数电逻辑16个公式
模电数电

第二章 §2.2 逻辑代数中的三种基本运算
: 一、与逻辑(与运算) 与逻辑(与运算) 与逻辑: )均满足时,事件(Y)才能发生。表达式为:Y=A B。 :Y=A•B 与逻辑:仅当决定事件(Y)发生的所有条件(A,B,C· 的电路称为与门。与门的逻辑符号: 与门。 与门
0-1 律:
异或和同或互为反运算
2.基本公式 基本公式
重叠律: A + A = A
A + 0 = A A ⋅1 = A
A +1 = 1 A ⋅ 0 = 0 互补律: A + A′ = 1
A ⋅ A′ = 0
A⋅ A= A
还原律(双重否定律): ( A′)′ = A
3.基本定理 基本定理
三、二-十六转换
将二进制数由小数点开始,整数部分向左 小数部分向右 小数部分向右, 位分成一组, 位补零, 将二进制数由小数点开始,整数部分向左,小数部分向右,每 4 位分成一组,不够 4 位补零,则每组二进制数便是一 位十六进制数。 位十六进制数。 ( 1 0 1 1 1 1 0. 1 0 1 1 0 0 1 )2=(5E.B2 )16
交换律:
A ⋅ B = B ⋅ A A + B = B + A A ⋅ (B + C) = A ⋅ B + A ⋅ C A + B ⋅ C = ( A + B) ⋅ ( A + C )
结合律:
( A ⋅ B) ⋅ C = A ⋅ ( B ⋅ C ) ( A + B ) + C = A + ( B + C ) ( A ⋅ B)′ = A′ + B′ ( A + B)′ = A′ ⋅ B′
数电-数字逻辑基础

无论数字信号还是模拟信号都有传输通路。在电 子电路中,人们将产生、变换、传送、处理模拟信 号的电子电路叫做模拟电路,将产生、存储、变换 、处理、传送数字信号的电子电路叫做数字电路。 数字电路不仅能够完成算术运算,而且能够完成逻 辑运算,具有逻辑推理和逻辑判断的能力,因此被 称为数字逻辑电路或逻辑电路。
为了区别3种不同数制,约定 数后加B表示二进制数 带D或不带字母符号表示十进制数 带H表示十六进制数
5
数制间转换
(1)二←→十六
二进制整数→十六:从右(最低位)向左将二进制数4位1组 划分,最后一组若不足4位则在其左边补0,每组用1位十六进 制数表示
如: 1111111000111B → 1 1111 1100 0111B → 0001 1111 1100 0111B = 1FC7H
14
当决定一件事情的各个条件中,只要有一个具备,这件事情就会发生, 这样的因果关系,叫做与逻辑关系。在图(b)中,只要开关A或者开关B闭 合,灯Y2就会亮所发对灯Y2这件事情来说,开关A、开关B闭合是或的逻辑 关系。非就是反,就是否定。在图(c)中,当开关A断开时,灯Y3亮,闭 合时反而会灭,所以对灯Y3亮来说,开关闭合是一种非逻辑关系。
集电极开路门简称OC门,它是将TTL与非逻辑电路输出级的倒相器V5管 的集电极有源负载V3、V4及电阻R4、R5去掉,保持V5管集电极开路而得到 的。由于V5管集电极开路,因此使用时必须通过外部上拉电阻RL接至电源 EC。EC可以是不同于UCC的另一个电源。OC门的逻辑符号如图所示。
A
&
A
F
F
B
B
(a)
≥1 Y5 A B
A B
A B
& ≥1
数电第一章

4、十六进制( Hexadecimal )
基数R=16,它有16个符号,即0~9和 A(10),B(11),C(12), D(13),E(14),F(15);计数时,逢十六进一
不同数位上的数具有不同的权值16i。
第一章 逻辑代数基础
常用数制对照表
十 0 1 2 3 4 5 6 7 二 0 0 0 0 0 0 0 0 000 001 010 011 100 101 110 111 八 0 1 2 3 4 5 6 7 十 六 0 1 2 3 4 5 6 7 十 8 9 1 1 1 1 1 1 二 1 1 1 1 1 1 1 1 000 001 010 011 100 101 110 111 八 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 十 六 8 9 A B C D E F
小数点为分界
3
2
