氨基的保护方法

氨基的保护方法
氨基的保护方法

学号

西北师范大学

毕业论文(设计)

题目氨基的保护方法

学生姓名李启民

专业班级 2011级化学函授班

系别化学与生命科学系

指导教师

职称

日期 2013年7月

郑重声明

本人的毕业论文(设计)是在指导教师的指导下独立撰写完成的。如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督。特此郑重声明。

毕业论文(设计)学生签名:指导教师签名:

年月日年月日

氨基保护的研究方法

[摘要]由于氨基的氮原子上含有弧对电子,易作为亲核试剂,进攻带有部分正电荷的碳原子,从而发生卤代、酰化等反应,同时也容易被氧化生成氮氧化物,因此,氨基对氧化和取代等反应都很敏感。为了在分子其他部位反应时氨基不发生反应,通常需要用易于脱去的基团对氨基进行保护。目前,已开发出相当多的氨基保护基,并且已商品化。例如,在肽和蛋白质的合成中,通常用氨基甲酸酯(R1R2NCO2R)法保护氨基,而在生物碱的合成及基于腺嘌呤、胞嘧啶和鸟嘌呤的核苷酸的合成中,用酰胺(R1R2NCOR)法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其他方面也有很多重要应用。

[关键词] 氨基;官能团转化;保护基;氨基保护

ABSTRACT: Due to the amino nitrogen atom contains arc to electronic, easy as a nucleophile, attack with a part of the positive charge of carbon atoms, which happen halogenated, acylation reaction, but also easy to oxidation generating nitrogen oxides, and therefore, amino to oxidation and substitution reaction is very sensitive. In order to other parts of the molecular reaction time amino don't react, usually need to use easy to remove groups to protect amino.

At present, have developed quite a number of amino protection base, and has been commercialized. For instance, in peptide and protein synthesis, the usually use carbamate (R1R2NCO2R) method to protect amino, and in the synthesis of alkaloids and based on adenine, cytosine and guanine nucleotide synthesis, using amide (R1R2NCOR) method to protect nitrogenous base . Chemists in peptide synthesis field, known to protect base of relative advantages and disadvantages compared and continue to look for more effective new protection base. In addition to peptide synthesis outside, these protection base in other ways also has many important applications.

KEYWORDS: Nucleophile;Functional transformation;Protective group;the Protective of Nucleophile. 1、酰胺类保护法

(1)形成保护法

芳香胺在进行硝化反应时常采用甲酰基保护,因为易于引入和消去,所以在磺胺合成中用甲酰基保护比用其他酰基有明显的优势。

NH2

HCOOH,1h

100~110℃NHCHO

SO2Cl2

NHCHO

SO2Cl

NH3.H2O

95~100℃

NH2

SO2NH2图1 酰胺类形成保护法

(2)脱除保护法

甲酸和乙酸酐的混合物对α-氨基酸的甲酰化是相当方便的,但若选择性地保护α-氨基酸末端上的氨基时,可选用甲酸对硝基苯酯作为衍生化试剂。

H2N(

CH2)nCHNH2

COOH

CHO

NO27HF

0℃

HCNH(CH

2

)nCHNH2

COOH

O

OH

NO2

图2 酰胺类脱除保护法

2、氨基甲酸酯类保护法

(1)形成保护法

氨基甲酸酯通常是由胺和相应的氯代甲酸酯在碱性(碳酸钾或三乙胺)条件下反应制备的,也可由N-甲氧基羰基氧丁二酰亚胺获得。

H3CO Cl

NH

CH2OH

CH3

ClCOOCH3

CH3COCH3

K2CO3

reflux,12h

90%

CH2OH

Cl

H3CO CHO2CH3

CH3

图3 氨基甲酸酯类形成保护法

(2)脱除保护法

甲氧甲酰基(Methoxycarbonyl )和乙氧甲酰基(Ethoxycarbonyl )衍生物是最简单的氨基甲酸酯

类保护基,对氧化试剂较稳定,但能够与金属氢化物反应。N-乙氧甲酰基(N-CO 2C 2H 5)在四氢呋喃中用氢化铝锂还原成N-甲基。而在苯中用双(2-甲氧乙氧基)氢化铝钠[NaAlH 2(OCH 2CH 2OCH 3)2]则可脱除

。这类保护基在常用于水解甲酸酯或乙酸酯的碱性条件下稳定,这是因为氨基甲酸酯的甲酰基与氮上的孤对电子形成离域,从而降低了亲电性。

OCH 3

H 3CO 2C

N

O NH 2

O O

OCH 3NCO 2CH 3

K 2CO 3(催化剂)

