《集成电路版图设计》(第二章)PPT课件
合集下载
集成电路CAD版图设计PPT课件

7
§1.逻辑划分
• 布图规划过程与所用的算法和求解策略有关。一个典 型的布图规划过程一般包括:Bottom up结群并产生结 群树、Top down软模块布局、调整模块形状和确定模 块的引线位置,目标是使芯片面积、总连线长度最小 和优化输出结果。
• 布规划分为物理分级构造、分级布图规划和详细布图 构造三大部分,每个部分又分成若干过程。物理分级 构造是一个Bottom up结群和估计模块面积的过程;分 级布图规划则是个Top down软模块布局、布线区面积 估计和分配、模块形状调整以及布局修正的过程;随 后在详细布图构造中完成整个布局和布线。
(2)在A中取出一个单元a2,使Con(Ai,a2)为最大,即最相关。 如果存在两个以上连接度相同的单元,则选Dis(Ai,a2)最小 的单元,即a2与其它单元有弱的连接关系。
(3)检查
S( E(
Ai Ai
) )
S max 制条件。
如满足条件则
AAi
Ai a2 Aa2
22
• 为了简化布局,将平面划分为方格 的组成方式,这些格子用占位符
P p 1 ,p 2, ,p N 的集合描述,网表对象 M m 1 ,m 2 , ,m r 映射在占位符上。每一
个 mi M 对象与一组信号 S i 相关。
23
距离树
• 为了评估布局的质量,需要能够实施评价的量化指 标。布局决定了布线的连线总长度,距离树是一个 近似的指标,是一种互连线长度的定量方式,它和互 连线的最终长度有密切关系而且容易计算。
• Ai,Aj之间的分离度(即无关连线之和)为:
D (A ii,A s j) B (A i) B (A j) C(A o i,A jn )
12
连接度和分离度的关系
§1.逻辑划分
• 布图规划过程与所用的算法和求解策略有关。一个典 型的布图规划过程一般包括:Bottom up结群并产生结 群树、Top down软模块布局、调整模块形状和确定模 块的引线位置,目标是使芯片面积、总连线长度最小 和优化输出结果。
• 布规划分为物理分级构造、分级布图规划和详细布图 构造三大部分,每个部分又分成若干过程。物理分级 构造是一个Bottom up结群和估计模块面积的过程;分 级布图规划则是个Top down软模块布局、布线区面积 估计和分配、模块形状调整以及布局修正的过程;随 后在详细布图构造中完成整个布局和布线。
(2)在A中取出一个单元a2,使Con(Ai,a2)为最大,即最相关。 如果存在两个以上连接度相同的单元,则选Dis(Ai,a2)最小 的单元,即a2与其它单元有弱的连接关系。
(3)检查
S( E(
Ai Ai
) )
S max 制条件。
如满足条件则
AAi
Ai a2 Aa2
22
• 为了简化布局,将平面划分为方格 的组成方式,这些格子用占位符
P p 1 ,p 2, ,p N 的集合描述,网表对象 M m 1 ,m 2 , ,m r 映射在占位符上。每一
个 mi M 对象与一组信号 S i 相关。
23
距离树
• 为了评估布局的质量,需要能够实施评价的量化指 标。布局决定了布线的连线总长度,距离树是一个 近似的指标,是一种互连线长度的定量方式,它和互 连线的最终长度有密切关系而且容易计算。
• Ai,Aj之间的分离度(即无关连线之和)为:
D (A ii,A s j) B (A i) B (A j) C(A o i,A jn )
12
连接度和分离度的关系
版图设计课件 PPT

一、双极集成电路工艺的基本流程
实现选择性掺杂的三道基本工序
(3)掺杂:在半导体基片的一定区域掺入一定浓度的杂质 元素,形成不同类型的半导体层,来制作各种器件。掺 杂工艺主要有两种:扩散和离子注入。
扩散:在热运动的作用下,物质的微粒都有一种从高浓 度的地方向低浓度的地方运动的趋势。在IC生产中,扩 散的同时进行氧化。
结论:对采用PN结隔离的双极IC基本工艺,与制作NPN 晶体管的基本工艺相比,只需增加外延工艺,当然工艺步 骤要增加不少。
一、双极集成电路工艺的基本流程
PN结隔离双极IC工艺基本流程
