电子材料物理部分参考答案.
半导体物理课后习题答案(精)

第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h2k2h2(k-k1)2h2k213h2k2Ec= +,EV(k)=-3m0m06m0m0m0为电子惯性质量,k1=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:2 2k2 2(k-k1)由+=03m0m03k14d2Ec2 22 28 22=+=>03m0m03m0dk得:k=所以:在k=价带:dEV6 2k=-=0得k=0dkm0d2EV6 2又因为=-<0,所以k=0处,EV取极大值2m0dk2k123=0.64eV 因此:Eg=EC(k1)-EV(0)=412m02=2dECdk23m0 8πa,a=0.314nm。
试求: 3k处,Ec取极小值4 (2)m*nC=3k=k14(3)m*nV 2=2dEVdk2=-k=01m06(4)准动量的定义:p= k所以:∆p=( k)3k=k14 3-( k)k=0= k1-0=7.95⨯10-25N/s42. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:f=qE=h(0-∆t1=-1.6⨯10∆k ∆k 得∆t= ∆t-qEπa)⨯10)=8.27⨯10-13s2-19=8.27⨯10-8s (0-∆t2=π-1.6⨯10-19⨯107第三章习题和答案100π 21. 计算能量在E=Ec到E=EC+ 之间单位体积中的量子态数。
*22mLn31*2V(2mng(E)=(E-EC)2解232πdZ=g(E)dEdZ 单位体积内的量子态数Z0=V22100π 100h Ec+Ec+32mnl8mnl1*2(2mn1V Z0=g(E)dE=⎰(E-EC)2dE23⎰VEC2π EC 23100h*2 =V(2mn2(E-E)Ec+8m*L2Cn32π2 3Ecπ =10003L32. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
(完整)材料物理性能答案

)(E k →第一章:材料电学性能1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?用电阻率ρ或电阻率σ评价材料的导电能力.按材料的导电能力(电阻率),人们通常将材料划分为:)()超导体()()导体()()半导体()()绝缘体(m .104m .10103m .10102m .1012728-828Ω〈Ω〈〈Ω〈〈Ω〈---ρρρρ2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性?金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。
所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动.如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。
施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。
自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。
E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式.缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。
(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性)3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为?自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线.4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数.n 决定,并且其能量值也是不连续的,能级差与材料线度L ²成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。
半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
电子材料物理部分参考答案.

1.7 计算离子晶体中正离子的配位数为8和6时的临界正、负离 子半径比值
配位数为6:
2(r0 r )
(2r0
)2
(2r0 )2
r r0
2 1 0.414
配位数为8:
2(r0 r )
3(2r0 )
r r0
3 1 0.732
2. ZrO2用做汽车氧传感器时,通常用来测量发动机空燃比。 请你查阅资料,阐述其工作原理并弄清目前发动机空燃比 达到多少时效果最佳。
3. TiO2在缺氧的气氛中易形成阴离子缺位,利用缺陷化学原 理,分析TiO2电导率与氧分压的关系。
P108 3.1 3.3 3.9 3.10
E
B
则 BE= 3 a 又BF=2FE
2
所以BF=
3 3
a
C
在三角形ABF中,AB2=AF2+BF2
a2 (1 c)2 ( 3 a)2
2
3
因此,c/a=(8/3)1/2≈1.633
1.5 已知Nb为体心立方结构,其密度为8.57g/cm3,计算Nb的晶胞常数 及原子半径。 解:体心立方中一个晶胞中含有Nb个数为
四方晶系晶面间距
1
1
a
d
h2 l2 a2
k2 c2
12 22 a2Biblioteka 22 (2a)23
4. 请给出图中所画晶面的密勒指数。
(1)见右图,选择其中一个晶面, 截取坐标轴的截距分别为:
(2)从图中可以看出晶面在坐标轴 上的截距分别为:
x=1/3, y=1/2, z=1/2
x=1/3, y=1/4, z=-1
半导体物理习题及答案

半导体物理习题及答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
华中科技大学-电子材料物理复习提纲-答案整理

