直线加速器系统讲义PPT课件
合集下载
医用直线加速器的性能与特点ppt课件

ppt课件.
21
目前市场上常用的医用电子 直线加速器按能量分为三型:
低能医用直线加速器:只提
供一档X射线能量,大部分为
6MV。国产加速器多为此型
经济实用,可满足80%~85%
肿瘤患者需要
ppt课件.
22
中能医用电子直线加速器:
提供一档或二档X射线(6~ 10MV),并提供4~5档不同 能量的电子线(5~15MeV)
中能加速器除能治疗深部
肿瘤外,还可以治疗大部分表 浅肿瘤。
ppt课件.
23
高能医用电子直线加速器:提
供二档X射线,商业上称为双光子 方式,有些公司产品如:瑞典医科 达生产的加速器可以提供三档X射 线,称为三光子方式,多档设置的 目的是适应不同体厚病人不同肿瘤 深度治疗的需要。可提供更高能量 的电子线(5~22MeV),分为5~9 档,扩大了对表浅肿瘤的治疗深度 范围
ppt课件.
24
随着科学的不断发展和进
步,近代医用直线加速器还可
以提供更多的功能选择,如: 全自动多叶准直器系统MLC 适时影像系统(EPID) X刀治疗系统是利用加速器产
生的X射线束达到治疗的目的
ppt课件.
25
全自动多叶光栅(MLC)
ppt课件.
26
EPID
ppt课件.
27
ppt课件.
验证片
疗计划系统等设备。
ppt课件.
33
≪放射诊疗管理规定≫
放射治疗场所应当按照下列要求配备并使 用安全防护装置、辐射检测仪器和个人防护用 品:
✓ 多重安全联锁系统 ✓ 剂量监测系统 ✓ 影像监控 ✓ 对讲装置 ✓ 固定式剂量监测报警装置 ✓ 配备放疗剂量仪 ✓ 剂量扫描装置
《加速器》(课件)

◆原理:带电粒子经两D型盒之间的电场加速后,垂直 磁场方向进入某一D型盒内,在洛伦兹力的作用下做匀速圆 周运动。 3.对于同一回旋加速 器,其粒子回旋的最大半 径是相同的,所以最大速 度必须满足
qBR vm m
◆原理:带电粒子经两D型盒之间的电场加速后,垂直 磁场方向进入某一D型盒内,在洛伦兹力的作用下做匀速圆 周运动。 4.因为狭缝极小,故 电场运动时间可以忽略.
t总 t 磁
◆原理:带电粒子经两D型盒之间的电场加速后,垂直 磁场方向进入某一D型盒内,在洛伦兹力的作用下做匀速圆 周运动。 4.因为狭缝极小,故 电场运动时间可以忽略.
t总 t 磁
1 mv 2 m m 2 t磁 n qB qU qB 1 m (qBR) m 2 m qU qB
◆原理:带电粒子经两D型盒之间的电场加速后,垂直 磁场方向进入某一D型盒内,在洛伦兹力的作用下做匀速圆 周运动。 1.带电粒子每经电场加 速一次,回旋半径就增大一 次,每次增加的动能为 Ek=qu, 粒子每经过一个周 期,被电场加速两次。 2.交变电场周期等于粒 子在磁场中的运动时间,即 2m T电 = T磁 qB
2.(多选)回旋加速器工作原理示意图如图所示,磁感应强度 为B的匀强磁场与盒面垂直,两盒间的狭缝很小,粒子穿过的时 间可忽略,它们接在电压为U、频率为的交流电源上,若A处粒 子源产生的质子在加速器中被加速,下列说法正确的是( ) A.若只增大交流电压U,则质子获得的 最大动能增大 B.若只增大交流电压U,则质子在回旋 加速器中运行时间会变短 C.若磁感应强度B增大,交流电频率必 须适当增大才能正常工作 D.不改变磁感应强度B和交流电频率, 该回旋加速器也能用于加速粒子
2.(多选)回旋加速器工作原理示意图如图所示,磁感应强度 为B的匀强磁场与盒面垂直,两盒间的狭缝很小,粒子穿过的时 间可忽略,它们接在电压为U、频率为的交流电源上,若A处粒 子源产生的质子在加速器中被加速,下列说法正确的是( BC ) A.若只增大交流电压U,则质子获得的 最大动能增大 B.若只增大交流电压U,则质子在回旋 加速器中运行时间会变短 C.若磁感应强度B增大,交流电频率必 须适当增大才能正常工作 D.不改变磁感应强度B和交流电频率, 该回旋加速器也能用于加速粒子
