电机控制的DSP程序设计及CAN基础知识PPT
利用DSP实现的步进电机控制器的设计

利用DSP实现的步进电机控制器的设计数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
TMS320LF2407是TI公司主推的一种高性能、低价格DSP处理器,其处理速度达到30 MIPS,片内处理集成RAM、Flash及定时器外,还集成了A/D转换器、PWM控制器及CAN总线控制器等模块,特别适合于电机、电源变换等实时要求高的控制系统。
但是通常设计DSP程序的方法是,在DSP的集成开发环境CCS中用C语言设计,需要花费大量的时间用来编写和输入程序代码。
在Matlab中用图形化的方式设计DSP的程序,能够缩短产品的开发时间。
本文所介绍的是一种基于TMS320LF2407实现的步进电机控制系统的设计。
1 系统硬件构成整个系统分为五个部分组成:DSP中央控制器TMS320LF2407,步进电机及驱动,光电编码器,键盘及液晶显示部分,以及整个系统的外围电源电路及看门狗复位电路组成,。
在这个系统设计中,由键盘设定给定转速(位置),通过中央控制器TMS320LF2407来产生PWM脉冲信号来控制步进电机的转速(位置),可以采用光电编码器对步进电机的转速(位置)进行采样检测实现闭环控制,也可以采用开环控制无需转速(位置)信号,以上过程中的多个变量、参数可以在液晶显示屏上得到直观地反映。
整个硬件结构简单直观,中央控制器TMS320LF2407还剩余丰富的I/O及中断资源,在此设计基础上具有一定的扩展空间。
dsp无刷电机课程设计

dsp无刷电机课程设计一、课程目标知识目标:1. 让学生掌握DSP无刷电机的基本原理和结构,理解其工作过程;2. 使学生了解无刷电机在工业和日常生活中的应用,认识到其在现代科技领域的重要性;3. 引导学生掌握与无刷电机相关的电子电路知识,如PWM控制、霍尔传感器等。
技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力,能独立进行无刷电机控制系统的设计与调试;2. 提高学生的动手实践能力,通过课程设计,使学生能熟练使用相关仪器设备和软件进行电机控制系统的搭建;3. 培养学生团队协作和沟通表达的能力,能就课程设计过程中的问题进行有效讨论和交流。
情感态度价值观目标:1. 培养学生对电机控制技术领域的兴趣,激发其探索未知、创新实践的热情;2. 引导学生树立正确的工程观念,注重实际应用,认识到技术在国家经济发展和社会进步中的重要作用;3. 培养学生严谨、勤奋、刻苦的学习态度,形成良好的学习习惯,为其终身学习奠定基础。
课程性质分析:本课程设计属于电子技术领域,具有较高的实践性和应用性,旨在培养学生的实际操作能力和创新思维。
学生特点分析:针对高年级学生,已具备一定的电子技术基础和动手能力,对新技术和新知识有较高的接受能力。
教学要求:结合课程性质和学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高课程设计的实用性和针对性。
通过课程目标的具体分解,使学生在完成课程设计的过程中,达到预定的学习成果。
二、教学内容1. 无刷电机原理及结构:讲解无刷电机的种类、工作原理、结构组成,以教材第三章第一节为基础,深入解析电机转子的磁极配置、定子的绕组方式等关键知识点。
2. 无刷电机控制系统:分析无刷电机控制系统的构成,包括驱动电路、控制策略、传感器等,参考教材第五章相关内容,以PWM控制技术为核心,探讨无刷电机的调速原理及方法。
3. DSP控制器及应用:介绍DSP控制器的特点、选型及应用,结合教材第四章内容,讲解DSP在无刷电机控制中的应用,如程序设计、算法实现等。
基于CAN总线的TIDSP28335程序烧录技术

基于CAN总线的TI DSP 28335程序烧录技术本文详细介绍了目前DSP芯片程序烧录的一般方式和其存在的诸多问题,基于此原因针对性地开发了一种基于CAN总线的TI DSP 28335芯片程序的烧录方法。
此方法接线简单便捷,烧写速度比传统方式快几倍。
电机控制器主控芯片目前大多采用TI公司的数字信号处理器(简称DSP)芯片,如TMS320LF2407,TMS320F2812,TMS320F28335(下文简称28335)等,28335又因具有高性能静态COMS技术,主频高达150MHz,还具有高性能的32位CPU以及增强型的CAN模块等优点而成为当前电机控制器主控芯片的首选。
目前28335芯片程序烧写技术背景目前,常用的DSP程序烧写有三种方法:利用仿真器烧写、通过拨码开关选择芯片引导程序及CAN通讯单行烧写。
大多目前,DSP程序烧写一般是利用仿真器完成来进行。
DSP与仿真器通过JATG接口(2×7的双排插针)进行连接,而双排插针只能布置在控制板上,无法引出到控制器壳体外,控制器一旦封盖后就不方便再进行程序升级;虽然在产品定型前的就算在程序调试阶段可以使用仿真器进行程序烧写,但仿真器插拔次数过多接口就会造成接口松动,造成接触不良,经常出现导致DSP与CCS应用软件连接不上的问题故障。
后来,有些也有部分用户通过目标板上的拨码开关选择芯片引导程序,采用SPI\SCI串口或CAN通讯等方式烧录程序。
由于这种方式需进行拨码开关选择,均需对目标板进行操作,且SPI\SCI为串口通讯,不能实现远程烧写,且烧写时间长,都不是程序烧写的最佳方式。