《电子材料物理》复习提纲第一章 电子材料的结构1. 晶体的结构与对称性理解点阵结构与晶体结构之间的关系,能够根据晶体结构画出点阵图。
将构成晶体的结构济源抽象成一个几何点,这些几何点在空间按一定的规则重复排列所形成的阵列。
点阵反映晶体结构周期性的大小和方向。
掌握晶胞的基本概念,并会计算晶胞中结点的个数;晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
熟悉七大晶系的特征。
理解4种晶胞类型7大晶系14种点阵类型32种点群和230种空间群之间的相互联系掌握晶体的宏观对称操作和微观对称操作,对于常见立方结构的晶体能够找出其中的对称操作元素;旋转、反映、反演及旋转-反演 立方结构CsCl 各三个4次转轴和4次反轴,各四个3次转轴和3次反轴,各六个2次转轴和2次反轴,九个反映面,一个反演中心掌握点群符号、空间群符号的含义以及空间群符号向同型点群符号的转变。
点群反映的是晶体理想外形的宏观对称性,空间群反映的是晶体内部原子等规则排列而具有的微观对称性。
空间群的数目多于点群,意味着微观对称性不同的晶体结构可能生长出相同的晶体外形,即同一个点群可能对应不同的空间群 空间群转点群 1、将滑移面转换为反映面2、将螺旋轴转换为旋转轴2. 典型晶体结构掌握密堆积,配位数,电负性等基本概念;电负性:原子的电负性即是衡量分子中原子吸引电子的能力。
电离能与亲和能之和则称为该元素的电负性。
掌握物质理论密度的计算方法;理解鲍林规则的主要内容; 1、鲍林第一规则:负离子配位多面体规则2、鲍林第二规则:电价规则3、鲍林第三规则:多面体组联规则4、鲍林第四规则:高价低配位多面体远离法则5、鲍林第五规则:结构简单化法则掌握典型离子晶体结构的类型及结构特征(重点AX 型,钙钛矿型,正尖晶石型)。
只考氯化铯,重点钙钛矿,正尖晶石第二章 晶体中的缺陷与扩散熟悉点缺陷的定义及分类,AC N V nA =ρ引起几个原子范围的点阵结构不完整,亦称零维缺陷按产生原因:热缺陷,杂质缺陷,非化学计量缺陷,电荷缺陷,辐照缺陷等掌握点缺陷Kroger-Vink 符号的书写及表示的含义,熟悉点缺陷形成的准化学反应方程式的书写原则,掌握热缺陷和MO 型金属氧化物杂质缺陷准化学反应方程式的书写,并能根据质量作用定律计算平衡状态下缺陷的浓度。
材料物理部分习题答案

固体材料中,声子在传播过程之中会和晶体之中的不同质点发生相互作用,也就是会发生声子散射,它是(热导、热阻)的来源1.说明以下晶体缺陷的浓度表达式中各量的物理意义。
)2exp(),2exp(T k E n n T k E n n B ss B FF -=-=Nf :弗朗克尔缺陷载流子的浓度。
Ns :肖特基缺陷中载流子的浓度。
Ef :形成弗朗克尔缺陷所需的能量。
ES/2是形成一摩尔正离子空位的活化能即形成一摩尔Schottky 缺陷活化能的一半N :缺陷载流子的总浓度。
Kb :波尔兹曼常数2.传输与极化乃是物质对电场的两种主要响应方式。
极化对电场响应的各种情况分别对何种极化有贡献? 外层电子,特别是价电子受原子核的束缚最小,在外电场的作用下,产生的位移最大,因而对电子位移极化率贡献也最大;在电场作用下,电介质的分子或晶胞中的正负离子发生相对位移对离子位移极化有贡献;在外电场作用下,分子的电偶极矩沿着电场取向,并获得取向势能,对固有电矩的取向极化有贡献。
3.简谐波之间为什么没有相互作用?对任何材料,何种载流子对电导率起主要导电作用,可通过扩散方式来确定。
离子载流子的扩散方式是迁移的基础。
离子的扩散方式主要有空位扩散、间隙扩散和亚间隙扩散机理以及环形机理等。
最常见空位和间隙扩散。
Schottky 缺陷作为一种热缺陷普遍存在着。
一般而言,负离子作为骨架,正离子通过空位来迁移。
晶体中空位邻近的正离子获得能量进入到空位中,留下一个新的空位,邻近的正离子再移入产生新的空位,依次下去,就不断地改变空位的位置。
总的说来,阳离子就在晶格中运动。
4.微观极化和宏观极化有何联系?对于各向同性电介质,用方程简单表达之。
宏观极化率等于单位体积内电介质内的所有电子的微观极化率之和比上真空介电系数。
二者之间关系:χ=N α/ε05.能将直流电转换为具有一定频率交流电信号输出的电子电路或装置称为振荡器,广泛用于电子工业、医疗、科学研究等方面。
材料物理性能课后习题解答_北航