7
2
3
4
第一章 逻辑代数基础
非十进制间的转换
二进制与十六进制间的转换
以小数点为分界,整数部分向左、小数部分 分向右,每四位分为一组,不足四位的分别在整 数的最高位前和小数的最低位后加“0‖补足,然 后每组用等值的十六进制码替代,即得目的数。 例: 111011.10101 BB= ?(3B.A8)H (111011.10101) = H
权 权 权 权 权
第一章 逻辑代数基础
2、二进制( Binary )
(N)2= ( Kn-1 K1 K0 . K-1 K-m )2
= Kn-1 2n-1++K121+K020+K-1 2-1++K-m 2-m
n1 i K 2 i i m
特点:⑴ i可为-m到n-1之间的任意整数 ⑵ 基数2,逢2进一,即1+1=10 ⑶ K i表示第i位的数符,数码K i从0-1。 ⑷ 不同数位上的数具有不同的权值2i。
数电 第2章 逻辑代数基础

“异或”运算的符号:
异或逻辑的真值表及其逻辑表达式:
A B 0 0 1 1 0 1 0 1
F 0 1 1 0
F A B AB AB
第2章 逻辑代数基础
A B A B A B
F F
异或门的逻辑符号
+ 1
F
第2章 逻辑代数基础
“同或”逻辑与“异或”逻辑相反,它表示当两个输入 变量相同时输出为1;相异时输出为0。 “同或”运算的符号:⊙ “同或”逻辑的真值表及其逻辑表达式:
必须注意,由原式求对偶式时,运算的优先顺序不能改
变, 且式中的非号也保持不变。 前面逻辑代数基本定律和公式,都是成对出现,而且都 是互为对偶的对偶式。 例如,已知 A(B+C)=AB+AC
则有
A+BC=(A+B)(A+C)
第2章 逻辑代数基础
2.2.3 若干常用公式
1. 合并律
AB AB A
V1 A B
&
F
( c) 中国标准
V2
二极管与门
与门的逻辑符号
第2章 逻辑代数基础
2. 或运算(逻辑加)
逻辑关系:?
或逻辑运算真值表:
A B E F
A 0 0 1 1
B 0 1 0 1
F 0 1 1 1
或逻辑实例
或逻辑可以用逻辑表达式表示:
F=A+B
第2章 逻辑代数基础
实现或逻辑的单元电路称为“或门”,其逻辑符号如左下 图所示,其中图 (a)为国际流行符号,图 (b)为 IEEE标准符号,
的B,则可以得到适用于多变量的反演律, 即
A B C A B C A B C
第2章 逻辑代数基础
数电简明教程第一章 逻辑代数基础知识

10
第六章 脉冲产生与整形电路
概述 6.1 施密特触发器
11
12
概 述
一、逻辑代数(布尔代数、开关代数) 逻辑: 事物因果关系的规律 逻辑函数: 逻辑自变量和逻辑结果的关系
Z f ( A, B, C )
逻辑变量取值:0、1 分别代表两种对立的状态 一种状态 另一状态 高电平 真 低电平 假 是 非 有 无 … … 1 0 0 1
概述 3.1 3.2 3.3 3.4 3.5 组合电路的分析方法和设计方法 加法器和数值比较器 编码器和译码器 数据选择器和分配器 用 MSI 实现组合逻辑函数
8
第四章
概述
触发器
4.1 基本触发器 4.2 同步触发器 4.3 边沿触发器 4.4 触发器的电气特性
9
第五章
时序逻辑电路
概述 5.1 时序电路的基本分析和设计方法 5.2 计数器 5.3 寄存器和读/写存储器
( 26 )10 = 16 + 8 + 2 = 24 +23 + 21 = ( 1 1 0 1 0 )2
16 8 4 2 1
20
(3) 二-八转换: 每 3 位二进制数相当一位 8 进制数
( 0 10 101 111 ) 2 ( 257 )8
2 5 7
( 0 1 0 0 1 1 1 0 0 0 0 1. 0 0 0 1 1 0 )2 ( 2 3 4 1 . 0 6 )8
(4) 八-二转换: 每位 8 进制数转换为相应 3 位二进制数
( 31. 47 )8 ( 011 001 . 100 111
)2
)2
( 375.64 )8 ( 011 111 101 . 110 100
数电知识点汇总

数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
数电2-逻辑函数与逻辑门