再后来又出现了CAN通讯单行烧写是另一种烧写方式,其应用于CAN通讯邮箱少的DSP芯片,通过采用少量邮箱进行数据传送,等待上位机目标代码完整传送完一行数据后将该行数据烧写到FLASH对应地址中,完成本行烧写后再进行下一行数据传输。
由于采用较少邮箱传送数据,决定了通讯传输速度慢,进而影响整个程序烧写的速度,这种方式也不是DSP28335最佳CAN通讯烧写程序方法。
dsp基本知识

DSP 基本知识引言TI公司在1982年成功推出其第一代DSP芯片之后,相继推出了多种适合不同应用、不同规格的DSP系列。
TMS320F240x DSP是为了满足控制应用而设计的,属于TMS320C2xx系列。
通过把一个高性能的DSP内核和微处理器的片内外部设备集成在一个芯片的方案,TMS320LF240x DSP成为传统微控制器和昂贵的多片设计的一种廉价替代产品。
3OMIPS的处理速度,使TMS320IF240x DSP可以远远超过传统的16位微控制器和微处理器的性能。
笔者曾用该系列芯片中的TMS320F2406开发过电动执行机构,得到了满意的结果。
结合自己的开发经验,笔者简要介绍TMS320LF240xDSP的硬件结构、C程序开发过程中若干关键的问题。
其中很多包括笔者的心得和体会。
1 TMS320LF240X DSP硬件结构特点TMS320LF240x DSP有以下一些特点:采用高性能静态CMOS技术,使得供电电压降为3.3V,减少了功耗;基于TMS320C2xxDSP的CPU核,保证与TMS320系列DSP代码兼容;片内有高达32K字的Flash程序存储器,544字的双口RAM(DARAM)和2K字的单口RAM(SARAM);两个事件管理器模块EVA和EVB,适用于控制各类电机;看门狗定时器模块(WDT);控制器局域网络(CAN)2.0B模块;串行通信接口(SCI)模块;16位的串行外设接口(SPI)模块;JTAG接口,使得在系统编程(ISP,)很容易实现;10位A/D转换器最小的转换时间为500ns,可选择由两个事件管理器来触发2个8通道输入A/D转换器或1个16通道输入A/D转换器,而每次要转换的通道都可通过编程来选择。
需要说明的是,TMS320LF240x DSF是定点l6位芯片,存储数据的最小单位是16位的字,每个地址(包括程序地址、数据地址及I/O地址)所存的数据都是16位。
1.1 改进的哈佛结构和流水线操作DSP采用程序空间和数据空间完全分开的哈佛(Havard)结构,允许同时取指令和操作数,而且允许在程序空间和数据空间之间相互传递数据,即改进的哈佛结构。
基于DSP的直流电机控制系统设计本科毕业论文

基于D S P的直流电机控制系统设计摘要:直流电机由于励磁磁场和电枢磁场完全解耦,可以独立控制,因此具备良好的调速性能,出力大、调速范围宽和易于控制,广泛应用于电力拖动系统中;而随着对电机控制要求的不断提高,普通的单片机越来越不能满足对电机控制的要求,DSP技术的发展正好为先进控制理论以及复杂控制算法的实现提供了有力的支持;本设计采用美国TI公司专门为电机数字化控制设计的16位定点DSP 控制器TMS320LF2407作为微控制器;该芯片集DSP信号高速处理能力及适用于电机控制优化的外围电路于一体,可以为高性能传动控制技术提供可靠高效的信号处理与控制硬件;电机的控制系统是由检测装置、主控制器、功率驱动器以及上位机组成,其中DSP控制器是电机控制系统的关键部分,负责对电机的反馈信号进行处理并输出控制信号来控制电机的转动;关键词:直流电机; DSP; PID控制器; PWMThe Design of DC Motor Control System Based on DSP Abstract:The DC motor armature magnetic field and the excitation completely decoupled, it can be independently controlled, so it has a good speed performance, contribute to a large power, widely speed range, and easy to control, so it is widely used in electric drive systems. With the motor control required for continuous improvement, common single MCU can't meet requirements of the motor control well, DSP technology just for the advanced control theory and complex control algorithm implementation provides a strong support.This design uses the American TI company specially for motor control design of digital 16 fixed-point DSP controller TMS320LF2407 as the controller. The chip set DSP signal the high processing capacity and used in motor