CH 3OH_H 2O rt,36h 67 %

OCH 3

H 3CO 2C

N

O

OCH 3O

NH 2O

N CO 2CH 3

图4 氨基甲酸酯类脱除保护法

3、 连二硫代丁二酰基保护法

(1) 形成保护法

引入N-DTS 基团需要两步:第一步氨基与二硫代碳酸O-乙基S-羧甲基酯[C 2H 5

OCSSCH 2

COOH] 或

三硫代二碳酸O,O-二乙基酯[(C 2H 5OCS )2S] 反应;第二步,将中间体乙氧基硫代甲酰基衍生物用氯甲酰亚磺酰氯处理。

图5 连二硫代丁二酰基形成保护法

(2)脱除保护法

Dts 对于弱碱及强酸条件(例如HBr ?HOAc ;12 mol /LHCl 和HOAc 回流;温和的NaHCO 3 ?H 2O 等)均稳定,但可被NaOH ?H 2O 裂解,氨基甲酸邻硝基苯酯的光解也稳定,因此可用于“正交组合(orthogonai set )”肽的保护。若对酸敏感或对光敏感的保护基同时存在,则有完全不同的脱除方式构成所谓“互不

O OAc

AcO

AcO

NH 2.HCl

OH

1.(C 2H 5OCS)2S

NaOH C 2H 5OH_H 2O 2.Ac 2O

CH 3CN_CH 2Cl 2

rt,12h 80%

O

OAc

AcO

AcO

NH OH

OC 2H 5

S

O

OAc

AcO

AcO

N OH S

S

O

O

Cl(C O)SCl CH 3CN rt,4h 80%

干扰”体系。用硼氢化钠或1,3-丙二硫醇(DIPEA )均能还原脱除N-Dts ,而不会影响叠氮官能

团。

图6 连二硫代丁二酰基脱除保护法

4、9-芴甲氧甲酰基保护法

9-芴甲氧甲酰基团(9-fluorenylmethoxycarbonyl,Fmoc )是Carpino 对肽的液相合成所作的另一卓越贡献,此后也适用与固相肽的合成。Fmoc 基团对酸出乎意料地稳定;使用硫酸和异丁醇,就能够将羧酸转换成带有亚硫酰氯或叔丁基酯的酸氯化物。而且,Fmoc 基团也不受乙酸中HBr 或三氟乙酸的影响,所以能够用来对Cbz 和Boc 基团选择性脱保护。

(1)形成保护法

Fmoc 基团通常是在Schotten-Baumann 条件下,使用市售的氯甲酸9-芴甲酯(也可以很方便地用9-芴甲醇与光气反应制备,产率86﹪)引入到被保护的官能团上。

N H

HN 2

CO 2H

Na 2O 3,H 2O 1,4_二氧环己烷CO 2H

O OAc

AcO AcO O O

BzO

OBz

NHAc N S S

O

O

N 3

1.NaBH 4CH 2Cl,

2.Ac 2O_Pyr 57%

O OAc AcO AcO

O O BzO

OBz NHAc NH N 3

Ac

,

O N 3

AcO

NHAc

AcO

AcO

O

N 3

AcO

N

AcO

AcO

1.HS(CH 2)3SH DIPEA,CH 2Cl 2

2.Ac 2O_Pyr 97%

S

S

O

O

SH

HS

1.

DIPEA,CH2Cl2

2.(CH 3CO)2O_Pyr

96%

O

NHAc

AcO

NHAc

AcO

AcO

图7 9-芴甲氧甲酰基形成保护法

(2)脱除保护法

Fmoc 基团的芴环系的吸电子作用使9-H 具有酸性,易被较弱碱除去,反应条件很温和,足以排除敏感的O-糖基丝胺酸的β-消除。

图8 9-芴甲氧甲酰基脱除保护法

5、三苯甲基保护法

三苯甲基(Trityl,Tr )作为胺的保护基团,对酸敏感,而对碱则稳定,这种保护基是Helferich 及其合作者于1925年报道的。三苯甲基胺的酸解比三苯甲基醚更稳定。 (1)形成保护法

三苯甲基胺衍生物的形成可由两种方法实现:①用三苯甲基胺的还原胺化和N-烷基化; ②如单苄基衍生物一样,用三苯甲基溴化物或氯化物在碱性(如三乙胺)存在下于非质子性溶剂(如三氯甲烷或三氯甲烷与DMF 的混合物)中与胺进行N-烷基化反应制备,这是引入三苯甲基最常用的方法。