医用直线加速器原理【放射治疗科】 ppt课件

We eEz L 设行波电场的强度为EZ , 处于波峰上
的电子,经 L 距离后,获得的能量为
医学物理
行波加速管结构
•前端束流孔径由大变小,盘片间距由小变大-聚束段 •后面的束流孔径、盘片间距保持不变-光速段
医学物理
微波电场加速电子
+
++
谐振腔 TM010模
医学物理
•微波频率为3GHz,即电场在 1s内,方向变化30亿次
T 0.5C
医学物理
• 日本三菱公司ML-4M医用驻波电子直线加速器的频率特性曲线
束流偏转系统
医学物理
束流传输系统
• 束流传输系统的主要组成:[电子枪] ,聚焦线圈,导向线圈, 偏转系统(90°偏转,270°偏转), [靶(电子窗)]
医学物理
导向线圈的位置及结构
医学物理
• 90º偏转
偏转方案
• 其它
– 返波管 – 行波管 – 回旋管
医学物理
微波产生
医学物理
磁控管的基本构造及工作原理
医学物理
多腔磁控管的基本构造
医学物理
•能量输出装置
医学物理
磁钢
医学物理
•调频机构 •冷却
医学物理
多腔磁控管的基本工作原理
几个重要概念:
•临界状态 •π型振荡 •同步条件
r m0v eH
2n (n 0,1,2,......) N
医学物理
相位移动
由于粒子质量相对论增长,导致粒子的回旋周 期增大,从而粒子所在的加速相位移动。
Tc=Trf Tc>Trf Tc<Trf
V(f )=Vacos(f )
V(f )=Vacos(f )
医学物理
的电子,经 L 距离后,获得的能量为
医学物理
行波加速管结构
•前端束流孔径由大变小,盘片间距由小变大-聚束段 •后面的束流孔径、盘片间距保持不变-光速段
医学物理
微波电场加速电子
+
++
谐振腔 TM010模
医学物理
•微波频率为3GHz,即电场在 1s内,方向变化30亿次
T 0.5C
医学物理
• 日本三菱公司ML-4M医用驻波电子直线加速器的频率特性曲线
束流偏转系统
医学物理
束流传输系统
• 束流传输系统的主要组成:[电子枪] ,聚焦线圈,导向线圈, 偏转系统(90°偏转,270°偏转), [靶(电子窗)]
医学物理
导向线圈的位置及结构
医学物理
• 90º偏转
偏转方案
• 其它
– 返波管 – 行波管 – 回旋管
医学物理
微波产生
医学物理
磁控管的基本构造及工作原理
医学物理
多腔磁控管的基本构造
医学物理
•能量输出装置
医学物理
磁钢
医学物理
•调频机构 •冷却
医学物理
多腔磁控管的基本工作原理
几个重要概念:
•临界状态 •π型振荡 •同步条件
r m0v eH
2n (n 0,1,2,......) N
医学物理
相位移动
由于粒子质量相对论增长,导致粒子的回旋周 期增大,从而粒子所在的加速相位移动。
Tc=Trf Tc>Trf Tc<Trf
V(f )=Vacos(f )
V(f )=Vacos(f )
医学物理
第7周.医用直线加速器

不同X能量的机头结构
❖机头和准直器
37Biblioteka ❖电子束38几何参数-机器角度
❖机架转角 ❖准直器转角 ❖治疗床转角
39
40
❖方向规定
41
机架转角
❖ 作用:
根据入射路径上肿瘤与周边危及器官的 几何关系,合理的保护正常器官
多野角度的照射形成更合理的剂量分布
❖ SSD技术:源到皮肤表面的距离恒定 ❖ SAD技术:源到肿瘤中心的距离恒定,
❖射野面积等效的概念:使用的矩形或非 规则野中心轴上百分深度剂量与某一 方野相同时,该方野为其等效射野。
❖等效面积的计算
面积-周长比法 查表
A P
ab 2(a b)矩形
s 4 方形
面积等效
s 2ab ab
50
射野参数
❖国际坐标系统
51
内容概况
功能应用
❖ MLC ❖ 三维治疗 ❖ 调强治疗
❖ 各个厂家对MLC有不同的设计:
• 位置、叶片宽度和叶片端面形状 • 单聚焦或双聚焦 • 叶片运动范围的限制(路径\可以越过中线距离) • 射野大小
❖ 这些因素影响剂量传输,在治疗计划中必须考虑
54
MLC的基本结构
❖ MLC单元是单个叶片, 它们普遍由钨或钨合金 制成。
❖ 常规放射野(40X40Cm) 由40对铅条组成,每条 铅条由一个队里的马达 推动或拉出,速度约24cm/秒,全部马达由计 算机控制,可形成各种 不同几何形状的放射野
实现加速器系统的计算机化控制 实现直线加速器的小型化 最小化电气干扰 加速器操控状态切换 连锁系统 极限束流防护 控制集成 运动控制系统 记录与验证系统
4
电气控制系统调控的内容
实现加速器系统的计算机化控制 实现直线加速器的小型化 最小化电气干扰 加速器操控状态切换 连锁系统 极限束流防护 控制集成 运动控制系统 记录与验证系统
医用电子直线加速器原理优秀课件

驻波加速原理
❖ 利用电磁波的轴向电场分量不断的推动电子加速 ❖ 轴向电场的大小和方向是随时间交变的 ❖ 振荡的包络线是不变的 ❖ 只要电子的飞行(渡越)时间正好等于微波振荡的半周期,就能
满足持续加速
生命至尊责任至上
驻波加速原理(1)
生命至尊责任至上
驻波加速原理(2)
生命至尊责任至上
驻波加速原理(3)
生命至尊责任至上
医用电子直线加速器功能
❖ 产生射线 ❖ 使射线适合放疗
生命至尊责任至上
产生射线
生命至尊责任至上
适合放疗
生命至尊责任至上
XHA600医用电子直线加速器
生命至尊责任至上
主机结构
❖ 固定机架 ❖ 旋转机架 ❖ 治疗头 ❖ 底座
❖ 治疗床
治疗头
治疗床
旋转机架
固定 机架
底座
生命至尊责任至上
波导窗
软波导
环流器
加速管
吸收负载
定向耦合器
圆方转换 磁钢
E2V 磁控管
生命至尊责任至上
环流器
生命至尊责任至上
四端环流器
3口
1口
2口 4口
生命至尊责任至上
微波系统的组成
生命至尊责任至上
前向波
2
4
1 3
E2V
生命至尊责任至上
反射波
E2V
生命至尊责任至上
三端环流器------前向波
E2V
生命至尊责任至上
医用电子直线加速器原理优秀课件
生命至尊责任至上
医用电子直线加速器整机结构
生命至尊责任至上
医用加速器分类
❖ 按加速对象分 ❖ 医用电子加速器
❖ 医用电子直线加速器 ❖ 医用电子回旋加速器 ❖ 医用电子感应加速器
直线加速器系统讲义

5
仿真线
加速管灯丝
T4
加速管
F K
匹
C1 75 00 pF
配
电
路 R3 25
6 GKH 1u 6. 8 n HV
ACCE L ERAT OR
6. 8 n 51
MFH MKH
GND
GKL
MFL
MKL
脉冲电压
脉冲变压器
脉冲电流
S N
C2 1 u F/2 kV
T3
磁控管灯丝
C F
7
MG5 19 3
16
•方框一:直流高压电源——三相全波整流电路,是调 制器的电源。
理论波形
电压
磁控管的伏安特性曲线
10
1) 磁控管阻抗是电压的非线性函数。
EaM EaM
EaM门
B
O I aM门
A C
1 ). 磁控管工作于C点,它对 调制器呈现的负载阻抗是 磁控管的静态电阻。
I aM
I aM
Rj
EaM I aM
磁控管的伏安特性曲线
11
2). 当 EaM EaM门 此时磁控管未振荡,电流极小,对调制
其中,U m R I m U RI
结论: 磁控管对调制器所呈现的负载电阻是随 EaM 而变化的 ,具有 Rd R j r 的特性。
2. 速调管
速调管的电子注电压与电子注电流之间服从于3/2次
方关系,即 Il ∝ ul 3 2,而对调制器所呈现的负载阻抗
与电压的平方根成反比:
设:
Rl ----速调管的阻抗
Ul ----调制器的输出电压
加速器的主要组成
加速器原理:加速器的核心---加速管 的工作原理。
最新医用电子直线加速器原理-2018

这样高频率的高压不可能用电线传输。
❖ 要实现这种加速模型只能在一个谐振腔列(链) 中完成。
生命至尊责任至上
驻波加速原理
❖ 利用电磁波的轴向电场分量不断的推动电子加速 ❖ 轴向电场的大小和方向是随时间交变的 ❖ 振荡的包络线是不变的 ❖ 只要电子的飞行(渡越)时间正好等于微波振荡的半周期,就能
满足持续加速
8 10
7 4HC3 2
4 .7 k
P1-1 2A
DS ILR ST
D5 IDIA08
D6 IDIA09
D7 IDIA10
D8 IDIA11
U3 2A
1
2
7 4HC1 4
P1-3 4B
RN1 5E
9
5
2 .2 k
ILSYM1
DCCOM 5 RN2E 12
C23 0 .1 u F
CR13 1 N44 4 8
C21 0 .1 u F
RN1 1C
9
3
2 2k
CR7 1 N44 4 8
+5V RN1 5C
9
3
2 .2 k
U2 C
5
12
6 TLP5 2 1-4
11 LGND
U1 4B 4 5
7 4HC0 8
U1 4C 9 10
7 4HC0 8
+5V U2 1B
RN1 9B
9
2
6 80
10 SD
12 D
Q8
6
1 1 CLK
灯) ❖ 急停开关 ❖ 防护门门联锁 ❖ 准备指示灯和出束指示灯
❖ 在加速器主机安装之前,用户须将十一根联锁线接至主机下方电 缆沟内,预留长度三米。
生命至尊责任至上
❖ 要实现这种加速模型只能在一个谐振腔列(链) 中完成。
生命至尊责任至上
驻波加速原理
❖ 利用电磁波的轴向电场分量不断的推动电子加速 ❖ 轴向电场的大小和方向是随时间交变的 ❖ 振荡的包络线是不变的 ❖ 只要电子的飞行(渡越)时间正好等于微波振荡的半周期,就能
满足持续加速
8 10
7 4HC3 2
4 .7 k
P1-1 2A
DS ILR ST
D5 IDIA08
D6 IDIA09
D7 IDIA10
D8 IDIA11
U3 2A
1
2
7 4HC1 4
P1-3 4B
RN1 5E
9
5
2 .2 k
ILSYM1
DCCOM 5 RN2E 12
C23 0 .1 u F
CR13 1 N44 4 8
C21 0 .1 u F
RN1 1C
9
3
2 2k
CR7 1 N44 4 8
+5V RN1 5C
9
3
2 .2 k
U2 C
5
12
6 TLP5 2 1-4
11 LGND
U1 4B 4 5
7 4HC0 8
U1 4C 9 10
7 4HC0 8
+5V U2 1B
RN1 9B
9
2
6 80
10 SD
12 D
Q8
6
1 1 CLK
灯) ❖ 急停开关 ❖ 防护门门联锁 ❖ 准备指示灯和出束指示灯
❖ 在加速器主机安装之前,用户须将十一根联锁线接至主机下方电 缆沟内,预留长度三米。
生命至尊责任至上
加速器物理课件第10章直线加速器

2014-4-14 79 29
行波加速器
行波加速器运行在n=0的空间谐波情况下。一般 适宜加速短脉冲和速度接近于光速的粒子,比 如电子。 行波加速器---盘荷波导、螺旋波导等结构
盘荷波导:
2014-4-14
79
30
盘荷波导:
2014-4-14
79
31
螺旋波导
2014-4-14
79
32
驻波加速器
2014-4-14
79
8
在传播方向上z方向,两个临界波峰之间的距离λp比 实际的波长λ要长。这就意味着在Z的方向上波现象 以大于C的速度在传输。
在只有一个边界时,入射波 可以以任何方向入射均可传输
2014-4-14 79
图
9
两个导体壁的情况,就又多了一条限制,为了在每个边 界都满足条件,只有一个角度入射的波才能够传输。两 个壁之间的距离必须是半波长的整数倍此时波的纵向行 为为行波,横向行为为驻波。
其中A是常数,在半径为a的边界上,我们有:
Bessel 函数有许多根,每一个根对应一个TM波的模式,第一 个根为TM01,0指无方位上的变化,1指径向一个半波长。因 为 kr=2.405/a 所以为了满足边界条件kr是一个固定的数。
2014-4-14
79
15
色散关系曲线
相速
群速
在这个曲线上的任意一点同原点的连线的斜率给出了该点的相速 双曲线上所有的点都有 Vph>c,他们全在Vph=c的直线的上方。 d 双曲线上所有的点的斜率给出了该点的群速。 vg dk 在ω=ωc处,vg=0 色散曲线相对于原点是对称的,即波可以沿±z两个方向传播。
位置 n
p
k
n 0,1,2,3,..
行波加速器
行波加速器运行在n=0的空间谐波情况下。一般 适宜加速短脉冲和速度接近于光速的粒子,比 如电子。 行波加速器---盘荷波导、螺旋波导等结构
盘荷波导:
2014-4-14
79
30
盘荷波导:
2014-4-14
79
31
螺旋波导
2014-4-14
79
32
驻波加速器
2014-4-14
79
8
在传播方向上z方向,两个临界波峰之间的距离λp比 实际的波长λ要长。这就意味着在Z的方向上波现象 以大于C的速度在传输。
在只有一个边界时,入射波 可以以任何方向入射均可传输
2014-4-14 79
图
9
两个导体壁的情况,就又多了一条限制,为了在每个边 界都满足条件,只有一个角度入射的波才能够传输。两 个壁之间的距离必须是半波长的整数倍此时波的纵向行 为为行波,横向行为为驻波。
其中A是常数,在半径为a的边界上,我们有:
Bessel 函数有许多根,每一个根对应一个TM波的模式,第一 个根为TM01,0指无方位上的变化,1指径向一个半波长。因 为 kr=2.405/a 所以为了满足边界条件kr是一个固定的数。
2014-4-14
79
15
色散关系曲线
相速
群速
在这个曲线上的任意一点同原点的连线的斜率给出了该点的相速 双曲线上所有的点都有 Vph>c,他们全在Vph=c的直线的上方。 d 双曲线上所有的点的斜率给出了该点的群速。 vg dk 在ω=ωc处,vg=0 色散曲线相对于原点是对称的,即波可以沿±z两个方向传播。
位置 n
p
k
n 0,1,2,3,..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 脉冲功率( PM )
P MU MIM
2. 调制器的效率( M )
M P 出 P 入
3. 重复频率( f M )
fM 1TM
7
4. 脉冲波形
用于表示脉冲波形常用的三个参数
1)脉冲前沿 : 从稳定值的5%上升到90%所用的时间。
2)脉冲后沿 c : 从稳定值的90%下降到5%所用的时间。
5
四 简单工作原理 • 直流高压电源通过充电电感向传输线充电,当充到两倍
的电源电压后,处于等待状态。 • 当有一低压脉冲加到开关管(闸流管)的栅极上时,开
关管则导通。 • 传输线通过开关管向负载放电。 • 负载上得到一高压脉冲,其宽度由传输线长度决定。
6
§1.2 脉冲调制器的技术要求
一 基本参数
4
§1.1 引言
一 脉冲调制器的定义
凡是能够将一种信号的电压变化(或某种信息变化)去
改变振荡参数的设备叫调制器。脉冲调制器就是用脉冲的 电压去改变微波源的振荡幅度。
二 脉冲调制器在加速器中的应用
在使用微波电场加速带电粒子的加速器中的微波源大 多是脉冲工作的。
三 脉冲调制器的作用
负责提供给微波源(磁控管、速调管)一定振幅、一 定包络宽度、一定重复周期、功率为一定大小的高压脉 冲。
I l ----调制器的输出电流
14
Rl
ul il
1 Kul1
2
3.电子枪
1) 非线性阻抗。 2)相应于磁控管是高阻(在工作点附近 约几百K )。
因此,在设计调制器时,不考虑电子枪的负 载对调制器的影响。
15
§1.3 线型脉冲调制器的基本电路
2
充电隔离元件
5
储能元件
1
直
3 4
6
流 高 压 电
触 发
器呈现的阻抗极大,即:
r E Ia aM M(0Ea MEa M 门 )
.3). 当 EaMEaM 门时, 磁控管建立振荡, 此后 EaM 增加时, I aM 将沿着AB线变化,此时磁控管对调制器 呈现的负载电阻为磁控管的动态电阻 R d ,即:
R d E Ia aM M (E aM 门 E aM E aM )
3)脉冲顶部波动系数 G
E
90%
G
顶部的变化 Ea量 M 稳定值 EaM
5%
c t
8
5. 脉冲宽度 ( )
几个约定: 1) 计算调制器最大工作比时从0电平计算。 2) 计算平均电流时从幅度50%计算。 3) 估算负载输出射频宽度时60 ~ 80%。
二 由基本参数导出的两个常用参数
1. 平均功率 ( Pcp ) Pcp PM / S
加速器的主要组成
加速器原理:加速器的核心---加速管 的工作原理。
微波技术:微波源(磁控管、速调管); 微波传输系统。
加速器装置:控制系统、冷却系统、真空 系统、充气和聚焦系统。
脉冲调制器:脉冲功率源。
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
开关元件
器
负 载
源
16
调制器原理图
G 1 A 5
1
+1 2kV
PS
2
充电电感 充电二极管
CR1
R1
R1 2.5 k
CR2
R2
3G
H A
K
反
R32
峰 电
路
R2 25
R34
6.3VAC
T1
稳压 220VAC
De-Q比较触发De-Q采样
R35
5
3
4
CX1159
触
3
发
4
电 路
2
6.3VAC
T2
稳压 220VAC
13
结论: 磁控管对调制器所呈现的负载电阻是随 EaM 而变化的 ,具有 RdRjr 的特性。
2. 速调管
速调管的电子注电压与电子注电流之间服从于3/2次 方关系,即 I l ∝ u l 3 2,而对调制器所呈现的负载阻抗 与电压的平方根成反比:
设:
R l ----速调管的阻抗
U l ----调制器的输出电压
1)电压、电流的瞬时值:
i Imsin(t1) u Umsin(t2)
(2-1) (2-2)
其中, Im , U m 为电压、电流极大值, 为角频率,
为初始相位。
20
2)电压、电流的相位差:
(12 )
2. 工作比 ( S )
S TM
9
三 调制器的负载
1. 磁控管
调制器
输出脉冲
磁控管
RL
CRL
CL
VS
(磁控管等效电路)
➢由于RL的存在,则磁控管在工作时消耗能量,并转换成热量。
➢由于CRL的存在,则磁控管在工作时可等效为二极管。
➢由于CL寄生电容的存在,将影响脉冲电压的上升及下降的
速率。
10
电流
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
冷却、真空、聚焦系统
控
制
系
统
微波功率源 微波传输系统
脉冲调制器
充气系统
Hale Waihona Puke 3第一章 绪论§1.1 引言 一 脉冲调制器的定义 二 脉冲调制器在加速器中的应用 三 脉冲调制器的作用 四 简单工作原理 §1.2 脉冲调制器的技术要求 §1.3 脉冲调制器的基本电路
实际波形
理论波形
电压
磁控管的伏安特性曲线
11
1) 磁控管阻抗是电压的非线性函数。
EaM EaM
E aM 门
B
O I aM门
A C
1 ). 磁控管工作于C点,它对 调制器呈现的负载阻抗是 磁控管的静态电阻。
I aM
I aM
Rj
E aM I aM
磁控管的伏安特性曲线
12
2). 当 EaMEaM 门 此时磁控管未振荡,电流极小,对调制
•方框一:直流高压电源——三相全波整流电路,是调 制器的电源。
•方框二:充电隔离元件——充电电感、充电二极管, •方框三:触发器——控制开关管(闸流管)的导通。 •方框四:开关管(闸流管)——控制调制器充放电的时间。 •方框五:储能元件——由电容、电感组成的一脉冲形成网络。 • 方框六:脉冲变压器——共由三组线圈组成,原边一组,付
边两组(磁控管电子枪各一组)。 •方框七:负载。
18
第二章 充电电路
§2.1 引言
一 基础知识
二 充电电路的组成
三 充电电路的种类
四 直流充电电路
五 五 充电电路应满足的要求
§2.2 RLC直流谐振充电电路
一 充电电路的等效电路 二 等效电路分析
三 等待充电电路
19
§2.1 引言
一 基础知识
二 1 交流电路的基本表示式
仿真线
加速管灯丝
T4
加速管
F K
6 GKH 1u 6.8 n
A C C ELER A T OR
6.8 n
MF H
C1 75 00pF
匹 配 电 路
R3 25
HV GND
GKL MF L
51
MKL
脉冲电压
脉冲变压器
MKH
脉冲电流
S N
C2
C 1 u F/2 k V
T3 F
磁控管灯丝
7
MG5 193
17
P MU MIM
2. 调制器的效率( M )
M P 出 P 入
3. 重复频率( f M )
fM 1TM
7
4. 脉冲波形
用于表示脉冲波形常用的三个参数
1)脉冲前沿 : 从稳定值的5%上升到90%所用的时间。
2)脉冲后沿 c : 从稳定值的90%下降到5%所用的时间。
5
四 简单工作原理 • 直流高压电源通过充电电感向传输线充电,当充到两倍
的电源电压后,处于等待状态。 • 当有一低压脉冲加到开关管(闸流管)的栅极上时,开
关管则导通。 • 传输线通过开关管向负载放电。 • 负载上得到一高压脉冲,其宽度由传输线长度决定。
6
§1.2 脉冲调制器的技术要求
一 基本参数
4
§1.1 引言
一 脉冲调制器的定义
凡是能够将一种信号的电压变化(或某种信息变化)去
改变振荡参数的设备叫调制器。脉冲调制器就是用脉冲的 电压去改变微波源的振荡幅度。
二 脉冲调制器在加速器中的应用
在使用微波电场加速带电粒子的加速器中的微波源大 多是脉冲工作的。
三 脉冲调制器的作用
负责提供给微波源(磁控管、速调管)一定振幅、一 定包络宽度、一定重复周期、功率为一定大小的高压脉 冲。
I l ----调制器的输出电流
14
Rl
ul il
1 Kul1
2
3.电子枪
1) 非线性阻抗。 2)相应于磁控管是高阻(在工作点附近 约几百K )。
因此,在设计调制器时,不考虑电子枪的负 载对调制器的影响。
15
§1.3 线型脉冲调制器的基本电路
2
充电隔离元件
5
储能元件
1
直
3 4
6
流 高 压 电
触 发
器呈现的阻抗极大,即:
r E Ia aM M(0Ea MEa M 门 )
.3). 当 EaMEaM 门时, 磁控管建立振荡, 此后 EaM 增加时, I aM 将沿着AB线变化,此时磁控管对调制器 呈现的负载电阻为磁控管的动态电阻 R d ,即:
R d E Ia aM M (E aM 门 E aM E aM )
3)脉冲顶部波动系数 G
E
90%
G
顶部的变化 Ea量 M 稳定值 EaM
5%
c t
8
5. 脉冲宽度 ( )
几个约定: 1) 计算调制器最大工作比时从0电平计算。 2) 计算平均电流时从幅度50%计算。 3) 估算负载输出射频宽度时60 ~ 80%。
二 由基本参数导出的两个常用参数
1. 平均功率 ( Pcp ) Pcp PM / S
加速器的主要组成
加速器原理:加速器的核心---加速管 的工作原理。
微波技术:微波源(磁控管、速调管); 微波传输系统。
加速器装置:控制系统、冷却系统、真空 系统、充气和聚焦系统。
脉冲调制器:脉冲功率源。
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
开关元件
器
负 载
源
16
调制器原理图
G 1 A 5
1
+1 2kV
PS
2
充电电感 充电二极管
CR1
R1
R1 2.5 k
CR2
R2
3G
H A
K
反
R32
峰 电
路
R2 25
R34
6.3VAC
T1
稳压 220VAC
De-Q比较触发De-Q采样
R35
5
3
4
CX1159
触
3
发
4
电 路
2
6.3VAC
T2
稳压 220VAC
13
结论: 磁控管对调制器所呈现的负载电阻是随 EaM 而变化的 ,具有 RdRjr 的特性。
2. 速调管
速调管的电子注电压与电子注电流之间服从于3/2次 方关系,即 I l ∝ u l 3 2,而对调制器所呈现的负载阻抗 与电压的平方根成反比:
设:
R l ----速调管的阻抗
U l ----调制器的输出电压
1)电压、电流的瞬时值:
i Imsin(t1) u Umsin(t2)
(2-1) (2-2)
其中, Im , U m 为电压、电流极大值, 为角频率,
为初始相位。
20
2)电压、电流的相位差:
(12 )
2. 工作比 ( S )
S TM
9
三 调制器的负载
1. 磁控管
调制器
输出脉冲
磁控管
RL
CRL
CL
VS
(磁控管等效电路)
➢由于RL的存在,则磁控管在工作时消耗能量,并转换成热量。
➢由于CRL的存在,则磁控管在工作时可等效为二极管。
➢由于CL寄生电容的存在,将影响脉冲电压的上升及下降的
速率。
10
电流
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
冷却、真空、聚焦系统
控
制
系
统
微波功率源 微波传输系统
脉冲调制器
充气系统
Hale Waihona Puke 3第一章 绪论§1.1 引言 一 脉冲调制器的定义 二 脉冲调制器在加速器中的应用 三 脉冲调制器的作用 四 简单工作原理 §1.2 脉冲调制器的技术要求 §1.3 脉冲调制器的基本电路
实际波形
理论波形
电压
磁控管的伏安特性曲线
11
1) 磁控管阻抗是电压的非线性函数。
EaM EaM
E aM 门
B
O I aM门
A C
1 ). 磁控管工作于C点,它对 调制器呈现的负载阻抗是 磁控管的静态电阻。
I aM
I aM
Rj
E aM I aM
磁控管的伏安特性曲线
12
2). 当 EaMEaM 门 此时磁控管未振荡,电流极小,对调制
•方框一:直流高压电源——三相全波整流电路,是调 制器的电源。
•方框二:充电隔离元件——充电电感、充电二极管, •方框三:触发器——控制开关管(闸流管)的导通。 •方框四:开关管(闸流管)——控制调制器充放电的时间。 •方框五:储能元件——由电容、电感组成的一脉冲形成网络。 • 方框六:脉冲变压器——共由三组线圈组成,原边一组,付
边两组(磁控管电子枪各一组)。 •方框七:负载。
18
第二章 充电电路
§2.1 引言
一 基础知识
二 充电电路的组成
三 充电电路的种类
四 直流充电电路
五 五 充电电路应满足的要求
§2.2 RLC直流谐振充电电路
一 充电电路的等效电路 二 等效电路分析
三 等待充电电路
19
§2.1 引言
一 基础知识
二 1 交流电路的基本表示式
仿真线
加速管灯丝
T4
加速管
F K
6 GKH 1u 6.8 n
A C C ELER A T OR
6.8 n
MF H
C1 75 00pF
匹 配 电 路
R3 25
HV GND
GKL MF L
51
MKL
脉冲电压
脉冲变压器
MKH
脉冲电流
S N
C2
C 1 u F/2 k V
T3 F
磁控管灯丝
7
MG5 193
17