control optimization the periphery of the circuit in a body, high performance driving control technology to provide reliable and efficient signal processing and control hardware. Motor control system is composed of detection devices, the main controller, power driver and PC componen ts, whichDSP controller is a key part of the motor control system , responsible for the motor feedback signal processing and output control sig n al to control the rotation of the motor.Keywords:DC motor, DSP, PID controller, PWM目录第1章绪论课题概述课题研究的背景电气传动是以电动机的转矩和转速为控制对象,按生产机械工艺要求进行电动机转速控制的自动化系统;根据电动机的不同,工程上通常把电气传动分为直流电气传动和交流电气传动两大类;纵观电气传动的发展过程,交流与直流两大电气传动并存于各个时期的各大工业领域内,虽然它们所处的地位和作用不同,但它们始终随着工业技术而发展的;特别是随着电力电子技术和微电子学的发展,在相互竞争中完善着自身,发生着变更;由于直流电机具有良好的线性调速特性,简单的控制性能,因此在工业场合应用广泛;近代,随着生产技术的发展,对电气传动在起制动、正反转以及调速能力、静态特性和动态响应方面都提出了更高的要求,所以计算机控制电力拖动控制系统已成为计算机应用的一个重要内容;直流调速系统在工农业生产中有着更为广泛的应用;随着计算机技术和电力电子技术的飞速发展,两者的有机结合使电力拖动控制技术产生了新的变化;电力电子技术、计算机技术和直流拖动技术的组合是技术领域的交叉,具有广泛的应用前景;有不少的研究者己经在用DSP作为控制器进行研究;直流调速控制系统的控制方法经历了机械式的、双机组式的、分立元件电路式的、集成电路式的、单片机式的发展过程;随着数字信号处理器DSP的出现,给直流调速控制提供了新的手段和方法;将计算机技术的最新发展成果运用在直流调速系统中,在经典控制的基础之上探讨一种新的控制方法,为计算机技术在电力拖动控制系统中的应用做些研究性的工作;用计算机技术实现直流调速控制系统,计算机的选型很多;经过选择,选取DSP芯片作为控制器;直流调速系统的内容十分丰富,有开环控制系统,有闭环控制系统;有单闭环控制系统,有双闭环控制系统和多闭环控制系统;有可逆调速系统,有不可逆调速系统等9;开展本课题研究的控制对象是闭环直流调速系统;研究的目的是利用计算机硬件和软件发展的最新成果,对控制系统升级进行研究;研究工作是在对控制对象全面回顾总结的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件环境的探讨,控制策略和控制算法的探讨等内容;目前,对于控制对象的研究和讨论很多,有比较成熟的理论,但实现控制的方法和手段随着技术的发展,特别是计算机技术的发展,不断地进行技术升级;这个过程经历了从分立元件控制,集成电路控制和单片计算机控制等过程;每一次的技术升级都是控制系统的性能有较大地提高和改进;随着新的控制芯片的出现,给技术升级提供了新的可能;电机控制是DSP应用的主要领域,随着社会的发展以及对电机控制要求的日益提高,DSP将在电机控制领域中发挥越来越重要的作用;课题研究的目的及意义长期以来,直流电机一直占据着速度控制和位置控制的统治地位;由于它具有良好的线性调速特性,简单的控制性能,高质高效的平滑运转的特性,尽管近年来不断受到其它电动机的挑战,但到目前为止,就其性能来说仍无其它电动机可比;在控制系统的构成上,本课题对硬件电路进行了设计,而这个硬件系统具有一定的通用性,也即可以将它作为一个硬件平台,在其它过程控制中应用;另外,由DSP的特点量身订做,可以在其它的控制系统中根据不同的要求进行外围电路的设计,进而来构成硬件系统,这样既便于设计思想的物化,又使得设计系统更加紧凑,不浪费资源;本直流电机控制系统采用经典的数字增量式PID控制算法,在本文中对数字增量式PID控制的理论、设计和实现进行了较为详细的论述; 课题研究的现状近些年来,随着现代电力电子技术、控制技术和计算机技术的发展,电机的应用技术也得到了进一步的发展,新产品、新技术层出不穷;除了人们己经熟悉的普通电机外,许多不同用途的特种电机也不断问世,如广泛应用于办公设备的无刷直流电机和高精度的步进电机、用于照相机的超声波电机、用于心脏血液循环系统的微型电机等等;另一方面,由于应用了电力电子技术,电机的控制技术变得更加灵活,效率也更高,如变频器控制的异步电机及伺服系统即是典型的例子1;在实际中,电机应用已由过去简单的起停控制、提供动力为目的应用,上升到对其速度、位置、转矩等进行精确的控制,使被驱动的机械运动符合预想的要求;例如在工业自动化、办公室自动化和家庭住宅自动化方面使用大量的电机,几乎都采用功率器件进行控制,将预定的控制方案、规划指令转变成期望的机械运动;这种新型