O OBn OBn

O CO 2Bn NH O

O

吗啡97%

O OBn

BnO BnO

OBn

O CO 2Bn NH 2

O

OBn

O OCH 3H 3CO

O O

OBn O OCH 3H 3CO

NO_CPh 3

1.Ph 3_NH 2,(CH 3)2CHOH,60℃

2.NaBH3CN79%Cl Cl

图9 三苯甲基形成保护法

(2)脱除保护法

三苯甲基与苄基的不同在于,它可以在温和的酸性条件下脱去。如三苯甲基保护基,可用三氟乙酸脱除三苯甲基。

Cl

O

HN

CPh 3

OH

Cl

O

NH 2

OH

CF 3COOH CH2Cl 2_CH 3OH

室温75%

图10 三苯甲基脱除保护法

参考文献

[1]武钦佩,护基化学[M]北京:工业出版社,07.239-278. [2]陆国元,机化学与有机合成[M]北京:学出版社,009,48-69. [3]姚祝军,泰山现代有机合成[M]北京:学出版社,006.1,68-99. [4]王玉炉,机合成化学(第二版)[M]北京:学出版社,009. [5] C G Rao, Org Prep Proc inc,980,(12);225. [6] J R Rachelle.J Org.Chem.,963,(28);2898.

FSA-3311馈线保护装置

关于FSA-3300系列保护装置的所有技术和使用说明书的版权为滁州安瑞电力自动化有限公司所有。滁州安瑞电力自动化有限公司保留对所有资料的修改和解释权,若有改动,恕不另行通知。 一概述 1.装置特点及功能 FSA3300系列微机保护测控装置是功能先进、完善的微机保护测控装置,主要用于35KV及以下的各电压等级配电系统;既可直接安装于高压开关柜上,也可组屏安装。 装置主要特点如下: ●本装置为汉化微机保护测控装置,集成电路采用工业品,稳定性、可靠性高, 可以在高压开关柜等恶劣的工作环境中工作。 ●抗干扰性能强,保护硬件设计采用了多种隔离、屏蔽措施,软件设计采用数 字滤波技术和良好的保护算法及其他抗干扰措施,使得保护抗干扰性能大大得提高。 ●硬件、软件设计标准化、模块化,便于现场维护,在标准化硬件设计的基础 上,采用了各种标准化软件模块化组态,可构成不同的保护功能配置,如果用户需要更多的保护功能,设计单位可以简单、可靠地升级。 ●人机接口功能强大,全汉化液晶显示,菜单式操作,配有标准的RS485通 讯口。 ●装置采集并向远方传送状态量及遥测量,遥信变位优先发送。 ●装置能通过通信上传故障报告,进行对时、定值调用和修改、定值区切换, 合闸、跳闸等命令。 ●装置适用于直流供电系统,同样也适用于交流供电系统。 FSA3300系列保护功能见表

2 技术指标 2.1 额定交流数据 ●交流电流:5A或1A; ●交流电压:100V; ●零序电流:0.1A或0.02A ●额定频率:50HZ 2.2 额定直流数据:直流电压220V或110V 2.3 功率消耗 ●直流回路:正常不大于10W,动作时不大于15W; ●交流电流回路:每相不大于0.5VA(In=1A,)1VA(In=5A) ●交流电压回路:每相不大于0.5VA 2.4 环境条件 ●环境温度范围:-25~+55℃,24h内平均温度不超过35℃ ●相对湿度:最湿月的月平均最大湿度为90%,同时该月的月平均最低温 度为25℃且表面无凝霜,最高温度为+40℃,平均最大相对湿度不超过50%。 2.5各保护组件工作范围

高压漏电保护整定方案

井下10(6)kV供电系统漏电保护整定方案 (修订版) 为提高煤矿供电的安全运行水平,更好利用井下高压防爆开关综合保护装置,确保漏电保护选择性和可靠性,特制定井下10(6)kV 供电系统漏电保护整定方案。 方案一: 该方案适合于煤矿井下综合保护装置采用零序电流型、功率方向型的高压防爆开关、矿井电网中性点不接地系统。 (一)高压漏电保护整定原则 1、煤矿井下高压漏电保护装置主要用于10(6)kV供电系统中,对井下供电系统的漏电(或接地)实现有选择性保护。高压馈电线路上必须装设有选择性的单相接地保护装置;供移动变电站的高压馈线上,必须装设有选择性的动作于跳闸的单相接地保护装置。 2、高压漏电保护装置的动作参数有二次零序电压和一次零序电流,其取值范围如下。 最低起动二次零序电压:U0≥3V; 最高整定二次零序电压:U0≤25V; 最低起动一次零序电流:I0≥; 最高整定一次零序电流:I0≤6A。 3、高压漏电保护系统各级纵向之间的配合选择,按时间阶梯整定。原则上最上一级时间最长,最下一级时间最短,从最下一级向上级整