衬底材料(P型硅)- 埋层氧化-埋层光刻 -埋层掺杂(Sb)外延 (N型硅)隔离氧化-隔离光刻 -隔离掺杂(B)- 基区氧化-基区光刻 -基区掺杂(B)和发射区氧化-
一、双极集成电路工艺的基本流程
工艺类型简介
按照制造器件的结构不同可以分为: 双极型:由电子和空穴这两种极性的载流子作为在有源
区中运载电流的工具。 MOS型:PMOS工艺、NMOS工艺、CMOS工艺 BiCMOS集成电路:双极与MOS混合集成电路
按照MOS的栅电极的不同可以分为: 铝栅工艺、硅栅工艺(CMOS制造中的主流工艺)
(2) 光刻2:场氧光刻,又称为有源区光刻。将以后作为有源区区域的 氧(3化) 氧层化和氮层化生硅长层。保在留没,有其氮余化区硅域层的保氧护化的层区和氮化硅全部去除。 域(即场区)生长一层较厚的氧化层。图中 表面没有氧化层的区域即为有源区。
三、CMOS集成电路工艺流程
3. 生长栅氧化层和生成多晶硅栅电极 确定了有源区以后,就可以制作MOS晶体管。首先按下述步骤生长栅 氧化层和制作栅电极。 (1) 生长栅氧化层。去除掉有源区上的氮化硅层及薄氧化层以后,生长 一层作为栅氧化层的高质量薄氧化层。 (2) 在栅氧化层上再淀积一层作为栅电极材料的多晶硅。 (3) 光刻3:光刻多晶硅,只保留作栅电极以及起互连作用的多晶硅。 光刻后的剖面图如图所示。
集成电路版图设计-第二章

Tanner Pro 集成电路设计与布局 长春理工大学
实战指导课件
第2章 使用S-Edit 设计基本组 件符号
本书主要以CMOS 的电路类型来学习 Tanner Pro 软件的使用。CMOS 电路的基 本组件为NMOS,PMOS 等。在S-Edit 中 可建立如PMOS、NMOS、电阻、电容等组 件符号,并可设置组件的各种性质,如 NMOS 组件的信道宽度、信道长度等。在 本章中将以详细的步骤引导读者建立 NMOS组件及Vdd 组件,并学习S-Edit 的 基本功能。
2.1 使用s-Edit 建立NMOS 符号
(1)打开S-Edit 程序
图2.1 S-Edit 标题栏
(2)另存新文件
图 2.2 另存新文件
(3)环境设置
图 2.3 设置颜色
(4)编辑模块
图 2.4 编辑模块Module0
(5)切换模式 (6)绘制NMOS 符号(7)加入组件接脚
图 2.5 切换置符号模式
(1)新增模块
图2.18 新增模块
图2.19 编辑画面
(2)切换模式
(3)绘制Vdd 符号
图 2.20 切换置符号 模式
图2.21 绘制Vdd 符号
(4)加入全域端口
图 2.22 编辑全域端口
图 2.23 全域端口编辑结果
(5)全域符号Vdd 设计成果
图2.24 全域符号Vdd 编辑结果
图 2.25 电路设计模式中没有电路图的存在
图2.6 绘图与 文字工具栏
图2.8 Schematic Tool
(8)编辑连接端口
图Байду номын сангаас2.9 编辑接脚
(10)设置输出性质
(11)完成NMOS 符号编辑
《集成电路设计》PPT课件

薄层电阻
1、合金薄膜电阻
采用一些合金材料沉积在二氧化 硅或其它介电材料表面,通过光 刻形成电阻条。常用的合金材料 有: 钽 Ta 镍铬Ni-Cr 氧化锌 ZnO 铬硅氧 CrSiO
2、多晶硅薄膜电阻
掺杂多晶硅薄膜也是一个很好的电阻 材料,广泛应用于硅基集成电路的制 造。
3、掺杂半导体电阻
不同掺杂浓度的半导体具有不同 的电阻率,利用掺杂半导体的电 阻特性,可以制造电路所需的电 阻器。
sio2
半导体
串联 C=
Ci Cs Ci +Cs
Tox
N+
P
sio2
金 属
PN金+sio属2
纵向结构
横向结构
MOS 电容电容量
ε ε Cox=
A 0 sio2
Tox
Tox: 薄氧化层厚度;A: 薄氧化层上 金属电极的面积。
一般在集成电路中Tox 不能做的太薄,所以要想提高电容量,只能增加面积。 N+层为 了减小串联电阻及防止表面出现耗尽层。
Csub s
(b)
(c)
§ 4.3 集成电路的互连技术和电感
互连线
单片芯片上器件之间互连:金属化工艺,金属铝 薄膜 电路芯片与外引线之间的连接(电路芯片与系统的 互联):引线键合工艺
为保证模型的精确性和信号的完整性,需要对互连线的版图结构加以约 束和进行规整。