控制技术己经不是传统的“电机控制”或“电气传动”而是“运动控制”;运动控制使被控机械实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制;因此现代电机控制技术离不开功率器件和电机控制器的发展5;电机的控制器经历了从模拟控制器到数字控制器的发展;由于模拟器件的一些参数受外界因素影响较大,并且它的精度也差;所有这些都使得模拟控制器的可重复性比较差,控制效果不理想,因此调速电机的控制器逐渐朝数字化方向发展;数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等优点;随着现有的工业电气传动、自动控制和家电领域对电机控制产品需求的增加用户也不断提高对电机控制技术的要求5;总是希望能在驱动系统中集成更多的功能,达到更高的性能;许多设备试图使用8位或是准16位的微处理器实现电机的闭环控制,然而它们的内部体系结构和计算功能都阻碍了这一要求的实现;例如,在很多领域如工业、家电和汽车,用户希望使用效率高且去掉霍尔效应传感器的电机;这种电机的控制可以通过使用先进的电机控制理论、采用高效的控制算法来实现;但是这可能超出上述微处理器的计算能力;使用高性能的数字信号处理器DSP来解决电机控制器不断增加的计算量和速度需求是目前较为普遍的做法;将一系列外围设备如模数转换器A/D、脉宽调制发生器PWM和数字信号处理器DSP集成在一起,就获得一个既功能强大又非常经济的电机控制专用的DSP芯片;近年来,各种集成化的一单片DSP的性能得到很大的改善,软件和开发工具越来越多,越来越好,价格却大幅度降低;低端产品的价格已接近单片机的价格水平,但却比单片机具有更高的性能价格比;越来越多的单片机用户开始选用DSP器件来提高产品性能,DSP器件取代高档单片机的时机己成熟13;首先,与单片机相比,DSP器件具有较高的集成度;DSP具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO缓冲器,提供高速、同步串口和标准异步串口;有的片内集成了A/D和采样/保持电路,可提供PWM输出;更为不同的是,DSP器件为精简指令器件,大多数指令都能在一个周期内完成,并且通过并行处理技术,使一个指令周期内可完成多条指令;同时DSP采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据;又配有内置高速硬件乘法器、多级流水线,使DSP 器件具有高速的数据计算能力;而单片机为复杂指令系统计算机CISC,多数指令要2-3个指令周期来完成;单片机采用冯.诺依曼结构,程序和数据在同一空间存取,同一时刻只能单独访问指令和数据、ALU只能做加法,乘法需要由软件来实现,因此占用较多的指令周期,也就是说速度比较慢;所以,结构上的差异使DSP器件比准16位单片机单指令执行时间快8-10倍,完成一次乘法运算快16-30倍;DSP器件还提供了高度专业化的指令集,提供了FFT快速傅立叶变换和滤波器的运算;此外,DSP器件提供了JTAG Joint Test Action Group接口,具有更先进的开发手段,批量生产测试更方便;其次,基于DSP芯片制造的电机控制器可以降低对传感器等外围器件的要求;通过复杂的算法达到同样的控制性能,降低成本,可靠性高,有利于专利技术的保密;现在各大DSP生产厂家都推出自己的内嵌式DSP电机控制专用集成电路;如占DSP市场份额45%的美国德州仪器公司,凭借自己的实力,推出了电机控制器专用DSP--TMS320C24x;新的TMS320C24x DSP采用TI公司TMS320C2xLP16位定点DSP核,并集成了一个电机事件管理器,后者的特点是可以最佳方式实现对电机的控制;该器件利用TI的可重用DSP核心技术,显示出TI的特殊能力一通过在单一芯片上集成一个DSP和混合信号外设件,制造出面向各种应用的DSP方案;TMS320C24x作为第一个数字电机控制器的专用DSP系列,可支持用于电机控制的指令产生、控制算法处理、数据交流和系统监控等功能;集成的DSP核、最佳化电机控制器事件管理器和单片式A/D设计等诸多功能块加在一起,就可以提供一个单芯片式数字电机控制方案;系列中的TMS320LF2407包括一个30MIPSDSP核、两个事件管理器、32位的中央算术逻辑单元、多达16通道的IO位A/D转换器、64K的I/0空间和一个32K字的闪速存储器,它利用TMS320的定点DSP软件开发工具和JTAG仿真支持,可使电机控制领域的研发人员方便地调试控制器和脱机使用;第三,DSP运算速度快,控制策略中可以使用先进的实时算法,如自适应控制、卡尔曼滤波、状态预估等,大大提高控制系统的品质;而且DSP 控制软件可用C语言或汇编语言编写或者二者嵌套使用;因此采用DSP 