定时间逐渐延长。 4、移动变电站应动作于跳闸,高压电动机应动作于跳闸,一般生产线路的变压器应动作于跳闸,风机、水泵应动作于报警信号,向下级变电所馈出线路应动作于报警信号,变电所内总进线开关应动作于报警信号。 (二)漏电保护整定方案 1、电网对地电容及零序电流值的确定 (1)电缆线路的对地电容与单相接地电容电流 煤矿高压10(6)kV电网的单相接地电流I d与电网的对地电容∑C 有一一对应的关系,由公式(1-1)来计算。 I d=ωU∑C×10-3/(1-1) 式中I d——电网的单相接地(电容)电流,A; ω——三相交流电的角频率,ω=314; U——电网线电压有效值,kV; ∑C——电网三相对地总电容,μF。 电缆的型号、截面不同时,其分布电容值也有所不同,生产厂家根据理论设计和出厂测试的数据,将不同电压等级、型号、截面电缆的单位长度三相对地总电容值与相应的单相接地电容电流值见表1-1,供用户参考。 表1-1 10(6)kV电力电缆三相对地总电容∑C及单相接地电容电流I d

配电网馈线系统保护原理及分析(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 配电网馈线系统保护原理及分 析(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

配电网馈线系统保护原理及分析(通用版) 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的

是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。

阴极保护的基本知识

阴极保护的基本知识 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。 保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。 阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。 网状阳极阴极保护方法 网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。阳极网预铺设在储罐基础中,为储罐底板提供保护电流。 网状阳极保护系统较其它阴极保护方法具有如下优点: 1)电流分布均匀,输出可调,保证储罐充分保护。 2)基本不产生杂散电流,不会对其它结构造成腐蚀干扰。 3)不需回填料,安装简单,质量容易保证。 4)储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。 5)不易受今后工程施工的损坏,使用寿命长。 6)埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。 7)性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供

配电网馈线系统保护原理及分析-最新范文

配电网馈线系统保护原理及分析 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二。配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切

除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。 电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 2.2重合器方式的馈线保护 实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献」。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C 分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此

配电网馈线系统保护原理及分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 配电网馈线系统保护原理及分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8696-71 配电网馈线系统保护原理及分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电

厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1 传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保

(完整版)牺牲阳极法阴极保护方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述------------------------------------------------------------ 2 (一)原理 ----------------------------------------------------- 2(二)牺牲阳极法阴极保护的优点 --------------------------------- 2(三)牺牲阳极材料 --------------------------------------------- 2(四)阳极安装方式 --------------------------------------------- 6(五)测试系统 ------------------------------------------------- 7(六)应用标准和规范 ------------------------------------------- 7(七)主要测试设备和工具 --------------------------------------- 7 二、该项目管道牺牲阳极保护法的设计---------------------------------- 8 三、施工方法-------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 8 2、牺牲阳极法的施工: ------------------------------------------ 9

10kV继电保护技术方案及说明

10KV开关柜继电保护技术应答书 1 适用范围 本应答书为对明珠线二期工程10kV开关柜继电保护部分的响应,适用于降压变电所10kV 进线、10kV出线、10kV母联及配电变压器。 2 环境条件 2.1 环境温度:-10?C~+40?C 2.2 相对湿度:日平均值不大于95%;月平均值不大于90%(25?C)有凝露的情况发 生 2.3 饱和蒸气压:日平均值不大于2.2×10-3Mpa 月平均值不大于1.8×10-3Mpa 2.4 海拔高度: ≤1000 m 2.5 地震烈度:7度 3 采用标准 本继电保护装置的制造、试验和验收除了满足技术规格书的要求外,还符合如下标准: 3.1 《电力装置的继电保护和自动装置设计规范》(GB50062-92) 3.2《微机线路保护装置通用技术条件》(GB/T15145-94) 3.3 《继电器及继电保护装置基本试验方法》(GB7261) 3.4 《静态继电器及保护装置的电气干扰试验》(GB6162) 3.5 《线路继电保护产品动态模拟技术条件》(SD286) 3.6 《电气继电器》(IEC255) 3.7 《微机型防止电气误操作装置适用技术条件》(DL/T486-2000) 3.8 《地下铁道设计规范》(GB50157-92) ? 4主要继电保护产品REF543性能及参数