各种互连线设计应注意的问题
为减少信号或电源引起的损耗及减少芯片 面积,连线应尽量短。
第四章
集成电路设计
第四章
集成电路是由元、器件组成。元、器件分为两大类:
无源元件 电阻、电容、电感、互连线、传输线等
有源器件 各类晶体管
集成电路中的无源源件占的面积一般都比有源器件大。 所以设计时尽可能少用无源元件,尤其是电容、电感和大阻值的电阻。
《集成电路版图设计》课件

元器件工作原理
了解各种元器件的工作原理是进行版图设计的基础,如晶 体管的工作原理涉及到载流子的运动和电荷的积累等。
元器件版图设计规则
在进行元器件版图设计时,需要遵循一定的设计规则,如 电阻的阻值计算、电容的容量计算等,以确保设计的准确 性和可靠性。
集成电路工艺
01 02
集成电路工艺流程
集成电路的制造需要经过多个工艺步骤,包括薄膜制备、光刻、刻蚀、 掺杂等,这些工艺步骤的参数和条件对集成电路的性能和可靠性有着重 要影响。
学生需要按照指导要求,完成集成电路版图设计实践任务,并
提交实践报告。
集成电路版图设计实践图设计
案例四
某混合信号集成电 路版图设计
案例一
某数字集成电路版 图设计
案例三
某射频集成电路版 图设计
案例五
某可编程逻辑集成 电路版图设计
集成电路版图设计实践经验总结
实践经验总结的重要性
特点
集成电路版图设计具有高精度、 高复杂度、高一致性的特点,需 要综合考虑电路功能、性能、可 靠性以及制造工艺等多个方面。
集成电路版图设计的重要性
01
02
03
实现电路功能
集成电路版图设计是将电 路设计转化为实际产品的 关键环节,是实现电路功 能的重要保障。
提高性能和可靠性
合理的版图设计可以提高 集成电路的性能和可靠性 ,确保产品在长期使用中 保持稳定。
DRC/LVS检查
进行设计规则检查和版图验证 ,确保版图设计的正确性和可 制造性。
布图输出
将版图数据输出到制造环节, 进行硅片的制作。
02
集成电路版图设计基础知识
半导体材料
半导体材料分类
半导体材料分为元素半导体和化合物半导体两大类,元素半导体包括硅和锗,化合物半导 体包括三五族化合物(如砷化镓、磷化镓等)和二六族化合物(如硫化镉、硒化镉等)。
了解各种元器件的工作原理是进行版图设计的基础,如晶 体管的工作原理涉及到载流子的运动和电荷的积累等。
元器件版图设计规则
在进行元器件版图设计时,需要遵循一定的设计规则,如 电阻的阻值计算、电容的容量计算等,以确保设计的准确 性和可靠性。
集成电路工艺
01 02
集成电路工艺流程
集成电路的制造需要经过多个工艺步骤,包括薄膜制备、光刻、刻蚀、 掺杂等,这些工艺步骤的参数和条件对集成电路的性能和可靠性有着重 要影响。
学生需要按照指导要求,完成集成电路版图设计实践任务,并
提交实践报告。
集成电路版图设计实践图设计
案例四
某混合信号集成电 路版图设计
案例一
某数字集成电路版 图设计
案例三
某射频集成电路版 图设计
案例五
某可编程逻辑集成 电路版图设计
集成电路版图设计实践经验总结
实践经验总结的重要性
特点
集成电路版图设计具有高精度、 高复杂度、高一致性的特点,需 要综合考虑电路功能、性能、可 靠性以及制造工艺等多个方面。
集成电路版图设计的重要性
01
02
03
实现电路功能
集成电路版图设计是将电 路设计转化为实际产品的 关键环节,是实现电路功 能的重要保障。
提高性能和可靠性
合理的版图设计可以提高 集成电路的性能和可靠性 ,确保产品在长期使用中 保持稳定。
DRC/LVS检查
进行设计规则检查和版图验证 ,确保版图设计的正确性和可 制造性。
布图输出
将版图数据输出到制造环节, 进行硅片的制作。
02
集成电路版图设计基础知识
半导体材料
半导体材料分类
半导体材料分为元素半导体和化合物半导体两大类,元素半导体包括硅和锗,化合物半导 体包括三五族化合物(如砷化镓、磷化镓等)和二六族化合物(如硫化镉、硒化镉等)。
第二讲集成电路版图设计规则

- 1.5mA 最大电流密度
/um
-
- 禁止并行金属线90度拐角,用135
度拐角代替
a
c.2
b
c.1 c.2
设计规则 via
定义为两层金属之 间的连接孔
符号 尺寸
含义
12.a .7*.7 过孔最小面积