芯片制造的电机控制器便于用户的调试和应用;最后,在越来越多的场合,如电动汽车、纺织行业、水泵变频调速系统等,他们往往是规模比较大,时序、组合逻辑都很复杂的情况,这时如果同时运用DSP芯片和一些其它的可编程逻辑器件可以大大减小系统的体积、提高系统运算能力,实现复杂的实时控制;课题研究的内容本文主要研究基于DSP的直流电机控制系统,通过控制算法和调速方法的分析,利用电机调速、DSP芯片控制、上位机通信、按键模块等的基本原理及相关知识,实现对电机的速度控制;整个系统的基本思想就是利用DSP内部资源产生可控制的脉冲控制整流电压,改变串入主回路中的直流电动机的电磁转矩,实现电动机的转速调节;研究内容包括如下:1电机控制系统功能实现的分析;2控制算法与调速方法的分析与设计;3电机驱动、电源模块、按键模块、测速、显示模块的硬件设计与实现;4系统主程序、按键扫描、控制算法、测速、电机速度控制等程序的分析、设计与实现;5电机控制系统整机测试与实现;第2章系统总体设计系统的组成由图2-1可知,该设计包含DSP控制单元、功率驱动单元、检测单元、显示单元、通信单元五个部分;DSP控制单元:对来自上位机的给定信号和来自传感器的反馈信号按一定的算法进行处理,输出相应的PWM波,经过光电隔离部分,送给功率驱动单元;功率驱动单元:对来自DSP控制器的PWM信号进行功率放大后送给直流电动机的电枢两端,驱动电机与负载;速度检测单元:采集电机的速度信息,并送给主控制器;显示单元:将采集到的电机转速信息予以显示;通信单元:负责主控制器与上位机及外设的信息交换;图2-1 系统总体框图2. 2 DSP芯片选择直流电机的调速控制系统一般采用电机专用微处理器,其种类主要包括复杂指令集CISC处理器如工NTEL196MX系列单片微控制器,精简指令集RISC如日立公司SH704x系列单片微控制器,哈佛结构DSP处理器如TI公司T145320F24X系列DSP;一般用于直流电机控制的徽处理器性能要满足以下几个方面:1指令执行速度;2片上程序存储器、数据存储器的容量及程序存储器的类型;3乘除法、积和运算和坐标变换、向量计算等控制计算功能;4中断功能和中断通道的数目;5用于PWM生成硬件单元和可实现的调制范围以及死区调节单元;6用于输入模拟信号的A/D转换器;7价格及开发环境;DSP一般采用哈佛或者改进的哈佛结构,程序空间和数据空间分离,程序的数据总线和地址总线分离,数据的数据总线和地址总线分离;这种结构允许同时访问程序指令和数据,在同一机器周期里完成读和写,并行支持在单机器时钟内同时执行算术、逻辑和位处理操作,极大地提高了执行速度,并且电机控制专用DSP具备丰富的设备和接口资源;TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于国际领先地位,是公认的世界DSP霸主;本论文选择了TI公司的TMS320LF2407DSP作为直流电机控制系统的微处理器;TMS320LF2407 DSP 控制器介绍TMS320LF2407 DSP是专为数字电机控制和其它控制系统而设计的;是当前集成度最高、性能最强的运动控制芯片;不但有高性能的C2XX CPU 内核,配置有高速数字信号处理的结构,且有控制电机的外设;它将数字信号处理的高速运算功能,与面向电机的强大控制功能结合在一起,成为传统的多微处理器单元和多片系统的理想替代品12;TMS320LF2407的片内外设模块包括:事件管理模块EV、数字输入/输出模块I/O、模数转换模块ADC、串行外设模块SPI、串行通信模块SCI、局域网控制器模块CAN;1事件管理器EVA和EVBTMS320LF2407提供两个事件管理器EVA和EVB模块,每个模块包含两个通用GP定时器、3个全比较/PWM单元、3个捕获单元和一个正交编码脉冲电路;事件管理器位用户提供了众多的功能和特点,在运动控制和电机控制中特别有用;通用定时器:LF2407共有4个通用定时器,每个定时器包括:一个16位的定时器增/减计数的计数器TxCNT;一个16位的定时器比较寄存器TxCMPR;一个16位的定时器周期寄存器TxPR;一个16位的定时器控制寄存器TxCON;可选择的内部或外部输入时钟;各个GP定时器之间可以彼此独立工作或相互同步工作;与其有关的比较寄存器可用作比较功能或PWM波形发生;每个GP定时器的内部或外部的输入时钟都可进行可编程的预定标,它还向事件管理器的子模块提供时毕;每个通用定时器有4种可选择的操作模式:停止/保持模式、连续增计数模式、定向增/减计数模式、逢续增/减计数模式;当计数器值和比较寄存器值相等时,比较匹配发生,从而在定时器的PWM输出引脚TxPWM/TxCMP上产生CMP/PWM 脉冲,可设置控制寄存器GPTCON中的相应位,选择下溢、比较匹配或周期匹配时自动启动片内A/D转换器;比较单元:LF2407有6个比较单元,每个EV模块有3个;每个比较单元又有两个相关的PWM输出,比较单元的时基由通用定时器1 EVA模块和通用定时器3 EVB模块提供;每个比较单元和通用定时器1或通用定时器3,死区单元及输出逻辑可在两个特定的器件引脚上产生一对具有可编程死区以及输出极性可控的PWM输出;在每个EV模块中有6个这种与比较单元相关的PWM输出引脚,这6个特定的PWM输出引脚可用于控制三相交流感应电机和直流无刷电机;由比较方式控制寄存器所控制的多种输出方式能轻易地控制应用广泛的开关磁阻电机和同步磁阻电机;捕获单元:捕获单元被用于高速I/O的自动管理器,它监视输入引脚上信号的变化,记录输入事件发生时的计数器值,即记录下所发生事件的时刻;该部件的工作由内部定时器同步,不用CPU干预;LF2407共有6个捕获单元,CAP1,CAP2,CAP3可选择通用定时器1或2作为它们的时基,但CAP1和CAP2一定要选择相同的定时器作为它们的时基;CAP4,CAP5,CAP6可选择通用定时器3或4作为它们的时基,同样CAP4和CAP5也一定要选择相同的定时器作为它们的时基;每个单元各有一个两级的FIFO缓冲堆栈;当捕获发生时,相应的中断标志被置位,并向CPU发中断请求;若中断标志己被置位,捕获单元还