4.1应用 REF54?馈线终端设计用于中压网络的保护,控制,测量和监视,其可与不同的开关柜一道使用,包括单母线,双母线及双重配置系统,保护功能也支持不同的网络类型,如中性点不接地网络,谐振接地网络及部分接地网络。 RE54?馈线终端功能特性基于专用的保护,控制,测量,运行状况监视及通信功能库,每个库包括某些特定功能块的组合,如保护功能块。同使用传统的单个产品相比,组合库经济效益更好。专用库与继电器配置(IEC 1131 标准)一起使得REF54?馈线终端较易适用各种不同应用。借助于MMI 图形显示,馈线终端内的控制功能就地指示隔离刀闸或断路器的状态。而且,馈线终端可允许将来自断路器及隔离刀闸的状态信息转送到远方控制系统,可控对象如断路器可通过远方控制系统断开,合上。状态信息和控制信号通过串行总线传送,也可通过馈线终端面板上的按钮进行就地控制。馈线终端设计用于短路及接地故障的选择性保护REF54?馈线保护包含过电流及接地故障功能,可用于强接地,电阻接地或谐振接地网络馈线的短路,时限过流及接地故障保护,带有接地故障功能及方向接地故障功能的相同类型馈线终端可用于中性点不接地网络的过电流及接地故障保护,当需要时可使用自动重合闸功能进行自动重合闸,可进行多达五个连续的自动重合闸周期。 REF54?终端测量三相电流及三个相间电压,中性点电流,残余电压,频率及功率因素。从测量的电流,电压计算出有功,无功功率,可基于所测量的功率计算出电能,测量值可用与一次值成比例的值进行就地,远方显示。

几种代表性的常用的氨基保护基

几种代表性的常用的氨基保护基
结构
O O X
缩写
应用
引入条件
脱去条件 H2/Pd-C,供氢体/Pd-C, BBr3/CH2Cl2 or TFA, HBr/HOAc 等 3MHCl/EtOAc, HCl/MeOH or diox, TosOH/THF-CH2Cl2, Me3SiI/CHCl3orCH3CN 20%哌啶/DMF,50%哌 啶/CH2Cl2 等 Ni(CO)4/DMF/H2O; Pd(PPh3)4/Bu3SnH;
Cbz
伯胺、仲氨、咪唑、 Cbz-Cl/Na2CO3/CHCl3 /H2O 吡咯、吲哚等 Boc2O/NaOH/diox/H2 伯胺、仲氨、咪唑、 O, Boc2O/ /MeOH, Boc2O/Me4NOH/CH3C 吡咯、吲哚等 N 伯胺、仲氨等 伯胺、仲氨、咪唑、 吡咯、吲哚等 Fmoc-Cl/NaHCO3,/dio x/H2O Aloc-Cl/Py
O X O
Boc
X O O
Fmoc
X O O
Alloc
O Cl O TMS
Teoc
伯胺、仲氨、咪唑、 Teoc-Cl/碱/diox/H2O 吡咯、吲哚等
TBAF;TEAF
X O O
Me( or Et)
-
伯胺、仲氨、咪唑、 ROCOCl/NaHCO3,/dio x/H2O 吡咯、吲哚等 邻苯二甲酸酐 /CHCl3/70℃;邻苯二甲 酰亚胺-NCO2Et/aq. Na2CO3 Tos-Cl/Et3N TFAA/Py; 苯二甲酰 亚胺 -NCO2CF3/CH2Cl2 Trt-Cl/Et3N
HBr/HOAc; Me3SiI; KOH/H2O/乙二醇 H2NNH2/EtOH, NaBH4/i-PrOH-H2O(6: 1) HBr/HOAc, 48%HBr/苯 酚(cat) K2CO3/MeOH/H2O; NH3/MeOH; HCl/MeOH HCl/MeOH, H2/Pd/EtOH, TFA/CH2Cl2
O X N O
O X S O
Pht
伯胺
Tos
伯胺、仲氨、咪唑、 吡咯、吲哚等 伯胺、仲氨、咪唑、 吡咯、吲哚等 伯胺、仲氨、咪唑、 吡咯、吲哚等
O X CF 3
Tfa
X
Trt
MeO OMe X
Dmb
伯胺、仲氨、咪唑、 ArCHO/NaCNBH3/Me OH 吡咯、吲哚等 PMB-Br/ 伯胺、仲氨、咪唑、 K2CO3/CH3CN;PhCH 吡咯、吲哚等 O/NaCNBH3/MeOH HCO2H/Pd-C/MeOH; H2/Pd(OH)2/EtOH; TFA; CAN/ CH3CN
OMe X
PMB