材料物理习题集第一章 固体中电子能量结构和状态(量子力学基础)1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3)计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。
(P5)12341311921111o '(2)6.610 =(29.1105400 1.610)=1.67102K 3.7610sin sin 2182hh pmE m d dλπλθλλθθ----=⨯⨯⨯⨯⨯⨯⨯=⨯==⇒=解:(1)=(2)波数=(3)22. 有两种原子,基态电子壳层是这样填充的;;s s s s s s s 2262322626102610(1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量子数的可能组态。
(非书上内容)3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级的能量比费米能级高出多少k T ?(P15)1()exp[]11ln[1]()()1/4ln 3()3/4ln 3FF F F f E E E kT E E kT f E f E E E kT f E E E kT=-+⇒-=-=-=⋅=-=-⋅解:由将代入得将代入得4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。
(P16)2203234262333118(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5=1.0910 6.83Fh E n m J eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯=解:由5. 计算Na 在0K 时自由电子的平均动能。
(Na 的摩尔质量M=22.99,.0ρ⨯33=11310kg/m )(P16)220323426233311900(3/8)2(6.6310) 1.01310 =(3 6.0210/8)291022.99=5.2110 3.253 1.085FF h E n mJ eVE E eVππ---=⨯⨯⨯⨯⨯⨯⨯⨯===解:由由 6. 若自由电子矢量K 满足以为晶格周期性边界条件x x L ψψ+()=()和定态薛定谔方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)少量TiO2溶入ZnFe2O4, 高价的Ti4+取代Fe3+, 生成金 属不足置换固溶体。
(3)向ZnO晶体中固溶少量Al2O3 ,写出可能存在的缺陷 准化学反应方程式。
实际存在的可能性不大
低掺杂量
高掺杂量
第三章 作业题
1. 什么是霍尔效应?为什么可以利用霍尔效应检验材料是否 存在电子电导?并分析制作霍尔元件的材料为什么常采用N 型半导体? 2. ZrO2用做汽车氧传感器时,通常用来测量发动机空燃比。 请你查阅资料,阐述其工作原理并弄清目前发动机空燃比 达到多少时效果最佳。 3. TiO2在缺氧的气氛中易形成阴离子缺位,利用缺陷化学原 理,分析TiO2电导率与氧分压的关系。 P108 3.1 3.3 3.9 3.10
1.6 已知Na+,Cl-的半径分别为0.97Å和1.81Å,Na,Cl 的原子量分别为22.99g/mol和35.45g/mol,试计算 NaCl的密度。 解答:rNa+/rCl-=0.536,所以在六面体中Na+与Cl-相切。
a 2rNa 2rCl 5.56 A
nNa 1 1 6 8 4 2 8
I41/acd:体心四方,[001]方向有4重螺旋轴41和与之垂直的滑移面a; [100]/[010] 方向有滑移面c,[110] 方向有滑移面d。点群4/mmm
R3c:菱方,[001]三次旋转轴;[100]/[010] 方向有滑移面c。点群3m
Fm3m:面心立方,[100]/[010]/[001]方向有反映面,在[Байду номын сангаас11]方向有3重旋转轴 ,在[110]方向有反应面。点群m3m
2.什么是晶体的宏观对称性?它包括哪些宏观对称操作及相应的对称 元素?独立的对称操作元素有那些?
答:晶体通过旋转、反映、反演及旋转-反演等操作而使等同部分重合,相应 的对称性称为晶体的宏观对称性。 旋转:晶体绕某一固定轴(旋转轴)旋转角度θ=2π/n之后自身重合, 则此旋转 轴 为n次旋转对称轴。对称元素为对称轴。 反映:对称面的对称操作。对称元素:反映面 反演:对称中心的对称操作。对称元素:对称中心 旋转-反演:晶体绕某一固定轴(旋转轴)旋转角度θ=2π/n之后,再经过中心 反演,晶体能自身重合, 则此旋转轴为n度旋转-反演轴。对称元素:反轴
2. 计算立方结构的(122)晶面的晶面间距(晶胞参数a)。
(122)晶面,h=1,k=2,l=2 立方晶系晶面间距
d
a h2 l 2 k 2
a 12 22 22
a 3
3. 计算四方结构的(112)晶面的晶面间距(晶胞参数 c = 2a)。 (112)晶面,h=1,k=1,l=2
0
nCl
1 12 1 4 4
nNa M Na nCl M Cl nA 6 3 2.26 10 g m 3 N AVC N Aa
1. 什么是晶体中点缺陷?按照形成原因的不同,点缺陷可以分 为哪几类? 答:点缺陷:引起几个原子范围(在三维方向尺寸都很小) 的点阵结构不完整,亦称零维缺陷。 按照形成原因可分为:热缺陷,杂质缺陷,非化学计量比缺 陷,电荷缺陷,辐照缺陷等。 2. 写出以下缺陷符号的涵义:
四方晶系晶面间距
d
1 h2 l 2 k 2 2 a2 c
1 12 22 22 a2 ( 2a ) 2
a 3
4. 请给出图中所画晶面的密勒指数。
(1)见右图,选择其中一个晶面, 截取坐标轴的截距分别为:
(2)从图中可以看出晶面在坐标轴 上的截距分别为:
x=1/3, y=1/2, z=1/2
作业(一)
1.详细说明晶体的基本特性。 答: 自范性:晶体具有自发地形成封闭的规则几何多面体外形能力的性质,又称 为自限性. 均一性:晶体在任一部位上都具有相同性质的特征. 异向性:在晶体的不同方向上具有不同的性质. 对称性:指晶体的物理化学性质能够在不同方向或位置上有规律地重复出 现的现象. 稳定性:最小内能和最大稳定性。
独立的点对称操作只有:1,2,3,4,6,i, ,m。
4
3.分别画出下图中立方BaTiO3、四方金红石型TiO2晶体结构的点阵图。
简单立方
简单四方
1. 指出下面空间群国际符号的含义,并将 其转换为相应的同型点群符号。 Aba2,P21/m,I41/acd,R3c,Fm3m
Aba2:底心正交,[100] 方向有滑移面b ;[010] 方向有滑移面a;[001]方 向有2 重旋转轴。点群mm2 P21/m:简单单斜,[010] 方向有2重螺旋轴21和与之垂直的反映面。点群2/m
解得a=330pm,r=143pm
1.7 计算离子晶体中正离子的配位数为8和6时的临界正、负离 子半径比值 配位数为6:
r 2(r0 r ) (2r0 ) (2r0 ) 2 1 0.414 r0
2 2
配位数为8:
r 2(r0 r ) 3 (2r0 ) 3 1 0.732 r0
a
D 1/2c F E
则 BE=
3 2
a 又BF=2FE
3 3
B
所以BF=
C
a
在三角形ABF中,AB2=AF2+BF2
1 2 3 2 a ( c) ( a) 2 3
2
因此,c/a=(8/3)1/2≈1.633
1.5 已知Nb为体心立方结构,其密度为8.57g/cm3,计算Nb的晶胞常数
及原子半径。 解:体心立方中一个晶胞中含有Nb个数为
取倒数并约分为3,2,2,则该面的 密勒指数为(322)
x=1/3, y=1/4, z=-1 取倒数 3,4,-1
则该面的密勒指数为(
-
341 )
教材P38,习题1.3,1.5,1.6,1.7, 1.3 证明六方密堆结构中,理想轴比值为c/a=(8/3)1/2=1.633。 证明:已知AB=BC=BD=CD=a A AF=1/2c
AlZn VO
Cui
Mg Zr
答:Al3+占据Zn2+的位置,带有一个单位正电荷; 氧空位,带两个单位正电荷; Cu2+填隙,带两个单位正电荷; Mg2+占据Zr4+的位置,带两个单位负电荷。
3.写出下列过程中的缺陷反应方程式: (1)在纯ZrO2中分别固溶CaO、Y2O3,请写出该固溶过程 中产生VO••的缺陷反应方程式;