离子交换及吸附树脂
离子交换树脂吸附性及去硬度技术大全

离子交换树脂吸附性及去硬度技术大全(1) 对阴离子的吸附强碱性阴离子树脂对无机酸根的吸附的一般顺序为:SO42-> NO3- > Cl- > HCO3- > OH-弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- >PO43- >NO2- > Cl- >醋酸根- > HCO3-(2) 对阳离子的吸附高价离子通常被优先吸附,而低价离子的吸附较弱。
在同价的同类离子中,直径较大的离子的被吸附较强。
一些阳离子被吸附的顺序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+(3) 对有色物的吸附糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。
这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。
这种选择性在稀溶液中较大,在浓溶液中较小。
软化器是用来降低或基本消除原水硬度的装置,其出水残留硬度可降至0.03mmol/L(以1/2Ca2+计)以下。
在软化过程中,当水流过树脂层后的出水硬度超过某一规定值,水质已不符合水质的标准要求时,则交换器中的离子交换树脂将视为“失效”,不再起软化作用,这时,为恢复离子交换树脂的交换能力,通常采用工业食盐水溶液(5%-10%)对离子交换树脂进行再生,又称还原,也就是用食盐中的钠离子将树脂中吸附的钙镁离子置换出来。
其离子反应式:Na++2RCa2+ =R2Na+2Ca+Na++2RMg2+=R2Na+2Mg2+采用钠型阳离子交换树脂C100E(RNa)来进行软化处理,用阳离子交换树脂中可交换的阳离子(如Na+、H+),把水中所含的钙、镁离子交换出来,这一过程称为水的软化过程,该过程的离子反应式如下:Ca2++2RNa=R2Ca+2Na+Mg2++2RNa=R2Mg+2Na+水中的Ca2+ 、Mg2+被RNa型树脂中的Na+置换出来以后,就存留在树脂中,使离子交换树脂由RNa型变成R2Ca 或R2Mg型树脂。
第三章离子交换和吸附1

扩散对电中性的极小偏差,除了能以电势差 表现出来外,用化学方法是无法测出的。 道南排斥存在如下基本规律:
( 1 )树脂内部与外部水溶液之间浓度差越大, Edon 越大, 排斥作用越强,电解质的非交换吸入量就越小。 (2)当树脂的交联度增大或交换容量增大时,其内部反 离子浓度亦将增大,如果此时外部溶液电解质浓度不 变,则Edon大,电解质的非交换吸入量将会减少。 (3)排斥作用与静电作用力有关,因此: A 同离子价数越高,越受排斥,如 NaCl 与 Na2SO4 相比较,后者更难以中性电解质形式进入阳树脂。 B 反离子价数越高,排斥作用越弱,如 NaCl 与 CaCl2比,后者更易以中性分子形式进入阳树脂内。
第三章 离子交换与吸附法
§3.1 概述 离子交换树脂吸附与吸附剂吸附都是从溶 液中将溶质组分转移至固相的方法,统称为吸 附法,在吸附平衡特性,动力学及使用技术与 设备方面均相同或相似,但它们的机理并不一 样,离子交换树脂的吸附作用主要是通过离子 间的静电引力发生的,是等当量的离子交换, 而一般的吸附剂不存在这种等当量交换作用, 吸附对象是分子,借助的是物理作用力或化学 键作用。
q表示A在树脂相中的平衡浓度,C表示A 在溶液中的平衡浓度;同时以Q表示A+ B在树脂相中平衡浓度,C0表示A+B在 溶液相中的平衡浓度
C ) q/Q(1 C) C [ ] q(C ~ [RA] B 0 0 K q) q) C (1 [ RB ][ ] (Q C A Q C 0