牵引变电所的馈线保护

牵引变电所的馈线保护 华东交通大学电气与电子工程学院刘家李 随着时代的发展,利用微机构成的变电站自动化系统在电力系统得到了广泛 的应用,并取得了良好的效果,使得电力系统继电保护的可靠性和快速性都得到很大提高.由于牵引供电系统的负荷特性和电力系统的负荷特性不同,牵引网继电保护技术和操作水平相对落后,电力系统的变电站自动化技术在牵引供电系统中还 没有得到广泛应用.而牵引变电所变电站自动化的馈线保护主要去分析牵引供电 系统的构成,牵引变电所向电力机车的供电方式,以及电气化铁路的负荷特征.牵 引负荷具有冲击性、移动性、电流变化范围广、励磁涌流大、高次谐波含量高等不同于一般负荷的特征,因此其馈线保护的原理相对于一般变电所来说有所不同.通过分析其负荷特征,根据自适应原理,提出了利用高次谐波对距离保护、电流增量保护等主、后备保护进行抑制,自动改变其动作边界,并利用二次谐波进行保护闭锁,对防止由励磁涌流、再生负荷等因素引起的保护误动作有很好的功能.其中距离保护主要采用四边形保护特性. 自 2005 年5月馈线保护整定值调整以来,牵引变电所运行基本稳定,这避免了大负荷电流引起的变电所馈线断路器跳闸,保证了牵引变电所的可靠供电. 1 故障分析 由于阻抗 II 段是按正常供电进行整定(见式 1),阻抗III 段是按越区供电进行整定(见式 2),所以一般阻抗III 段的线路阻抗大于阻抗II 段的线路阻抗,当相邻变电所供电臂越时,相差就越大。由式(1)和式(2)的整定计算方法,结合四边形特性可以明显地看出阻抗III 段Z 值大于正常供电时阻抗II 段的Z 值.由于阻抗II 段与阻抗III 段选取了相同的最大负荷电流,这样它们的R值相同. Z II=K k (2×Z1)×n L/n y (1) Z III=K k (Z1+2×Z2)×n L/n y。(2) 式中.Z II 为1#变电所阻抗II 段线路阻抗整定值;Z III 为1#变电所阻抗III 段线路阻抗整定值;Z1 为1#变电所至分区亭的线路阻抗;Z2 为2#变电所至分区亭的线路阻抗;K k 为可靠系数;n L 为馈线电流互感器变比;n y 为馈线母线电压变比.而负荷电流阻抗角一般为30°~45°.这样造成正常负荷电流落到了阻抗III 段的动作区,造成阻抗III 段保护误动.这也是为什么阻抗II 段与阻抗III 段R 值和动作时间相同,但大多阻抗II 段不跳闸的原因.当列车提速后车流密度增大,再加上客车内用电从网上取流以及货车取流的增加等,构成了大负荷电流跳闸的条件,引起变电所馈线断路器跳闸. 2 参数的选取准则 (1)通过对多次跳闸分析,发现原来选取的最大负荷电流不能满足要求,所以造成了保护的误动.故标指示的短路电流可作为线路最大负荷电流的选取依据,故标显示OVER 测量越限,是因为线路没有发生短路,只是负荷阻抗而不是短路电抗,所以不能显示公里数. (2)最大负荷电流的选取不能引起主变压器的二次低压起动过电流保护动作,因此选取该电流后要校验低压起动过流的低电压以满足要求. (3)最大负荷电流的选取不能超过接触网接触悬挂载流的允许载流能力,防止因

阴极保护分类及方法

阴极保护的概念及措施 中文名称:阴极保护英文名称:cathodic protection 定义1:通过降低腐蚀电位获得防蚀效果的电化学保护方法。应用学科:船舶工程(一级学科);船舶腐蚀与防护(二级学科) 定义2:将被保护金属作为阴极,施加外部电流进行阴极极化,或用电化序低的易蚀金属做牺牲阳极,以减少或防止金属腐蚀的方法。应用学科:海洋科技(一级学科);海洋技术(二级学科);海水资源开发技术(三级学科) 定义3:通过降低腐蚀电位而实现的电化学保护。应用学科:机械工程(一级学科);腐蚀与保护(二级学科);电化学腐蚀(三级学科) 本内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 阴极保护技术是电化学保护技术的一种,其原理是向被腐蚀金属结构物表面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的电子迁移得到抑制,避免或减弱腐蚀的发生。 目录 1.腐蚀简介 1)防腐蚀的重要性2)金属为什么腐蚀?3)如何评价金属的腐蚀倾向?4)腐蚀控制措施?5)施加涂层后,为什么还会腐蚀? 2.阴极保护发展简史 3.阴极保护技术简介 1)牺牲阳极阴极保护技术2)强制电流阴极保护技术 4.阴极保护效果的判据