12.b 0.8 过孔间距
12.d~f - 接触孔、poly-poly电容和栅 上不能打过孔
12.g 0.4 金属1对过孔的最小覆盖
6.d 6.e 6.f 6.g
尺寸 1.2 1.0 0.5 3.2 1.5 0.8 -
含义 poly2做电容时的最小宽度 poly2做电容时的最小间距 Poly2与有源区的最小间距 做关键电容时的间距 电容底板对顶板的最小覆盖 电容Poly2对接触孔最小覆盖 Poly2不能在有源区上 Poly2不能跨过poly1边沿
– 上华0.6um DPDM CMOS工艺拓扑设计规则 – 设计规则的运用
• 版图设计准则(‘Rule’ for performance)
– 匹配 – 抗干扰 – 寄生的优化 – 可靠性
引言
• 芯片加工:从版图到裸片
制
加
版
工
是一种多层平面“印刷”和 叠加过程,但中间是否会 带来误差?
引言
一个版图的例子:
习)
VDD
15k
OUT IN 80/0.8
又试问NMOS晶体管的漏极面积和周长是多 少?
设计规则的运用
• TASK3:设计一个简单开关电容电路 (练习)
f1 IN
30/0.6 X
f2 OUT
60/0.6 2pF 6/0.6 12/0.6
又试问X点的寄生电容如何计算?
《集成电路设计》课件

蒙特卡洛模拟法
通过随机抽样和概率统计的方法,模 拟系统或产品的失效过程,评估其可 靠性。
可靠性分析流程
确定分析目标
明确可靠性分析的目 的和要求,确定分析 的对象和范围。
进行需求分析
分析系统或产品的使 用环境和条件,确定 影响可靠性的因素和 条件。
进行失效分析
分析系统或产品中可 能出现的失效模式和 原因,确定失效对系 统性能和功能的影响 。
DRC/LVS验证
DRC/LVS验证概述
DRC/LVS验证是物理验证中的两个重要步骤,用于检查设计的物 理实现是否符合设计规则和电路图的要求。
DRC验证
DRC验证是对设计的物理实现进行规则检查的过程,以确保设计的 几何尺寸、线条宽度、间距等参数符合设计规则的要求。
LVS验证
LVS验证是检查设计的物理实现与电路图一致性的过程,以确保设 计的逻辑功能在物理实现中得到正确实现。
版图设计流程
确定设计规格
明确设计目标、性能指标和制造工艺要求 。
导出掩模版
将最终的版图导出为掩模版,用于集成电 路制造。
电路设计和模拟
进行电路设计和仿真,以验证电路功能和 性能。
物理验证和修改
进行DRC、LVS等物理验证,根据结果进 行版图修改和完善。
版图绘制
将电路设计转换为版图,使用专业软件进 行绘制。
集成电路设计工具
电路仿真工具
用于电路设计和仿真的软件, 如Cadence、Synopsys等。
版图编辑工具
用于绘制版图的软件,如Laker 、Virtuoso等。
物理验证工具
用于验证版图设计的正确性和 可靠性的软件,如DRC、LVS等 。
可靠性分析工具
用于进行可靠性分析和测试的 软件,如EERecalculator、 Calibre等。
通过随机抽样和概率统计的方法,模 拟系统或产品的失效过程,评估其可 靠性。
可靠性分析流程
确定分析目标
明确可靠性分析的目 的和要求,确定分析 的对象和范围。
进行需求分析
分析系统或产品的使 用环境和条件,确定 影响可靠性的因素和 条件。
进行失效分析
分析系统或产品中可 能出现的失效模式和 原因,确定失效对系 统性能和功能的影响 。
DRC/LVS验证
DRC/LVS验证概述
DRC/LVS验证是物理验证中的两个重要步骤,用于检查设计的物 理实现是否符合设计规则和电路图的要求。
DRC验证
DRC验证是对设计的物理实现进行规则检查的过程,以确保设计的 几何尺寸、线条宽度、间距等参数符合设计规则的要求。
LVS验证
LVS验证是检查设计的物理实现与电路图一致性的过程,以确保设 计的逻辑功能在物理实现中得到正确实现。
版图设计流程
确定设计规格
明确设计目标、性能指标和制造工艺要求 。
导出掩模版
将最终的版图导出为掩模版,用于集成电 路制造。
电路设计和模拟
进行电路设计和仿真,以验证电路功能和 性能。
物理验证和修改
进行DRC、LVS等物理验证,根据结果进 行版图修改和完善。
版图绘制