(2)Vermeulen准数判断法
D D 4 . 8Q p ( ) P V e e D Co 2
uR Pe 3 ( 1 )D
1 2
ε -床层空隙率,ε
-颗粒内孔隙率, D、D -两相中离子扩散系数,u -液体流速 R -树脂颗粒半径(m) 当Ve<0.3 为PDC控制,Ve>3.0为FDC控 制,0.3<Ve<3.0为PDC、FDC皆起作用的中间 状态。
离子交换树脂的吸附量

离子交换树脂的吸附量离子交换树脂是一种常用的吸附材料,具有很高的吸附能力。
它的吸附量取决于多个因素,如树脂类型、离子浓度、温度等。
本文将从这些因素出发,探讨离子交换树脂的吸附量。
树脂类型是影响离子交换树脂吸附量的关键因素之一。
不同类型的树脂具有不同的结构和功能,因此其吸附量也会有所差异。
常见的离子交换树脂包括强酸型树脂、弱酸型树脂、强碱型树脂和弱碱型树脂。
强酸型树脂对酸性离子有较高的吸附能力,而强碱型树脂对碱性离子有较高的吸附能力。
因此,在选择树脂时,需要根据待吸附离子的性质来确定合适的树脂类型,以达到最佳的吸附效果。
离子浓度也会对离子交换树脂的吸附量产生影响。
一般来说,离子浓度越高,树脂的吸附量也会相应增加。
这是因为离子浓度越高,离子交换树脂中的活性位点与离子之间的竞争也就越激烈,从而增加了吸附的可能性。
但是,当离子浓度超过一定范围时,吸附量会饱和,此时再增加离子浓度已经无法提高吸附量。
温度也是影响离子交换树脂吸附量的重要因素。
一般来说,温度越高,树脂的吸附量也会相应增加。
这是因为温度的升高可以增加树脂表面的扩散速率,从而加快离子与树脂之间的反应速度,提高吸附效率。
但是,当温度超过某一临界值时,吸附量可能会下降,这是因为高温会导致树脂的结构变化,从而降低其吸附能力。
pH值也会对离子交换树脂的吸附量产生影响。
对于强酸型树脂和强碱型树脂来说,pH值越低,其吸附量越高;而对于弱酸型树脂和弱碱型树脂来说,pH值越高,其吸附量越高。
这是因为pH值的变化会改变树脂表面的电荷状态,进而影响与树脂表面相互作用的离子的吸附行为。
离子交换树脂的吸附量还受到其他因素的影响,如树脂的粒径、树脂床层厚度、流速等。
较小的树脂粒径和较薄的树脂床层可以增加树脂与溶液的接触面积,从而提高吸附效率。
较低的流速可以增加离子在树脂床层中停留的时间,有利于吸附过程的进行。
离子交换树脂的吸附量受到多个因素的影响,包括树脂类型、离子浓度、温度、pH值等。
离子交换和吸附

Yb表观选择性系数 。 给定X与后,Y的值随Co而变化。 3.2.1.5 分配比与分离系数
q C
用湿树脂体积表示时λ 为无因次的量,用 干树脂重量表示时,λ 的单位为m3/kg。
定义为交换平衡中的A、B的分离系 数,它等于A、B的分配比的比值
[ Na ] [Cl ]
[ Na ][Cl ] [Cl ]
[ Na ] [ R ] [Cl ]
2
[ Na ][C l ] ([R ] [Cl ])[Cl ]
[C l ] [Cl ] [ R ][Cl ]
2 2
2 ] ] [Cl [Cl 2
[C l ] [Cl ]
• 树脂中 [R ] 浓度很高时,同离子[Cl ]浓度 很小,阳离子交换树脂中的固定离子 [R ] 可高达5mol/L,故它的同离子进入树脂中 的量极微。
3.2.3.2 道南位与道南排斥
如果RA型树脂与AY型电解质水溶液接触, 因为树脂上的反离子与溶液中的可交换离 子为同一种离子A,所以从表面上看,没有 离子交换反应发生。但由于树脂中的微孔 的毛细管吸入作用,中性电解质AY仍可被 吸入交换剂内,只不过这时A和Y都不占据 交换剂中的交换位置,这种作用称为非交 换吸入。