1)普通钢阴极保护准则2)铝合金阴极保护准则:3)铜合金阴极保护准则:4)异种金属阴极保护准则: 5.阴极保护技术问答 1)什么是强制电流阴极保护系统? 2)什么是牺牲阳极阴极保护系统? 3)强制电流阴极保护系统的组成有什么? 4)电源的作用是什么? 5)电源的类型主要有哪几种? 6)辅助阳极的作用是什么? 7)辅助阳极的种类有多少? 8)控制参比电极的有那些? 9)为什么需要采用电绝缘? 10)测试桩的作用是什么? 11)牺牲阳极阴极保护系统的组成有什么? 12)牺牲阳极主要有那些? 1.腐蚀简介 1)防腐蚀的重要性 2)金属为什么腐蚀? 3)如何评价金属的腐蚀倾向? 4)腐蚀控制措施? 5)施加涂层后,为什么还会腐蚀? 2.阴极保护发展简史

浅谈电网馈线系统保护

浅谈电网馈线系统保护 发表时间:2014-12-15T10:03:21.000Z 来源:《工程管理前沿》2014年第12期供稿作者:胡学明[导读] 我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。胡学明黑龙江省虎林市电业局黑龙江虎林 158400 摘要:配电自动化技术是服务于城乡电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。本文首先阐述了电网馈线保护的技术现状,探讨分析了馈线系统保护基本原理,这种新原理能够进一步提高供电可靠性。同时统保护分布式的功能也将提高配电自动化的主站及子站的性能,是一种极具前途的馈线自动化新原理。 关键词:电网;馈线保护;基本原理;发展一、电网馈线保护的技术现状电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的电网对负荷供电可靠性和供电质量要求不同。许多电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将电网故障对电力负荷(用户)的负面影响作为电网保护的目的。随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为电网的工作重点,而电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:1、基于馈线自动化的馈线保护。配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供电网保护与监控、电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU 检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。 2、传统的电流保护。过电流保护是最基本的继电保护之一。考虑到经济原因,电网馈线保护广泛采用电流保护。配电线路一般很短,由于电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。电流保护实现电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 二、馈线系统保护基本原理 1、基本原理。馈线系统保护实现的前提条件如下:(1)快速通信;(2)控制对象是断路器;(3)终端是保护装置,而非TTU. 2、在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护。馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。 3、系统保护动作速度及其后备保护。为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。 4、馈线系统保护的应用前景。馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:(1)快速处理故障,不需多次重合;(2)快速切除故障,提高了电动机类负荷的电能质量;(3)直接将故障隔离在故障区段,不影响非故障区段;(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。 三、电网馈线保护的发展目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对电网保护的目的也要悄然发生变化。最初的电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:(1)电流保护切除故障;(2)集中式的配电主站或子站遥控FTU实现故障隔离;(3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。结束语

醚氨基及氨基酸的各种保护基及去保护方法大全

醚、氨基及氨基酸的各种保护基及去保护方法大全 (整理有详细操作) [Acetate] [Benzoatel] [Pivaloate] [Levulinate] [Back to Carb. Synthesis] Ac - (acetate) ester Standard Protection Procedure To a solution of the glycoside in dry pyridine (25 eq) under an inert atmosphere at room temperature, acetic anhydride (10 eq) is added and stirred until complete by TLC (usually 16 h). The reaction mixture is then poured into ice/water and extracted three times with chloroform. The combined organic layers are extracted with 3% HCl, saturated aqueous sodium bicarbonate, and water. The organic layer is then dried and concentrated in vacuo. The resulting residue is purified by flash chromatography (SiO2) if necessary. Removal

The glycoside is dissolved in methanol and a solution of sodium methoxide in methanol (0.1 eq per -OAc) is added drop wise at 0°. The solution is warmed to room temperature and stirred under an inert atmosphere until complete by TLC (usually within a few hours). Amberlite cationic exchange resin is then added with vigorous stirring until the pH of the mixture is neutral. The mixture is then filtered and concentrated. The resulting residue is purified by flash chromatography (SiO2) if necessary. OR The Glycoside is dissolved in methanol and hydrazine hydrate (15 eq per -OAc) is added in two portions over 1.5 hours. The solution is stirred at room temperature under an inert atmosphere until complete by TLC (usually 6 hours). The solution is then neutralized with glacial acetic acid. The mixture is filtered through celite and concentrated. The resulting residue is purified by flash chromatography (SiO2) if necessary. References J. Org. Chem., 1996, 61, 6442-6445. "Synthetic Methods for Carbohydrates" Lemieux, Ch 6, pg. 90-115. J. Chem. Soc., Perkin Trans. 1, 1996, 985-993.

