的采样数据以表格形式显示和存储,然后将其与设定的报警值相比较,若实测值超出设定范围,则通过屏幕显示报警或语音报警,并打印记录。

系统组网络以及通讯协议(1)系统组网络组成根据工艺运行的需求,我们做如下的网络系统设计:网络采用以太网络设计。

每个站作为一个网络节点。

这个网络采用性能可靠的工业以太网。

可以将办公网络、自动控制网络和视频监控网络无缝结合到该网络环境,实现“多网合一”。

整个系统可承载的数据分成如下的几个部分:1:工业控制数据2:采集数据3:工业标准的MODBUS总线通讯4:视频语音数据采集和监控(2)组网特点自动化控制系统是开放的控制系统,除了具有良好的网络通讯能力外,还具有与其它控制系统通讯功能和标准的对外通讯接口,以后可以任意扩展控制系统。

整个系统采用多级网络结构,即生产管理网和生产控制网,将过程实时数据、运行操作监视数据信息同非实时信息及共享资源信息分开,分别使用不同的网络。

有效地提高了通讯的效率,降低了通讯负荷。

(3)采用的通讯协议Modbus协议是应用于自动控制器上的一种通用协议。

通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。

它已经成为一种通用工业标准。

现代农业大棚控制系统(1)控制系统概述随着社会经济的发展,设施农业作为农业可持续发展的一个重要途径,已经越来越受到世界各国的重视,而设施农业中问世工程的建设与发展是都市型发展的重要组成部分,是设施农业发展的高级阶段。

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计引言:随着智能科技的迅速发展,物联网在农业领域的应用越来越广泛。

智慧温室环境监测与控制系统是其中的一个重要应用。

本文将介绍一个基于物联网的智慧温室环境监测与控制系统设计方案。

一、需求分析1.温室环境监测:温度、湿度、光照强度、二氧化碳浓度等参数的监测;2.遥控控制温室环境:温度、湿度和光照等参数的控制调节;3.远程监测和操控:用户通过手机或电脑可以随时随地掌控温室环境;4.数据记录和分析:对温室环境数据进行存储和分析,以便农民调整种植计划。

二、系统设计1.硬件设计:(1)传感器:选择适当的传感器来监测温度、湿度、光照强度和二氧化碳浓度等参数。

确保传感器的准确性和可靠性。

(2)执行器:通过执行器控制温室内的加热器、通风设备和灯光,实现对温度、湿度和光照的调控。

(3)硬件平台:选择合适的物联网硬件平台,如Arduino、Raspberry Pi 等,用于搭建系统的硬件架构。

2.网络连接:(1)无线网络:采用Wi-Fi或移动网络实现温室与互联网的连接。

(2)数据传输:使用MQTT(Message Queuing Telemetry Transport)协议将温室环境数据传输到云端。

3.软件设计:(1)数据处理和存储:在云端服务器上设计数据库,用于存储温室环境数据。

借助云计算技术,实现大数据的处理和分析。

(2)用户界面:通过手机APP或网页端提供用户界面,实现用户远程监测和控制温室环境的功能。

(3)决策支持系统:通过算法和统计分析,提供决策支持系统,为农民提供种植计划和环境调控建议。

三、系统工作原理整个系统工作原理如下:1.传感器实时监测温室内环境参数;2.传感器将监测到的数据通过无线网络传输到云端服务器;3.云端服务器处理数据并存储在数据库中;4.用户可以通过手机APP或网页端访问云端服务器,实现远程监测和控制;5.用户根据数据分析结果进行科学调控温室环境。

四、系统优势1.实时监测:传感器可以实时监测温室内的温度、湿度、光照等参数,农民可以迅速了解温室内的环境状况。

温室环境智能监测与控制系统设计的开题报告

温室环境智能监测与控制系统设计的开题报告

温室环境智能监测与控制系统设计的开题报告一、研究背景及意义随着人口的增长和城市化的发展,城市内的土地资源变得越来越紧张,造成了耕地数量的缩减,而且现代化农业所需的投资和技术也在不断提高,增加了农业生产的成本。