§3.2
离子交换平衡
3.2.1 基本概念 阳离子交换树脂的可交换离子是阳离子(又称反 离子),或者说阳离子交换树脂阻止同离子(阴离子) 进入树脂相而允许反离子(阳离子)进入树脂相。阴 离子交换树脂亦然,只不过阴树脂的同离子是阳离子, 反离子是阴离子。 离子交换过程: (1)吸附—漂洗—解吸 (2)吸附—漂洗—解吸—漂洗 (3)吸附—漂洗—淋洗—解吸—漂洗
第二章离子交换树脂

将100 g干燥球状共聚物置于二氯乙烷中溶胀。加
入500 g浓硫酸(98%),于95~100℃下加热磺化5~
10 h。反应结束后,蒸去溶剂,过剩的硫酸用水慢慢
洗去。然后用氢氧化钠处理,使之转换成Na型树脂,
即得成品。 这种树脂的交换容量约于为它5们H+m的为m贮可o存自l/g稳由。定活性动不的好离,子且。有由
0.66-0.73
湿真密度 (g/ml) 1.04-1.08
粒度(0.3151.25mm)
≥95
主要用于纯水及高纯
水制备、糖液脱色、生
化制品,放射性元素的
提炼。
20
大孔弱碱性丙烯酸系阴离子
出厂形式:钠型
指标名称
指标
含水量%
全交换容量 (mmol/g干)
60-65 ≥7.0
湿视密度 (g/ml) 0.65-0.75
2.交联度:以7~10%为宜
3.含水率
树脂的含水率以每克树脂(在水中充分膨胀)所含水分 的百分比
树脂的含水率相应地反映了树脂网架中的孔隙率
4.交换容量
单位质量或单位体积的离子交换树脂所带功能基团中可交换 的离子数量,以mmol/g(干树脂),或mmol/ml(湿树脂)为单位。4
球形珠状颗粒,颗粒直径0.3-1.2mm。
氧化还原树脂(能进行氧化还原反应)
螯合树脂(含有螯合基团,去除金属离子)
蛇笼树脂
11
(1)按树脂的孔结构分类
离子交换树脂分为凝胶型、大孔型和载体型三类。
不同孔结构离子交换树脂的模型 12
(一)凝胶型离子交换树脂
外观透明、均相、树脂表面光滑,球粒内部没有大 的毛细孔。 在水中会溶胀成凝胶状,并呈现大分子链的间隙孔, 无机小分子可自由通过;在无水状态下,凝胶型离子交 换树脂的分子链紧缩,体积缩小,无机小分子无法通过。 所以,这类离子交换树脂在干燥条件下或油类中将丧失 离子交换功能。
环境工程学(王玉恒)重点-第2章 第2(2)节 离子交换和吸附

※再生方法包括:加热再生法、药剂再生法、
化学氧化法、生物法。常采用前两种方法。
25
(一)吸附剂
1. 活性炭
※
分为低温(<200℃)和高温(炭 化:300~700 ℃;活化:700~1000 ℃ )加热再生。 前者适用于吸附了高浓度的简单 低分子有机物(如某些碳氢化合物和 芳香族有机物)的活性炭再生;可直 接在吸附塔内进行。 后者适用于水处理后粒状活性炭 的再生,分脱水、干燥、炭化、活化( 再生炉中进行)和冷却5步。再生系统 有脱水装置、再生炉、活性炭输送系 统等组成; 高温加热再生特点:吸附性能恢 复率高(95%以上),再生时间短; 再生设备造价高,能耗大,需严格控 26 制运行条件。
比表面积:可达500-1700m2/g
吸附量除与比表面积有关外,还于细孔的形状和 分布有关。 细孔的形状:圆桶形,圆锥形,瓶形,平板形, 毛细管形等,有效半径为1-10000 nm。
20
(一)吸附剂 (2)活性碳的构造
根据杜必宁的分类,细孔分为(※):
A、 小孔(微孔):孔径在2nm以下,其表面积占总表面 积的95%以上,吸附量主要由小孔支配。
加热再生法
再 生 方 法
※
药剂再生法
化学氧化法 生物法
(一)吸附剂
1. 活性炭