A 1=? A A 0=? A
4〉同或: A⊙ B = A B=AB + AB 相同为1 相异为0
@ Copyright 杭州电子科技大学 电子信息学院 张珣
二、逻辑函数及其表示方法
1> 真值表
例1:三个人表决一件事情,结果按“少数服从多数”的原则决定,试 建立该逻辑函数。
解:第一步:设置自变量和因变量。 第二步:状态赋值。
@ Copyright 杭州电子科技大学 电子信息学院 张珣
4 逻辑证明
(1)用简单的公式证明略为复杂的公式。 例3.1.1 证明吸收律 A + AB = A + B 证: A + AB= A(B + B) + AB = AB + AB + AB = AB + AB + AB + AB
= A(B + B) + B(A + A) = A + B
@ Copyright 杭州电子科技大学 电子信息学院 张珣
一、与或非代数系统基本逻辑关系
3、非: Y= A Y
(逻辑补) 取反
X 例: 1 = ? 0
0=? 1
A= ? A
*运算顺序:非〉与〉或
@ Copyright 杭州电子科技大学 电子信息学院 张珣
4、其他常用逻辑运算
1>与非 ——由与运算和非运算组合而成。
推广:ABC=ABC=A+B+C A+B+C=A+B+C=A B C
@ Copyright 杭州电子科技大学 电子信息学院 张珣
1、常用公式 2〉AB+AC+BC=AB+AC 证明: AB+AC+BC= AB+AC+(A+A)BC
逻辑函数的公式法化简 数电课件
,X给某个X逻辑1函数表达式增加适当的多余项,
进而消去原来函数中的某些项,从而达到化简逻辑函数的目的。
例2.3.3 化简逻辑函数
F7 AB BC AB BC
方法1
F7 AB BC AB BC
AB BC AB C C A A BC
3. F3 AB ABC AC
ABC A B C
ABC ABC
A
2. 吸收法
利用吸收律Ⅰ
A A;B或吸收A律Ⅱ
例2.3.2 化简下列逻辑函数。
1. F4 AB AD BE A B AD BE AB
,A消去A多B余的A与项B或因子。
例2.3.4 化简逻辑函数
F8 AD AD AB AC BD ACE BE DE F8 AD AD AB AC BD ACE BE DE
A AB AC BD ACE BE DE A C BD BE DE A C BD BE
§2·3 逻辑函数的公式法化简
一个逻辑函数可以有不同形式的表达式。
Ⅰ. “与或”式 Ⅱ. “或与”式 Ⅲ. “与非—与非”式 Ⅳ. “与或非”式 Ⅴ. “或非—或非”式
F AgB AgC
F A Bg A C
F AgB g AgC F AgB AgC
F AB AC
其次,逻辑函数的最简“与或”式最优先。
二、逻辑函数的公式法化简
1. 合并项法
利用合并律
AB A,B将两 个A与项合并成一项,并消去多余的与项和变量。
例2.3.1 化简下列逻辑函数。
1. F1 ABC ABC AB
数电-第一章 数字逻辑概论
几种进制数之间的对应关系
十进制数 D 二进制数 B 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 八进制数 O 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 十六进制数 H 0 1 2 3 4 5 6 7 8 9 A B C D E F
三,八进制
数码为: ~ ;基数是8.用字母O表示 表示. 数码为:0~7;基数是 .用字母 表示. 运算规律:逢八进一, 运算规律:逢八进一,即:7+1=10. + = . 八进制数的权展开式: 八进制数的权展开式:D=∑ki×8i 例如: (207.04)O= 例如: )
2×82 +0×81+7×80+0×8-1+4 ×8-2 × × × × =(135.0625)D
= 011 (
六,十—十六进制之间的转换
将十六进制数转换成十进制数时, 将十六进制数转换成十进制数时,按权展开再 相加即可. 相加即可.
将十进制数转换成十六进制数时,可先转换成 将十进制数转换成十六进制数时, 二进制数, 二进制数,再将得到的二进制数转换成等值的十 六进制数. 六进制数.