将启动片内A/D转换器;正交编码脉冲QEP单元:常用的位置反馈检测元件为光电编码器或光栅尺,它直接将电机角度和位移的模拟信号转换为数字信号,其输出一般有相位差为90°的A、B两路信号和同步脉冲信号C;A、B两路脉冲可直接作为LF2407的CAP1/QEP1和CAP2/QEP2引脚的输入;正交编码脉冲电路的时基由通用定时器2或通用定时器4提供,但通用定时器必须设置成定向增/减计数模式,并以正交编码脉冲电路作为时钟源;2数字输入/输出模块I/ODSP器件的数子输入/输出引脚均为功能复用引脚;即这些引脚既可作为通用I/O功能双向数据输入/输出引脚,也可作特殊功能PWM输出、捕获输入、串行输入输出等引脚;数子I/O模块负责对这些引脚进行控制和设置;两种功能的选择由I/O复用控制寄存器MCRx,x=A,B,C来控制;当引脚作为通用I/O时,由数据和方向控制寄存器PxDATDIR,x=A,B,C,D,E,F指出各I/O引脚的数据方向输入还是输出和当前引脚对应的电平高或低;读通用I/O引脚的电平或向引脚输出电平,实际上是对相应的寄存器PxDATDIR进行读写操作;3模数转换器ADC模块在自动控制系统中,被控制或被检测的对象,如温度、压力、流量、速度等都是连续变化的物理量,通过适当的传感器如温度传感器、压力传感器、光电传感器等将他们转换为连续变化的电压或电流即模拟量;模数转换器ADC就是用来讲这些模拟电压或电流转换成计算机能够识别的数字量的模块;TMS320LF2407期间内部有一个10为的模数转换器ADC;该模块能够对16个模拟输入信号进行采样/保持和A/D转换,通道的转换顺序可以编程选择;4串行通信接口SCI模块2407器件的串行通信接口SCI模块是一个标准的通信异步接收/发送UART可编程串行通信接口;SCI支持CPU与其他异步串口采用标准不返回零NRZ模块进行异步串行数字通信;SCI有空闲线和地址位两种多处理器通信方式;两个输入/输出引脚:SCIRXDSCI接收数据引脚和SCITXDSCI发送数据引脚;SCI通过一个16位的波特率选择寄存器,可编程选择64K种不同速率的波特率;SCI支持半双工和全双工操作,发送器和接收器的操作可以通过中断或转换状态标志来完成;5串行外设接口SPI模块串行外设接口SPI模块是一个高速同步串行输入/输出I/O口,它能使可编程长度1—16位的串行位流以可编程的位传输速率输入或输出器件;SPI可作为一种串行总线标准,以同步方式实现两个设备之间的信息交换,即两个设备在同一时钟下工作;SPI通常用于DSP控制器与外部设备或其他控制器之间的通信,用SPI可以构成多机通信系统,SPI还可以作为移位寄存器、显示驱动器和模数转换器ADC等器件的外设扩展口;6CAN控制器模块LF24xx系列DSP控制器作为第一个具有片上CAN控制模块的DSP芯片,给用户提供一个设计分布式或网络化运动控制系统的无限可能;CAN总线是一种多主总线,通信介质可以是绞线、同轴电缆或光导纤维,通信速率可达1 Mbps,通信距离可达10km;CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,使网络内的节点个数在理论上不受限制;由于CAN 总线具有较强的纠错能力,支持差分收发,因而适合高干扰环境,并具有较远的传输距离;2407的CAN控制器模块是一个16位的外设模块,支持CAN2. 0B协议;CAN模块有6个邮箱MBOX0—MBOX5;有用于0,1,2和3号的邮箱的本地屏蔽寄存器和15个控制/状态寄存器;CAN模块既有可编程的位速率、中断方式和CAN总线唤醒功能;自动回复远程请求;自动再发送功能在发送时出错或仲裁是丢失数据的情况下;总线出错诊断和自测模式; 硬件方案论证测速传感器的选择方案一:使用测速发电机,输出电动势E和转速n成线性关系,即E=kn,其中k是常数;改变旋转方向时,输出电动势的极性即相应改变;方案二:采用霍尔传感器,霍尔元件是磁敏元件,在被测的旋转体上装一磁体,旋转时,每当磁体经过霍尔元件,霍尔元件就发出一个信号,经放大整形得到脉冲信号,送运算;方案三:在电机的转轴上套一码盘,利用光电对管测脉冲,每转一圈OUT端输出若干个脉冲;本设计中码盘每转一圈,输出4个脉冲经比较,方案一中的测速放电机安装不如方案二中霍尔元件安装方便,并且准确率也没方案二的高,并且方案二不需A/D转换,直接可以被DSP接收;但方案二的霍尔传感器的采购不是很方便,故采用方案三,它具有方案二的几乎所有的优点;方案三中可以采用定时的方法:是通过定时器记录脉冲的周期T,这样每分钟的转速:M=60/4T=15/T;0也可以采用。
基于数字信号处理器的直流电机弱磁调速系统设计

基于数字信号处理器的直流电机弱磁调速系统设计直流电机的弱磁调速系统可以通过数字信号处理器(DSP)来设计和实现。
以下是一个基于DSP的直流电机弱磁调速系统的设计步骤:1. 系统建模:首先需要对直流电机进行建模,包括电机的动态特性、参数和控制需求等。
可以使用数学模型描述电机的速度、电流和转矩等特性。
2. 选择DSP:根据系统的计算需求和性能要求,选择合适的数字信号处理器。
DSP应具备足够的计算能力和处理速度,以实现对电机控制算法的高效实时计算。
3. 控制算法开发:根据电机的建模结果和控制要求,设计合适的弱磁调速控制算法。
常见的算法包括PID控制、滑模控制等。
根据算法设计控制器结构和参数,考虑到系统稳定性、响应速度和抗干扰性。