※ 分无机药剂和有机溶剂再生法; 前者利用无机酸碱溶液(硫酸、 盐酸、氢氧化钠等)使污染物脱附; 后者利用有机溶剂(苯、丙酮、 甲醇等)萃取吸附的有机物;
加热再生法
再 生 方 法
※
药剂再生法
可直接在吸附塔内进行;
化学氧化法 生物法
(4)活性碳的特点(补充)
A、具有良好的吸附性能和化学稳定性
B、抗腐蚀性能好
离子交换树脂吸附原理

离子交换树脂吸附原理离子交换树脂啊,就像是一个个超级小的魔法精灵。
你看,它是一种带有官能团(有交换离子的活性基团)的网状结构高分子化合物。
这官能团就像是它的魔法棒,让它具备了特殊的吸附能力。
咱先说说这树脂的结构。
它的网状结构就像是一个超级复杂的小迷宫。
这个迷宫有很多小房间,而官能团就分布在这些小房间的墙壁上。
当溶液里的离子来到这个迷宫的时候,就像小客人走进了一个神秘的地方。
那离子交换树脂怎么吸附离子呢?当含有目标离子的溶液流经离子交换树脂的时候,就像是一群小生物在寻找栖息地。
树脂里的官能团就开始发挥作用啦。
比如说,要是阳离子交换树脂,它的官能团可能是磺酸基之类的。
溶液里的阳离子,像钙离子、镁离子这些,就会被官能团吸引。
这就好比是小磁铁吸引小铁钉一样,官能团就像小磁铁,而那些阳离子就像小铁钉。
阳离子就会离开溶液,跑到树脂的小房间里,和官能团结合在一起。
这时候,树脂就像是一个小旅馆,把这些阳离子小客人给收留啦。
阴离子交换树脂呢,也是类似的道理。
它的官能团可能是季铵基之类的。
溶液里的阴离子,像氯离子、硫酸根离子等,就会被阴离子交换树脂的官能团吸引。
然后阴离子就会进入树脂的网状结构里,和官能团“手拉手”。
而且哦,这个吸附过程是可以动态平衡的呢。
就像是在一个小舞会上,一开始阳离子或者阴离子都往树脂这个舞池里跑。
但是随着舞池里的离子越来越多,也会有一些离子觉得太挤啦,又从舞池里跑回溶液里去。
不过呢,只要溶液里还有很多目标离子,总体上还是会有离子不断地被树脂吸附。
离子交换树脂吸附还有选择性哦。
这就像是它有自己的小偏好。
比如说,有的树脂可能对某种离子的吸附能力特别强,就像有的小旅馆特别欢迎某种类型的客人一样。
这和离子的电荷数、离子半径等因素都有关系。
如果离子的电荷数高,就像它身上带的电量多,就更容易被官能团这个小磁铁吸引。
离子半径小的话,也更容易钻进树脂的小房间里。
离子交换树脂在我们的生活里可帮了大忙啦。
比如说在水处理方面,它可以把水里的钙镁离子吸附掉,这样水就不容易结水垢啦。
离子交换树脂和吸附树脂

第二节 离子交换树脂和吸附树脂的分类
c. 载体型离子交换树脂
一般是将离子交换树脂包覆在硅胶或玻 璃珠等表面上制成。 主要用作液相色谱的固定相,可经受液 相色谱中流动介质的高压,又具有离子 交换功能。
阴离子 交换树脂
强碱型R3-NCl 弱碱型R-NH2、RNR’H、R-NR2’
第二节 离子交换树脂和吸附树脂的分类
螯合树脂:带有螯合基的树脂。 氧化还原树脂:带有氧化还原基的树脂。 两性树脂:带有阳阴两性基的树脂。 热再生树脂:弱酸弱碱的两性树脂可用热水再生。
离 子 交 换 树 脂 的 种 类
第二节 离子交换树脂和吸附树脂的分类
此后,Dow化学公司 Bauman 等人开发了苯乙烯系磺酸型强酸性 离子交换树脂并实现工业化;Rohm & Hass公司进一步研制强碱 性苯乙烯系阴离子交换树脂和弱酸性丙烯酸系阳离子交换树脂。
第一节 离子交换和吸附树脂概述
20世纪50年代末合成出大孔型离子交换树脂。与凝胶型离子交换 树脂相比,大孔型离子交换树脂具有机械强度高、交换速度快和 抗有机污染的优点,因此很快得到广泛的应用。
(2) 按树脂的物理结构分类
a. 凝胶型离子交换树脂