温室技术是解决这个问题的有效途径之一,它可以最大限度地利用土地和水资源,同时可以有效地控制气候条件和减少农业害虫的影响,提高农作物的生产效率和质量。

因此,温室技术得到了越来越广泛的运用和发展。

随着现代科技的迅猛发展,智能温室系统已经成为了温室技术发展的一个重要方向,基于物联网、云计算、大数据等技术,通过对温室环境的智能监测和控制,能够实现对温室内环境的精准调控,使得农作物能够在最佳的生长环境下生长,提高了温室的生产效率和品质。

本论文拟设计一种基于物联网技术的温室环境智能监测与控制系统,实现对温室内环境变量的监测和控制,自动调节温室内的气候条件,降低生产成本,提高温室的生产效率和品质。

二、研究内容和研究方法本论文拟研究的内容主要包括:1. 温室环境智能监测:通过传感器对温室内的温度、湿度、光照、CO2浓度等环境变量进行实时监测,并将数据上传到云平台上进行存储和处理。

2. 温室环境智能控制:根据监测到的温室内环境变量,采用相应的算法和模型,自动调节温室内的气候条件,如通风、加热、降温等,实现对温室环境的精准控制。

3. 系统数据分析和管理:对温室环境监测数据进行分析和处理,建立相应的模型,分析环境变量与农作物生长之间的关系,提供数据可视化和决策支持。

研究方法主要包括:1. 完成相关文献资料的搜集和了解,对现有的温室环境监测与控制技术进行分析和总结。

2. 设计温室环境监测与控制系统的硬件结构和软件功能,选择适合的传感器和控制器,编写相应的程序和算法。

3. 搭建系统的测试平台,对系统进行调试和测试,并进行系统数据分析和管理。

三、预期研究成果和应用价值本论文设计的基于物联网技术的温室环境智能监测与控制系统,预期能够实现对温室内环境变量的实时监测和调控,有效降低生产成本,提高温室的生产效率和品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温室环境控制系统
【摘要】针对传统温室有线数据采集系统存在着成本较高、可靠性和移动性较差等问题,提出了一种应用无线技术组建温室数据采集系统的设计和应用方案。

通过无线收发模块实现温室内各种生长环境检测传感器无线化,从而实现温室内作物生长环境的无线智能调控,为解决传统温室有线系统的局限性提供了技术措施;该系统操作简单,具有人性化。

为提高温室环境信息管理自动化程度和设施农业种植决策提供依据,从而提高了温室生产的技术水平,减轻了劳动强度,提高了劳动效率。

众所周知,光、温度、湿度是农业生产不可缺少的因素,所以本设计将其作为重点数据来处理。

首先,对温度、湿度、二氧化碳浓度传感器的发展现状、发展趋势做了简单综述;然后,介绍了系统的工作原理和设计方法,对在控制过程中主要应用的DS18B20、TGS4160、SHT11、LCD显示器及C8051F020、PTR2000、MAX232、MAX692等的结构特点进行了简单的介绍;最后,从硬件和软件两方面详细讲述了对温室各项指标控制的过程。

【关键词】温室;数据采集系统;无线收发模块
1.绪论
1.1 引言
随着社会的进步和工农业生产技术的发展,许多产品对生产和使用环境的要求越来越严,人们对温度、湿度、光强、二氧化碳浓度等环境因素的影响越来越重视了。

为此,本文以农业技术发展为目的开发了一种智能控制系统。

众所周知温度、湿度、二氧化碳浓度是农业生产不可缺少的因素,所以本设计将其作为重点数据来处理。

在现代检测技术中,传感器技术和计算机技术是必不可少的两个方面。

计算机对数据有很强的处理能力,但对非电量和模拟信号是无能为力的。

如果没有各种精确可靠的传感器去检测非电量和模拟信号并提供真实的信息,那么微型计算机就无法发挥其应有的作用。

传感器把非电量转换为电量,经过放大处理后,转换为数字量输入微型计算机,由微型计算机对信号进行分析处理。

从而传感器处理技术与微型计算机技术结合起来,对自动化、信息化和智能化起到重要作用。

本设计以C8051F020单片机为核心来对多点温度、湿度、二氧化碳浓度进行实时检测。

各检测单元能独立完成各自功能,同时能根据主控机的指令对温度、湿度、二氧化碳浓度进行采集。

测量结果不仅能在本地显示,而且可以由C8051F020单片机将采集的数据传送到主控机,以进行进一步的处理。

主控机负责控制指令的发送,以控制各个从机的温度、湿度、二氧化碳浓度采集,收集测量数据。

主控机与各从机之间也能够通过无线收发模块进行相互联系、相互协调,从而达到系统整体统一、和谐的效果。

1.2 课题研究背景
近20年来,农业设施在我国得到了突飞猛进的发展,设施类型也由季节性的简易拱棚逐步在向常年性的温室方向发展。

但是与欧洲发达国家相比,我国温室的智能化水平还比较低,现有温室大都以有线接入为主。

现代温室的数据采集系统是实现其生产自动化、高效化的最关键、最为重要的环节,传统的传感器数据采集系统采用导线连接,在传感器至信号处理器之间需要大量电缆。

温室环境不同于其他环境,在温室中大量布线是十分困难的。

为此,在温室中应用基于无线技术的传感器,将有助于解决原有有线系统的局限性。

1.3 设计主要内容
本设计针对温室无线监控系统若干关键技术展开研究工作,主要集中在以下几个方面:
(1)分析题目要求。

介绍温室无线控制系统的总体方案设计,系统的组成和工作原理。

(2)系统的硬件设计。

介绍主要硬件的型号及其主要特点,模块功能和硬件电路设计。

详细介绍在温度监控系统中应用到的各个硬件连接电路。

硬件电路的设计主要包括:C8051F020通信接口电路的设计、无线收发模块电路的设计、温度采集电路的设计、湿度采集电路的设计、二氧化碳浓度采集电路的设计、控制电路的设计、显示电路的设计、键盘扫描电路的设计、报警电路的设计以及掉电保护电路的设计。

(3)系统的软件设计。

主要介绍程序的主循环框架及主要程序模块,程序设计采用汇编语言模式。

介绍的程序模块主要包括:主机C8051F020主程序、主机C8051F020中断服务子程序。

其中主机C8051F020主程序包括初始化子程序、键盘扫描子程序、主机通信子程序、温度控制子程序、湿度控制子程序、二氧化碳浓度控制子程序以及温度报警子程序、湿度报警子程序、二氧化碳浓度报警子程序。

主机中断服务子程序主要由温度采集子程序、湿度采集子程序、二氧化碳浓度采集子程序、通信子程序、显示子程序、数据打印子程序组成。

1.4 温室的概述
温室(greenhouse)又称暖房。

能透光、保温(或加温),用来栽培植物的设施。

在不适宜植物生长的季节,能提供生育期和增加产量,多用于低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等。

温室的种类多,依不同的屋架材料、采光材料、外形及加温条件等又可分为很多种类,如玻璃温室、塑料温室;单栋温室、连栋温室;单屋面温室、双屋面温室;加温温室、不加温温室等。

温室结构应密封保温,但又应便于通风降温。

现代化温室中具有控制温湿度、光照等条件的设备,用电脑自动控制创造植物所需的最佳环境条件。

温室是以采光覆盖材料作为全部或部分围护结构材料,可在冬季或其它不适宜陆地植物生长的季节供栽培植物的建筑。

温室功能分类根据温室的最终使用功能,可分为生产性温室、试验(教育)性温室和允许公众进入的商业性温室。

蔬菜栽培温室、花卉栽培温室、养殖温室等均属于生产性温室;人工气候室、温室实验室等属于试验(教育)性温室;各种观赏温室、零售温室、商品批发温室等则属于商业性温室。

2.温室环境控制系统的总体设计
2.1 系统的总体设计
此温室控制系统的总体设计是通过数字温度传感器、湿度传感器、二氧化碳传感器对温室大棚内的温度、温度和二氧化碳浓度进行实时检测,由于应用的都是数字传感器,直接把检测到的数字信号送入单片机,单片机在通过无线收发模块送入PC机并发出控制信号,分别控制排风机、电热丝、空气加湿器、二氧化碳生成器,从而控制温室内的温度、湿度、二氧化碳浓度。

同时发出报警信号示警,并且有显示器件对温室内的温度、湿度和二氧化碳浓度进行实时显示。

相关文档
最新文档