1.2 二进制数的算术运算
二,二进制
数码为:0,1; 数码为: , ; 基数是 .用字母 表示. 基数是2.用字母B表示 表示. 运算规律:逢二进一,即:1+1=10. 运算规律:逢二进一, + = . 二进制数的权展开式: 二进制数的权展开式:D=∑ki×2i
数电 第二章 逻辑代数基础(3)
3、将合并后的各个乘积项进行逻辑相加。
数字电子技术
16
•
注意:
• 每一个1必须被圈,不能遗漏。
• 某一个1可以多次被圈,但每个圈至少包含一个新的1。
• 圈越大,则消去的变量越多,合并项越简单。圈内1 的个数应是2n(n=0,1,2…)。
• 合并时应检查是否最简。 • 有时用圈0的方法更简便,但得到的化简结果是原函 数的反函数。
在存在约束项的情况下,由于约束项的值始终等于0, 所以既可以将约束项写进逻辑函数式中,也可以将 约束项从函数式中删掉,而不影响函数值。
数字电子技术
21
二.任意项
在输入变量的某些取值下函数值是1 还是 0皆可,并不影响电路的功能。
由于任意项的取值不影响电路的功能。所 以既可以把任意项写入函数式中,也可以不 写进去。
数字电子技术
28
例: 例1 Y
ABC D ABCD ABC D
给定约束条件为: ABCD+ABC D+ABC D+AB C D+ABCD+ABCD+ABCD=0
AB
00 00 0 01 0
CD
01 1 x 0 x
AD
AD
Y BC 00 A 0 0 1 1
数字电子技术
01 1 1 1
11 1 0
10 1 1
13
二、用卡诺图化简函数
例1: 将 Y ( A, B, C ) AC AC BC BC 化简为最简与或式。 Y BC 00 A 0 0 1 1
01 1 1
11 1 0
10 1 1
Y BC 00 A 0 0 1 1
ABC D ABCD ABC D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数电逻辑16个公式
1.与门公式(AND gate):输出为1当且仅当所有输入都为1,否则输出为0。
公式为:Y = A * B。
2.或门公式(OR gate):输出为0当且仅当所有输入都为0,否
则输出为1。
公式为:Y = A + B。
3.非门公式(NOT gate):输出与输入相反。
公式为:Y = ̅A。
4.异或门公式(XOR gate):输出为1当且仅当输入中只有一个
是1,否则输出为0。
公式为:Y = A ⊕ B。
5.与非门公式(NAND gate):输出为0当且仅当所有输入都为1,否则输出为1。
公式为:Y = ̅(A * B)。
6.或非门公式(NOR gate):输出为1当且仅当所有输入都为0,否则输出为0。
公式为:Y = ̅(A + B)。
7.同或门公式(XNOR gate):输出为1当且仅当输入中所有位都
相同,否则输出为0。
公式为:Y = A ⊙ B。
8.三输入与门公式(3-input AND gate):输出为1当且仅当所有输入都为1,否则输出为0。
公式为:Y = A * B * C。
9.三输入或门公式(3-input OR gate):输出为0当且仅当所有输入都为0,否则输出为1。
公式为:Y = A + B + C。
10.三输入异或门公式(3-input XOR gate):输出为1当且仅当输入中有奇数个1,否则输出为0。
公式为:Y = A ⊕ B ⊕ C。
11.三输入与非门公式(3-input NAND gate):输出为0当且仅当所有输入都为1,否则输出为1。
公式为:Y = ̅(A * B * C)。
12.三输入或非门公式(3-input NOR gate):输出为1当且仅当所有输入都为0,否则输出为0。
公式为:Y = ̅(A + B + C)。
13.与-或非门公式(AND-OR-NOT gate):输出为1当且仅当输入经过与门并通过或门后为1,否则输出为0。
公式为:Y = ̅(A * B) + C。
14.或-与非门公式(OR-AND-NOT gate):输出为0当且仅当输入经过或门并通过与门后为0,否则输出为1。
公式为:Y = ̅(A + B) * C。
15.乘法器公式(Multiplier gate):将两个二进制数相乘的逻辑电路。
公式为:Y = A * B。
16.除法器公式(Divider gate):将两个二进制数相除的逻辑电路。
公式为:Y = A / B。