4. DSP编程:基于DSP的开发环境,使用所选的编程语言和工具进行DSP程序的开发。
将控制算法实现为DSP的程序代码,并进行编译和调试。
5. 硬件接口设计:DSP需要与电机驱动器、编码器和传感器等硬件设备进行接口连接。
设计合适的硬件接口电路,实现DSP与电机系统的数据传输和控制指令的传递。
6. 系统调试与验证:将DSP程序烧录到DSP芯片,并将硬件连接完成后,进行系统调试和验证。
通过测试和实验验证系统的运行稳定性、响应速度、精度和抗干扰能力等。
7. 系统优化与改进:根据实验结果和实际运行情况,对系统进行优化和改进。
可以调整控制算法的参数、改进硬件接口电路、优化DSP程序等,以提高系统性能和稳定性。
以上是基于DSP的直流电机弱磁调速系统的设计步骤。
通过合理的系统设计和优化,可以实现对直流电机的弱磁调速控制,满足不同应用场景的需求。
《DSP无刷直流电机控制器的设计》范文

《DSP无刷直流电机控制器的设计》篇一一、引言随着现代工业的快速发展,电机控制技术已成为众多领域的关键技术之一。
无刷直流电机(BLDC)以其高效、低噪音、长寿命等特点在众多应用领域中崭露头角。
为了实现精确、稳定的电机控制,本文提出了一种基于DSP(数字信号处理器)的无刷直流电机控制器设计方法。
二、系统设计概述本设计采用DSP作为核心控制器,通过软件算法实现对无刷直流电机的精确控制。
系统主要由DSP控制器、电机驱动电路、传感器电路、电源电路等部分组成。
其中,DSP控制器负责接收传感器信号,进行算法处理后输出控制信号,驱动电机进行工作。
三、DSP控制器设计DSP控制器是本设计的核心部分,其性能直接影响到电机的控制效果。
在DSP选择上,我们应考虑处理速度、功耗、成本等因素,选择适合的DSP芯片。
DSP控制器的主要功能包括:1. 接收传感器信号:通过ADC(模数转换器)将传感器信号转换为数字信号,供DSP处理。
2. 算法处理:根据传感器信号,通过软件算法计算出电机的控制参数,如PWM(脉宽调制)信号的占空比等。
3. 输出控制信号:将计算出的控制参数通过PWM模块输出为控制信号,驱动电机进行工作。
四、电机驱动电路设计电机驱动电路是连接DSP控制器和电机的桥梁,其性能直接影响到电机的运行效果。
驱动电路应具备较高的驱动能力和较低的功耗。
同时,为了保护电机和控制器,驱动电路还应具备过流、过压等保护功能。
五、传感器电路设计传感器电路用于检测电机的运行状态,为DSP控制器提供反馈信号。
常见的传感器包括电流传感器、速度传感器等。
传感器电路应具备较高的精度和较低的噪声,以保证反馈信号的准确性。
六、电源电路设计电源电路为整个系统提供稳定的电源供应。
在设计中,应考虑电源的稳定性、效率、抗干扰能力等因素。
同时,为了降低系统的功耗,应采用低功耗的电源管理策略。
七、软件设计软件设计是DSP无刷直流电机控制器的关键部分。
在软件设计中,应采用合适的算法实现电机的精确控制。
数字信号处理器(DSP)原理与应用.ppt

数字信号处理的实现方法
实现方法 PC机 高级语言 编程 速度 中等 快 慢 应用场合 非嵌入式 非嵌入式 嵌入式 适应性 复杂算法 复杂算法 简单算法
Tianjin University
性价比 较好 中等 较好
PC机+高 速处理
单片机
硬件+ 专用指令
汇编语言 编程
通用DSP
专用DSP
专用指令
硬件+ 专用指令
•机器人视觉
•图像传输/压缩 •同态处理 •模式识别 •工作站
•动画/数字地图
Tianjin University
DSP芯片的主要应用领域
(1)信号处理
•频谱分析
(2)图像处理
•函数发生器
•模式匹配 •地震信号处理 •数字滤波 •锁相环
(3)仪器
(4)声音/语言 (5)控制 (6)军事应用 (7)电信 (8)无线电
MIPS(Million Instruction per second)是 一种评估DSP速度的一个指标。DSP运行频率也 是评估DSP的一个指标,他们二者之间的联系 需要考虑到DSP体系结构(是否多路并行结构、 是执行定点还是浮点运算)。
Tianjin University
价格 商业级 :一般应用;适用于实验室等环境较好 场合; 工业级 :可靠性好;适用于工业现场等环境恶 劣场合; 军品 :可靠性高;适用于各种恶劣场合; 航空级 :可靠性很高;适用于特殊场合;
Tianjin University
血压计
DSP系统基本构成
Tianjin University
输入
抗混叠 滤波 A/D DSP
平滑 滤波 D/A
输出
存储器
Tianjin University
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
100ms时间
Time100msFby=1
Y
DC电源故障检查子程序 DcErrCheckSub()
高压短路故障检查子程序 HvShortCircuitCheckSub()
HCPL060
TMS320LF2407A
旋转变码器
电流检测
电压检测
直流电源
光隔
IPM
PMSM
SPI接口
有源晶振
温度检测
12
控制系统程序需求分析
1.控制对象及输入输出量
1.1.控制对象 永磁电机
1.2.输入量 直流母线电流、直流母线电压、A相电流、C相电流、电机温度、 逆变器温度、电机转子位置信号
1.3.输出量 六路PWM信号、故障信号
概述
9
DSP芯片简介
1.TMS320LF2407A的特征