将电路设计转换为版图,使用专业软件进 行绘制。
集成电路设计工具
电路仿真工具
用于电路设计和仿真的软件, 如Cadence、Synopsys等。
版图编辑工具
用于绘制版图的软件,如Laker 、Virtuoso等。
物理验证工具
用于验证版图设计的正确性和 可靠性的软件,如DRC、LVS等 。
可靠性分析工具
用于进行可靠性分析和测试的 软件,如EERecalculator、 Calibre等。
集成电路版图设计-59页PPT资料

3.5 dracula验证流程
• 使用Dracula 和Diva 的第一步是编写与自己的工艺一致 的命令文件,包括DRC、 ERC、 LVS、 LPE 文件。
3.6 dracula验证流程
3.7 dracula验证流程
3.8 参考及帮助
• 与版图验证有关的在线文档主要有以下 几个。InQuery 是用来显示验证结果的:
版图设计师的工作是将所设计的电路转换为图形描述格 式,即设计工艺过程需要的各种各样的掩膜版,定义这 些掩膜版几何图形的过程即Layout;
层次化、模块化的布局方式可提高布局的效率;
1.1 人工版图设计必要性
• 需要人工设计版图的场合 1、数字电路版图单元库的建立 2、绝大部分的数模混合电路 3、其它自动布线不能满足要求的设计
1.14电源线
1.15 掩蔽技术
• 掩蔽技术可以防护来自于或者去向衬底的电容耦 合。可以减小两条金属线之间的cross-talk
第二部分 Cadence版图设计工具 Virtuoso Layout Editor 介绍
2.1 版图规划与步骤
• 版图设计通常包括:模块化分;模块布局 (Pin的位置 和方向);器件的布局和连接;块之间连结;I/O的位置 和连接
• 显示对于版图设计也很重要因此一定要有自己 的显示文件display.drf
2.4启动
• 启动版图大师的指令有: • Icfb:Full IC design environment • LayoutPlus: layout editor+diva • Layout: layout editor • 通过上述方法启动版图大师后,就会出
2.24 Layout (Design) Rules (VI)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方式二:选择Attach
基于Cadence系统的 全定制版图设计基础
基于Cadence系统的 全定制版图设计基础
三、显示文件准备
LSW窗口:
✓ nwell是N 阱,PMOS管做在N阱中; ✓ ndiff是N型扩散区,也叫N型有源区(active),用来做NMOS管; ✓ pdiff是P型扩散区,也叫P型有源区,用来做PMOS管; ✓ nimp是N型扩散区注入层; ✓ pimp是P型扩散区注入层; ✓ poly是多晶层,主要用来做管子的栅极; ✓ cont是接触孔contact; ✓ metal1是一铝层; ✓ via1是一铝层和二铝层之间的连接孔,称为通孔; ✓ metal2是二铝层; ✓ pad是压焊点所在的层; ✓ 其它还包括一些特殊器件上的标识层等等
3、单元的宽长比设 置原则——最常见 宽长比的设置
逻辑图中每一 个管子宽长比 的设置
基于Cadence系统的 全定制版图设计基础
3、单元的宽长 比设置原则— —最常见宽长 比的设置(续)
单元符号的建立和 Label的设置
基于Cadence系统的 全定制版图设计基础
3、单元的宽长比 设置原则——其它 宽长比的设置
基于Cadence系统的 全定制版图设计基础
第一部分、D508项目逻辑图的准备
一、逻辑图输入工具启动
二、一个传输门逻辑图及符 号的输入流程
三、D508项目单元逻辑图的准备 四、D508项目总体逻辑图的准备
第二部分、D508项目版图输入准备
一、设计规则准备 二、工艺文件准备 三、显示文件准备
第三部分、版图设计步骤及操作
三、显示文件准备(续)
基于Cadence系统的 全定制版图设计基础
Display Resource Editor 窗口:
基于Cadence系统的 全定制版图设计基础
第三部分、版图设计步骤及操作
一、建版图库 二、版图输入界面和设置