配电网馈线系统保护原理及分析实用版

YF-ED-J9303 可按资料类型定义编号 配电网馈线系统保护原理 及分析实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

配电网馈线系统保护原理及分析 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一引言 配电自动化技术是服务于城乡配电网改造 建设的重要技术,配电自动化包括馈线自动化 和配电管理系统,通信技术是配电自动化的关 键。目前,我国配电自动化进行了较多试点, 由配电主站、子站和馈线终端构成的三层结构 已得到普遍认可,光纤通信作为主干网的通信 方式也得到共识。馈线自动化的实现也完全能 够建立在光纤通信的基础上,这使得馈线终端 能够快速地彼此通信,共同实现具有更高性能

的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直

氨基保护方法

氨基保护方法 胺类化合物对氧化和取代等反应都很敏感,为了使分子其它部位进行反应时氨基保持不变,通常需要用易于脱去的基团对氨基进行保护。例如,在肽和蛋白质的合成中常用氨基甲酸酯法保护氨基,而在生物碱及核苷酸的合成中用酰胺法保护含氮碱基。化学家们在肽的合成领域内,对已知保护基的相对优劣进行了比较并在继续寻找更有效的新保护基。除了肽的合成外,这些保护基在其它方面也有很多重要应用。 下面介绍保护氨基的一些主要方法和基团。 1 形成酰胺法 将胺变成取代酰胺是一个简便而应用非常广泛的氨基保护法。单酰基往往足以保护一级胺的氨基,使其在氧化、烷基化等反应中保持不变,但更完全的保护则是与二元酸形成的环状双酰化衍生物。常用的简单酰胺类化合物其稳定性大小顺序为甲酰基<乙酰基< 苯甲酰基。 酰胺易于从胺和酰氯或酸酐制备,并且比较稳定,传统上是通过在强酸性或碱性溶液中加热来实现保护基的脱除。由于若干基质,包括肽类、核苷酸和氨基糖,对这类脱除条件不稳定,故又研究出了一些其他脱除方法,其中有甲酰衍生物的还原法,甲酰基以及对羟苯基丙酰基衍生物的氧化法,苯酰基和对羟苯基丙酰基衍生物的电解法,卤代酰基、乙酰代乙酰基以及邻硝基、氨基、偶氮基或苄基衍生物等“辅助脱除法”,等等。 为了保护氨基,已经制备了很多N2酰基衍生物,上述的简单酰胺最常用,卤代乙酰基衍生物也常用。这些化合物对于温和的酸水解反应的活性随取代程度的增加而增加:乙酰基< 氯代乙酰基< 二氯乙酰基< 三氯乙酰基< 三氟乙酰基。此外,在核苷酸合成的磷酸化反应中,胞嘧啶、腺嘌呤和鸟嘌呤中的氨基是分别由对甲氧苯酰基、苯酰基和异丁酰或甲基丁酰基予以保护的,这些保护基是通过氨解脱除的。另外,伯胺能以酰胺的形式加以保护,这就防止了活化的N2乙酰氨基酸经过内酯中间体发生外消旋化。 111 甲酰衍生物 胺类化合物很容易进行甲酰化反应,常常仅用胺和98 %的甲酸制备。甲酸乙酸酐也是一个有用的甲酰化试剂。对于某些容易发生消旋化的氨基酸可用甲酸和N ,N′2双环己基碳二亚胺(DCC) 在0 ℃时进行甲酰化反应,也可用酯类进行氨解。 甲酰胺类是相当稳定的化合物,因此广泛应用于肽的合成。甲酰基的脱除也有很多方法,氧化或还原法脱酰反应均可被采用。N2甲酰衍生物用15 %过氧化氢水溶液处理,可以顺利地进行氧化脱解。用氢化钠在二甲氧基乙烷中回流可以代替用酸或碱水解去除酰基。 112 乙酰基及其衍生物 胺类化合物的乙酰化或取代乙酰衍生物是用酰氯、酸酐进行酰化或在二环己基碳二亚胺(DCC) 或焦亚磷酸四乙基酯存在下,直接与酸综合加以制备,有时也可用酯或硫酯氨解的方法;制备乙酰胺另一好的方法是用胺和乙烯酮〔15〕或异丙烯乙酸酯反应。如果用双烯酮〔17〕反应,则得到的是乙酰乙酰基衍生物。 用乙酰基保护氨基比用其他保护基要多。由于它比甲酰基更稳定,因此,在进行亲电取代、硝化、卤代等反应时常选择乙酰基来保护芳香胺。乙酰胺丙二酸酯也可用于合成α2氨基酸,但在脱乙酰基时所需的酸或碱性条件,可使分子内其他

相关文档
最新文档