外观透明、表面光滑,具有均相高分子凝 胶结构的离子交换树脂。球粒内部没有大 的毛细孔。 在水中会溶胀形成凝胶状。在无水状态下, 凝胶型离子交换树脂的分子链紧缩。 干燥条件下或油类中将丧失离子交换功能。
第二节 离子交换树脂和吸附树脂的分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换及吸附树脂学习材料一、离子交换和吸附树脂发展简介1、发展史2、常用树脂分类3、树脂的功能二、离子交换树脂结构与性能1、树脂的结构2、树脂的结构与物理性能3、树脂的结构与化学性能4、大孔吸附树脂的结构与性能三、树脂的合成及性能测定1、树脂合成2、树脂功能基团的引入3、树脂的性能测定四、树脂应用技术一)、树脂应用的技术理论和特点二)、树脂应用筛选基本原理生化食品生产三)、树脂在抗生素上的应用四)、树脂的使用方法介绍五)、树脂的污染及处理一、离子交换和吸附树脂发展简介一)、发展史离子交换现象本身广泛地存在于自然界中,离子交换树脂最早诞生在20世纪三、四十年代,当时美国和英国的一些公司广泛的进行离子交换树脂的研究,陆续成功合成出聚苯乙烯、丙稀酸系的离子交换树脂,并逐渐成为一类新兴高分子材料产业,它可以简单地达到物质的分离、纯化、浓缩的目的,而不仅靠结晶、蒸发工艺。
五六十年代离子交换树脂有了较大地发展,大孔结构的树脂问世,先由美国罗姆-哈斯和西德拜耳公司投入生产,其具有交换和吸附的双重功能,为离子交换树脂的广泛应用开辟了新的前景。
随着世界各国对离子交换树脂研究的不断深入,相继又研制出大孔吸附树脂、热再生树脂、两性树脂、獒合树脂、惰性树脂、氧化还原树脂、均孔树脂等,目前离子交换和吸附树脂已成为世界范围内的一大产业,成为功能高分子领域的一重要分支。
我国最早从五十年代初由南开大学和上海医工院开始研制离子交换树脂,虽起步稍晚,但发展很快,到20世纪70年代,全国已建成投产树脂厂60多家,目前全国不同规模的离子交换树脂厂近百家,生产能力达10万吨以上,年产量在5万吨左右。
产品技术方面,通用树脂基本达到国际先进水平,专用树脂稍有差距,主要体现在树脂的专一实用性不强,特别是新兴行业专用树脂品种不全,研究的深度不够。
另外国家的产业政策不明确,无专业归口管理部门,阻滞了该产业的发展。
离子交换树脂和它的应用技术一直是相互促进、相互依存、共同发展的。
以水处理用树脂为例,其应用技术由初期的间歇式工艺、固定床工艺逐步发展到连续交换、逆流技术、双层床、混合床、三层混床等,相应的水处理用树脂品种也由最初单纯的001×7、201×7等发展为五、六个大类几十个品种、规格。
树脂应用的领域不断发展壮大,目前离子交换和吸附等类树脂广泛应用于水处理、医药、生化、食品、化工、核工业、环保等各行业,对我国工业经济发展起着举足轻重的作用。
比如在医药行业,离子交换、吸附工艺与溶媒结晶工艺并驾齐驱、共同发展,其分离、提纯的技术日益成熟,成为医药生产的关键单元操作过程。
二)、常用树脂分类目前使用的离子交换树脂大多是以苯乙烯、丙稀酸酯及其衍生物与二乙烯苯共聚或是以酚醛、胺类缩聚作为基体,通过引入不同性质的交换基团,成为一种不溶、不熔的高分子酸、碱或盐。
和低分子的酸、碱一样,根据他们的离解程度,树脂可分为强酸、弱酸、强碱、弱碱性离子交换树脂等,另外还有不含交换基团的大孔吸附剂等。
1、强酸性树脂以苯乙烯—二乙烯苯共聚为基体,引入磺酸基团而成,是当前用途最大、用量最大的一类交换树脂,如:001×7(732#)等,其酸性相当于无机强酸,在任何的PH条件下都可显示交换功能。
2、弱酸性树脂主要是指含有羧酸基、磷酸基、酚基的交换树脂,在水中离解度较小,只能在中性或碱性条件下使用,其中以羧酸基弱酸树脂用途最广,它是由丙稀酸酯类单体和二乙烯苯共聚而成,制药业最初的成就是用于氨基糖甙类抗生素(如链霉素)的分离提炼,另外广泛地用于水处理。
3、强碱性树脂是以季胺基为交换基团的树脂,其碱性相当于季胺碱,可在较大PH条件下使用,其骨架是苯乙烯-二乙烯苯共聚体,用途广泛,该类树脂在-OH型时稳定性较差,仅限60度下使用。
4、弱碱性树脂这时指以伯胺、仲胺、叔胺为交换基团的树脂,其在水中离解程度小而呈弱碱性,在中性或酸性介质中使用。
目前使用的主要是丙稀酸系结构的树脂。
5、树脂按物理结构分类1)、凝胶型树脂:外观透明的均相树脂,树脂合成时不加致孔剂,这类树脂的球粒内没有毛细孔。
2)、大孔离子交换树脂;外观不透明的非均相树脂,一般在树脂合成时添加致孔剂,树脂内部有明显的孔道,孔体积一般在0.5毫升/克(树脂),也可更大,比表面积从几到几百平米/克,孔径从几到几万埃,由于这样的孔结构,适宜于交换吸附大分子的物质及在非水溶液中使用。
3)、大孔吸附树脂:这是一类专一性强、发展快、技术要求高的树脂品种,其骨架形式繁多,不引入任何交换基团,作用和活性炭类似,其对不同物质的选择性吸附差异主要由比表面、孔径、孔容、极性等决定,其作用的机理是通过分子间的表面张力实现对物质的吸附,目前该类树脂在制药、生化等行业发挥着重要作用。
6、其他:如热再生树脂、两性树脂、獒合树脂、惰性树脂、氧化还原树脂、均孔树脂等。
三)、树脂的功能离子交换树脂是一种用途极广的高分子材料,其功能有:✶1、离子交换✶2、吸附作用✶3、脱水作用✶4、催化作用✶5、脱色作用等1、离子交换:这是树脂的最基本的功能,主要有:中性盐分解反应、中和反应、复分解反应。
离子交换的反应通常是可逆的,反应方向受溶液中离子的性质、浓度、PH值、温度等因素的影响,利用树脂的可逆反应性质,实现了离子交换树脂的反复再生使用。
2、吸附作用离子交换树脂的吸附功能因大孔型树脂的发展而大大提高,大孔树脂不仅可从极性溶液中吸附弱极性或非极性物质也可从非极性溶液中吸附弱极性物质,另外还可以作为气体吸附剂使用。
3、脱水作用离子交换树脂的换基团是强极性的,有很强的亲水性,因此干燥的强酸树脂可做干燥剂。
4、催化作用离子交换树脂就是高分子的酸、碱,可代替低分子的酸碱用作有机合成的催化剂,如工业上已用于酯化反应、烷基化反应、烯烃水合等,且具有易分离、可再生的特点5、脱色作用色素大多数为阴离子性物质或弱极性物质,大孔离子交换树脂通过其交换和吸附的双重作用达到目的,且使用方便、周期长。
二、离子交换树脂的结构与性能一)、离子交换树脂的结构1、化学结构离子交换树脂是一类在交联的高分子链上带有许多化学基团的功能高分子化合物,这些基团由相反电荷的离子组成,在一定条件下离解,显示交换功能,这种化学结构特征是影响他的物理化学性质的主要因素。
不同类型的树脂具有不同性质的化学基团,如磺酸基、羧酸基、伯、仲、叔、季胺基等,在不同的PH条件下,其离解程度和交换能力有较大的差异。
2、立体交联结构立体交联结构是使树脂在各种水溶液和有机溶剂中表现为不溶不熔和物理、化学性质稳定的根本。
具有双烯烃和单烯烃结构的单体相互聚合才能形成一种体形结构(不同于线形)的骨架,然后根据需要引入不同的化学基团,骨架的紧密程度则是通过调整交联度来控制的。
3、孔结构过去孔结构并不为人们重视,概念也相当模糊,随着合成技术特别是大孔树脂的发展,研究树脂孔结构的变化对离子交换树脂的影响就显得十分重要。
早期树脂的孔一般指树脂的链间距较大,在30埃一下,孔的大小随树脂的收缩和膨胀都引起孔的较大变化,其实并不能称为真正的孔。
后来通过在聚合单体中加入特定的致孔剂,成球后再除去致孔剂,树脂中就形成了真正的毛细孔,可用物理方法测量它。
大孔树脂的孔径比分子间的距离大的多,根据树脂合成条件的不同,孔径可在几十埃至上万埃,孔结构也比较稳定。
二)、树脂结构与物理特性1、粒度离子交换树脂一般是作成球型,常用树脂的颗粒大小为0.30~1.20mm,树脂的粒度常以标准筛(美国标准)目数表示,公式为:球粒直径=16/目数(mm)。
离子交换树脂的粒度在干、湿状态或不同型式下是有较大变化的,从使用角度考虑,湿树脂的粒度值更为重要。
如何选择树脂粒度应根据设备、技术条件来定,在一般水处理中,粒度通常为0.30~1.20mm。
2、水份含量离子交换树脂湿亲水性高分子化合物,总是结合一定量的水分,此外树脂中也有部分游离水。
树脂的含水量受它的交联度、化学基团性质和数目,及结合的反离子的影响。
水分的测定法有干燥法、共沸蒸馏法、KF法。
3、密度离子交换树脂的密度表示法有两种:含水状态时的湿视密度;湿真密度。
树脂密度主要由其骨架结构和结合的化学基团决定的,湿视密度是设计交换装置时的重要参考指标。
4、膨胀度离子交换树脂是由亲油的骨架和亲水的基团构成,其在水、有机溶媒、不同离子态间相互转变时,树脂的体积会发生不同的膨胀或收缩,膨胀度的影响因素有:树脂交联度、基团的性质和数量、基团反离子的性质、介质等。
树脂的膨胀度也是交换装置设计时重要的参数和性能指标,膨胀度过大,装置的利用效率就低。
5、稳定性离子交换树脂的稳定性是十分重要的应用指标,不仅影响树脂的运行,还和使用寿命有关。
树脂的稳定性是一比较笼统的概念,最重要的是指树脂的机械强度、耐热性和化学稳定性等。
三)、离子交换树脂的结构和化学性能1、强型树脂和弱型树脂树脂所带交换基团不同,其进行有效离子交换的条件和能力有较大差异,据此将树脂分为强酸、强碱、弱酸、弱碱等类型。
2、交换容量交换容量是树脂最重要的性能指标,它表示单位量(重量或体积)树脂进行离子交换反应的化学基团总数,反映了树脂对离子的交换吸附能力,在实际应用中,交换容量可分为:总交换容量、工作交换容量和再生交换容量。
3、离子交换选择性指树脂对不同离子交换吸附亲和性的差别,该亲和性受树脂交联度、化学基团性质、溶液的离子浓度和组成等的影响,大体的规律是:多价离子优先;较大尺寸的离子优先;原子序数大者优先等。
总之,树脂的选择系数愈大,离子穿漏愈少,交换吸附能力愈强,处理效果愈好。
四)、大孔吸附树脂的结构与性能大孔吸附树脂是一类具有明显大孔结构和极大比表面积、不同孔径的球状聚合物,对有机物有较大的吸附能力,属典型的表面范德华力作用,但影响因素复杂,目前还不能准确估计某重物质就一定能被某重吸附剂所吸附。
实际经验是:梳水性或无极性分子,或分子的无极性部分,可被非极性表面吸附,亲水性或极性分子,易被极性表面吸附。
被吸附物质只有通过孔道运动到吸附剂的内表面才能吸附,所以高分子吸附树脂的孔径大小对吸附性能有很大的影响,应根据被吸附物质的分子尺寸或分子量靠考虑适当孔径的吸附树脂。
吸附过程常常是在介质中进行,介质性质对吸附作用的影响不可忽视。
一般规律是:一切增加被吸附物质溶解度的因素,如温度、溶剂极性、PH变化,都对吸附不利,反之则有利于吸附。
吸附作为分离和提纯的手段,好的吸附效果不仅只考虑吸附,还必须有好的解吸过程。
正确的使用吸附树脂一般参考一下原则:树脂选择性吸附好;确定适当的吸附条件;选择好的解吸剂。
三、树脂的合成及性能测定1、树脂的合成树脂前体合成的方法主要有两种:悬浮条件下的单体共聚,反向悬浮条件下的缩聚。
树脂前体经各种化学反应引入不同的的化学基团就形成了目前种类繁多的离子交换和吸附树脂。