➢ CMOS技术,3.3V供电,最快指令周期25ns,最大主频40MHZ。 ➢ 和TMS320系列DSP代码兼容。 ➢ 片内程序存储器32K Flash、544字的双口RAM、2K字的单口RAM ➢ 两个事件管理模块EVA、EVB ➢ 可扩展的外部存储器:192K字 ➢ 看门狗定时器模块(WDT) ➢ 10位 A/D转换器最小转换时间500ns ➢ 控制器局域网络(CAN)2.0B模块。 ➢ 串行通信接口(SCI) ➢ 16位串行外设接口模块(SPI) ➢ 基于锁相环的时钟发生器 ➢ 40个 I/O口 ➢ 5个外部中断
译术。
从目前情况来看,提高某一个参数指标,不会明显地影响其它两个指标。 这对于综合运用各种技术改进计算机系统的性能是非常有益的。
11
电机控制系统结构框图
本电机控制系统采用单DSP系统的架构,结构框图如下图所示。
系统电源
CAN总线 通讯接口
PCA82C250
HCPL060
485 通讯接口
SN65176B
隐极同步机;凸极同步机 (3).永磁电机
永磁无刷直流电动机;永磁同步电动机 (4).其他特种电机
开关磁阻电机;步进电机
6
概述
5.主要相关技术发展情况
(1).半导体功率器件 小型化、智能化、高频化、高效化。
(2).数字信号处理器DSP 外围功能、数据处理能力、存储器容量等发展迅速,为电机控 制系统的高性能化、智能化提供了基础。
系统初始化子程序 SysInitSub()
CAN模块初始化子程序 CanInitSub()
SCI模块初始化子程序 SciInitSub()
SPI模块初始化子程序 SpiInitSub()
程序变量初始化子程序 VariableInitSub()
启动故障清除子程序 StartErrClearSub()
旋变复位子程序 RevolveResetSub()
iSqref -
iSdref -
电流PI调节 VSqref 电流PI调节 VSdref
Park 逆变换
VSref VSref
SVPWM
VDC
IPM模块
iSd
iS
ia
Park
Clark
iSq
变换 iS
变换 ib
转速计算
位置信号处理
PMSM 15
1.主程序 流程图
电机控制系统程序流程图
主程序开始
(3).电机控制理论 电机控制策略、状态观测器、滤波器、自适应控制、无传感器控制、 PWM 调制方法、死区补偿等技术的应用大大提高了电机控制系统的性能和可 靠性。
7
概述
6.电机控制理论-控制策略的发展
张博士的讲座中已做了非常详细的说明了。
8
7.先修课程
模拟电路 数字电路 微机原理 单片机 自动控制原理 电力电子器件 电机拖动
10
DSP芯片简介
2.DSP的性能
DSP性能公式:CPU时间 = CPI × IC / 时钟频率 三个参数反映了与体系结构相关的三种技术。 (1).时钟频率反映了DSP实现技术、生产工艺和计算机组织。 (2).CPI是指令时钟数,反映了DSP实现技术、计算机指令集的结构和计
算机组织。 (3).IC是程序执行过程中所处理的指令数,反映了DSP指令集的结构和编
电机控制的DSP程序设计及CAN基础知识
姓 名:叶振锋 时 间:2009年3月26日 公 司:上海电驱动有限公司
1
主要内容
➢ 概述 ➢ DSP芯片简介 ➢ 电机控制系统结构图 ➢ 电机控制系统程序需求分析 ➢ 电机控制系统动态结构图 ➢ 电机控制系统程序流程图 ➢ 电机控制系统程序设计 ➢ 子程序模块设计说明 ➢ 软件设计与调试注意事项 ➢ CAN基础知识
2.资源需求
I/O口、AD采样端口、芯片存储器容量等等
13
电机控制系统程序需求分析
3.时钟频率
晶振、系统时钟、外围时钟、PWM频率等
4.AD采样精度分析
结合硬件进行分析
5.通信说明
通信方式、通信目的。还包含波特率、数据格式等其它说明
14
电机控制系统结构图
TorqSetDby
电流、转矩、速度关系
n
开总中断 INTM=0
CAN接收子程序 CanRxdSub()
Sci接收子程序 SciRxdSub()
SCI发送子程序 SciTxdSub()
20ms时间
N
Time20msFby=1
Y
SCI发送数据计算子程序 SciTxdDataComputeSub()
CAN发送子程序一 CanTxdOneSub()
(2).电机控制专用DSP丰富的外围功能模块,为电机控制带来了许多的便 利。如PWM模块,可产生高分辨率的PWM波形,灵活的产生方式可减 小 EMI和噪音问题,多路PWM输出可以进行多电机控制。
(3).丰富的第三方软硬件资源和开发工具可大大简化系统开发过程
5
概述
4.DSP技术在电机控制的应用情况
常用交流电机控制系统有如下几种: (1).异步电机 (2).电励磁同步电机
2
概述
1.电机控制技术的实现方案
(1).传统模拟控制 (2).微控制器(MCU)控制 (3).数字信号处理器(DSP)控制
3
概述
2.DSP实现的PMSM控制系统结构图
TorqSetDby
电流、转矩、速度关系
n
iSqref -
iSdref -
电流PI调节 VSqref 电流PI调节 VSdref
Park 逆变换
VSref VSref
SVPWM
iSd
iS
ia
Park
Clark
iSq
变换 iS
变换 ib
VDC
IPM模块
转速计算
位置信号处理
P控制系统特点
(1).DSP的高速计算能力,可以完成复杂的信号处理和控制算法,提高采 样频率,控制电力电子外围设备,在此基础上可实现电机的高性能控 制。