基于Cadence系统的 全定制版图设计基础
版图输入工具界面:
二、版图输入界面和设置(续)
一、建版图库 二、版图输入界面和设置 三、建版图单元
第四部分、高级版图设计技术
一、层次化设计 二、PDK进行版图设计
基于Cadence系统的 全定制版图设计基础
第一部分、D508项目逻辑图的准备
一、逻辑图输入工具启动
基于Cadence系统的 全定制版图设计基础
主菜单栏:
1)File菜单 2)Tools(工具)菜单 3)Options菜单
逻辑库 的管理3: 库路径 信息文 件cds.lib
基于Cadence系统的 全定制版图设计基础 2、传输门逻辑图的输入和参数设置:
1)逻辑图输入界面
2)逻辑图输入 放置元件
基于Cadence系统的 全定制版图设计基础
2)逻辑图输入 元件之间的连线
基于Cadence系统的 全定制版图设计基础
2)逻辑图输入 添加管脚
每一个单元都有schematic、symbol两个最重要的属性 在进行单元逻辑输入时要有嵌套的概念 单元名称、引脚名称一定要规范 器件可以从已有库中拷贝到用户建立的逻辑库中 建单元时在逻辑编辑工具中把端口名称显示出来 尽量使用已有库中的内容
基于Cadence系统的 全定制版图设计基础
2、一种快速输入单 元逻辑的方法:
基于Cadence系统的 全定制版图设计基础 二、一个传输门逻辑图及符号的输入流程 1、建立逻辑库:
三种工艺 文件的使 用
基于Cadence系统的 全定制版图设计基础
逻辑库的管理1: 库路径编辑器
基于Cadence系统的 全定制版图设计基础
逻辑库的管理2: 库管理器
基于Cadence系统的 全定制版图设计基础
基于Cadence系统的 全定制版图设计基础
Display Options窗口:
二、版图输入界面和设置(续)
基于Cadence系统的 全定制版图设计基础
第二部分、D508项目版图输入准备
一、设计规则准备
基于Cadence系统的 全定制版图设计基础
一、设计规则准备(续)来自基于Cadence系统的 全定制版图设计基础
D508项目的主要设计规则
二、工艺文件准备
方式一:选择New
基于Cadence系统的 全定制版图设计基础
方式一(续):
基于Cadence系统的 全定制版图设计基础
4)逻辑图输入完成后的检查
基于Cadence系统的 全定制版图设计基础
从Design菜单当中选择Check and Save, 会显示错误(errors)或者警告(warnings) 的数量。若有错误或者警告,则会在逻辑 图上相应的地方显示一个黄色的叉号,并 且高亮(HighLight)显示。
3、传输门符号的建立:
基于Cadence系统的 全定制版图设计基础
4、D508项目所有的单元
基于Cadence系统的 全定制版图设计基础
四、D508项目总体逻辑图
基于Cadence系统的 全定制版图设计基础
数字部分
四、D508项目总体逻辑图
基于Cadence系统的 全定制版图设计基础
模拟部分
基于Cadence系统的 全定制版图设计基础
基于Cadence系统的 全定制版图设计基础
3)元件参数设置
基于Cadence系统的 全定制版图设计基础
pmos4元件的主要参数:
Model name:器件模型名称; Multiplier:乘数因子; Width:沟道宽度; Length:沟道长度; Drain diffusion area:漏区面积; Source diffusion area:源区面积; Drain diffusion periphery:漏区周长; Source diffusion periphery:源区周长; Drain diffusion res squares:漏区电阻方块; Source diffusion res squares:源区电阻方块。
基于Cadence系统的 全定制版图设计基础
传输门符号的建立通常分成自动产生再加上人工修改优化两个步骤。
自动产生:
3、传输门符号的建立(续):
基于Cadence系统的 全定制版图设计基础
人工优化:
基于Cadence系统的 全定制版图设计基础
三、D508项目单元逻辑图的准备:
1、单元逻辑图输入的经验总结: