腐蚀机理(上篇)

合集下载

腐蚀原理课件第一章

腐蚀原理课件第一章

过程装备腐蚀与防护
1 金属电化学腐蚀基本原理
离子的水化能小于金
离子的水化能超 属上晶格的键能,金
过了晶格上的键 属侧荷正电、溶液侧
能,金属侧荷负 电、溶液侧荷正 电的相对稳定的 双电层,负电性
荷负电,通常比较不 活泼的金属浸在含有 浓度较高的正电性较
强的金属,如锌、 强的金属离子的溶液
镉、镁、铁等浸 中,如铂浸在铂盐溶
电位一个矢量,其数值由电极本身、电解液浓度、 温度等因素决定,包括平衡电极电位和非平衡电 极电位;
绝对的电极电位无法测得,可以通过测量电池电 动势的方法相对于某一电极测出相对电极电位;
常见的电极电位是半电池反应“O+e R ” 相对于标准氢电极(SHE)而言的,是“氧化态/ 还原态O(/R )”电位,有正负之分
化学能与机械能和热能
直接传递,不具备方向性, 测不出电流
在碰撞点上直接形成
电位差,通过自身能量也可以完成
化学能与电能 间接传递,有一定的方向性,能测出 电流 一次产物在电极上形成,二次产物在 一次产物相遇处形成
过程装备腐蚀与防护
1 金属电化学腐蚀基本原理
金属与溶液的界面特性――双电层
金属浸入电解质溶液内,其表面的原子与溶液 中的极性水分子、电解质离子相互作用,使界 面的金属和溶液侧分别形成带有异性电荷的双 电层。双电层的模式随金属、电解质溶液的性 质而异,一般有以下三种类型。
3) Causing considerable inconvenience to human beings and sometimes loss of life.
过程装备腐蚀与防护
Corrosion economics
1 金属电化学腐蚀基本原理

金属腐蚀的基本原理腐蚀原理PPT课件

金属腐蚀的基本原理腐蚀原理PPT课件
①阴极极化:当有电流通过时,阴极的电极电位向
负方向偏移的现象。
②阳极极化:当有电流通过时,阳极的电极电势向正
的方向偏移的现象。
第31页/共55页
极化的结果:阴极电位变得更负;阳极电位变得更正。
发生极化的根本原因:电极反应速度与电子迁移速度之间
的差异性。
极化曲线:描述电极电位与通过电极电流密度之间 关系的曲线。极化曲线越陡,表明电极材料的极化 性能越强,极化电阻越大,电极反应越难进行,反 之越易进行。
腐蚀电池分为宏观腐蚀电池和微观腐蚀电池。 (一)宏观腐蚀电池:是指人们眼睛可以看得到电极的原电池,短
时间内可产生明显的局部腐蚀。
电偶腐蚀电池:当两种具有不同电极电位的金属互相接触或用 导线连接起来,并处于电解质溶液中时形成的电池。 浓差电池:当同一种金属不同部位所接触的介质具有不同浓 度,引起了电极电位的不同而形成的腐蚀电池。又分为俩种
PO 2 (COH )4
第20页/共55页
氧浓差电池实例
第21页/共55页
(2)金属离子浓差电池:同一金属与浓度不同的盐接触时形成 的电池。在这种电池中,金属与稀溶液接触的部位是阳极,与 浓溶液接触的部位是阴极。
第22页/共55页
补充(温差电池): 浸在电解液中的金属,由于所处于温度的不同而形成的电池 为温差电池。它常常发生在换热器、蒸发器两端温差较大的 部位。 高温端:电位低为负极、该电极发生氧化反应,为阳极,该 部位的金属遭到腐蚀; 低温端:电位高为正极、该电极发生还原反应,为阴极,该 部位的金属受到保护。

很耐蚀
3 0.005~0.01

4 0.01~0.05
5 0.05~0. 1
耐蚀

6 0. 1~0.5

腐蚀的机理及其控制措施

腐蚀的机理及其控制措施

腐蚀的机理及其控制措施腐蚀是一种难以避免的自然现象,它会导致材料的破损、失效,对工业制造和设备维护带来极大的困扰。

有许多因素会影响材料的耐腐蚀性能,其中包括环境条件、材料成分、加工和使用方法等等。

在本文中,我们将深入探讨腐蚀的机理,以及如何采取措施来控制它。

1. 腐蚀机理腐蚀是材料在接触化学环境时发生的一系列反应的结果。

在这些反应中,材料的原子或分子被氧化或还原,从而导致其电位和化学性质发生变化。

这些反应可以来源于氧化、酸化、盐类反应和生物作用等不同因素。

一种常见的腐蚀形式是金属腐蚀,它具有很高的经济和环境影响。

在一般情况下,金属的腐蚀反应包括四种反应类型:腐蚀反应、电化学反应、热量反应和生物腐蚀。

腐蚀反应是指金属在非电解质(如酸、碱)中的离子交换反应。

电化学反应通常发生于电解质中,其中金属通过与溶液中的电荷交换来腐蚀。

热反应通常是指金属快速氧化和燃烧等高温现象。

生物腐蚀是指一些微生物在特定条件下对金属的化学反应。

除此之外,在腐蚀机理的研究中,需要探讨腐蚀的成因,包括干燥腐蚀、隐蔽腐蚀和应力腐蚀等等,因为它们都会成为影响腐蚀的因素。

干燥腐蚀是指材料在干燥的环境中产生氧化物而腐蚀,在一些研究中可以通过控制清洁度来避免。

隐蔽腐蚀是指在材料内部发生的腐蚀过程,难以发现和处理。

应力腐蚀则是指金属在受到外界应力和化学环境共同影响下的腐蚀过程。

2. 腐蚀控制措施腐蚀虽然不可避免,但可以通过多种措施来降低腐蚀的风险和减缓腐蚀速度。

以下是几种常见的腐蚀控制措施:2.1 材料选择选用合适的耐腐蚀材料是一种很有效的腐蚀控制措施。

例如,在重化工行业中,选用防腐钢材料可以有效地降低设备和管道的腐蚀风险,从而延长使用寿命。

而在食品加工业中,采用不锈钢、铸铁等材料也可以有效地降低食品中的有害物质含量,提高食品的质量和安全性。

2.2 防腐涂料防腐涂料是一种常见的腐蚀控制方式。

涂料中含有具有防腐性能的化学物质,能够形成一层保护膜,保护金属材料不被化学环境侵蚀。

管道腐蚀机理

管道腐蚀机理

管道腐蚀机理全文共四篇示例,供读者参考第一篇示例:管道腐蚀是管道工程中常见的问题,它会降低管道的使用寿命,甚至导致管道破裂造成事故。

管道腐蚀的机理复杂,主要包括电化学腐蚀、化学腐蚀和微生物腐蚀等多种方式。

了解管道腐蚀的机理对于有效预防和控制管道腐蚀至关重要。

电化学腐蚀是管道腐蚀的一种主要形式。

在含水介质中,金属管道表面会形成电化学电池。

管道金属处于不同电位的部位之间形成阳极和阴极。

阳极在电化学反应中被氧化产生金属离子,而阴极则在电化学反应中充当还原剂。

在电解质溶液中,阴极和阳极之间的电流流动促使阳极金属的溶解,产生腐蚀现象。

电化学腐蚀通常受到外界因素如温度、湿度、PH值等的影响,因此管道在设计和使用中需要考虑这些因素以避免腐蚀的发生。

化学腐蚀是另一种常见的管道腐蚀形式。

化学腐蚀是指金属与环境中的化学物质直接发生反应而导致金属腐蚀。

当氧气、水、有机物和酸碱等物质与金属表面接触时,会产生氧化、还原和形成酸碱等化学反应,加速金属表面的腐蚀。

氧气是导致管道腐蚀的主要因素之一,因此在设计和使用管道时需要注意通风和防潮,减少氧气和水接触金属表面的机会。

微生物腐蚀是一种特殊的管道腐蚀形式。

微生物腐蚀是由微生物在管道表面形成生物膜,并产生特定的代谢产物导致金属腐蚀。

微生物腐蚀通常发生在含有微生物的介质中,如水、土壤等。

微生物腐蚀对管道的腐蚀速度较慢,但会在管道内壁形成微小的腐蚀斑点,逐渐加剧管道的腐蚀。

在设计和使用管道时需要定期清洗和消毒,防止微生物生长和腐蚀。

除了以上几种腐蚀机理外,还有一些其他因素也会对管道的腐蚀产生影响,如温度、压力、流速等。

温度会影响金属的热化学性质,而压力和流速则会影响管道内介质的腐蚀速度。

在高温和高压下,金属会更容易受到腐蚀,因此在设计和使用管道时需要考虑这些因素并采取相应的保护措施。

为了有效预防和控制管道腐蚀,可以采取一些常见的防腐措施,如涂层保护、阳极保护、防腐看管等。

涂层保护是在管道表面涂覆防腐材料,形成一层保护层以阻止金属与环境接触。

金属腐蚀机理及抗腐蚀技术

金属腐蚀机理及抗腐蚀技术

金属腐蚀机理及抗腐蚀技术腐蚀是金属材料常见的一种损害方式。

它是指金属表面在化学或电化学作用下遭受损害,通常导致材料的性能下降和寿命缩短。

虽然一些金属如银、金等比较稳定,但其它金属在常温下或接触不适当条件下很容易发生腐蚀。

如何防止金属腐蚀,是工程界长期以来的难题之一。

一、金属腐蚀的机理金属腐蚀的机理较为复杂,主要有化学反应型和电化学反应型两种。

1.化学反应型金属在遇到某些化学物质时,会和其发生化学反应,从而导致金属的化学成分发生变化,最终形成氧化物。

金属外表形成氧化物层,外行称之为锈,通俗来说就是被腐蚀了。

2.电化学反应型电化学反应型的腐蚀机理主要是由于金属表面的异质腐蚀电池形成了阳极和阴极之间的电化学反应。

阳极表面出现金属离子,发生溶解,而阴极情况下保持了金属的完整性。

其中阳极和阴极之间的差异赋予了形成电位,这种电位会影响金属的腐蚀程度。

电化学反应型的腐蚀过程比较复杂,其腐蚀机理与很多因素都有关,例如温度、PH值、流体速度等。

其中最重要的腐蚀因素是金属质量和表面处理方式。

一般情况下,金属质量优良的材料比较不容易腐蚀,而粗糙的金属表面则比光滑的面更易遭受腐蚀。

二、金属抗腐蚀技术腐蚀是一种普遍存在于各个领域的问题,例如化工、轻工、航空航天、海洋工程等领域的金属结构。

为了能够延长金属材料的使用寿命,提高金属的抗腐蚀能力,需要采取一系列的抗腐蚀技术。

1.物理防腐物理防腐指的是通过改变物理状态来保护金属不被腐蚀。

如在金属表面形成一层防护膜来防止腐蚀。

这种方法优点是简单并且成本较低,但是该方法的防护效果不够长久。

2.化学防腐化学防腐指使用某些化合物对金属表面进行防护处理,使其生成一层稳定的金属化合物膜,防止腐蚀的发生。

这种方法防护效果相对较好,但是施工成本较高。

3.材料选择在设计使用金属材料时,需要充分考虑其在使用环境中可能面临的腐蚀因素,并选择适合的金属材料才能有效防护。

例如耐腐蚀性能极高的不锈钢,仪器、航空、医疗器械、食品工业等领域中都大量使用不锈钢。

金属腐蚀原理教学课件-金属腐蚀原理(上册)

金属腐蚀原理教学课件-金属腐蚀原理(上册)
返回
经济损失包括直接损失和间接损失
◆ 直接损失:防护技术费用、腐蚀破坏后的
维修、更换费用、劳务费用。
◆ 间接损失:腐蚀破坏造成停工、停产;
物料流失;产品污染,质量下降,设备效 率降低,能耗增加;钢材浪费等。
举例
◆ 1975年美国芝加哥一个大的炼油厂一根15cm的不锈钢
弯管破裂引起爆炸和火灾,停产6周,这次腐蚀事故总
腐蚀的对象 腐蚀的后果
要 素
腐蚀的性质
◆耐蚀性 指材料抵抗环境介质腐蚀的能力
◆腐蚀性 指环境介质腐蚀材料的强弱程度
◆腐蚀过程的本质
腐蚀
金属
金属化合物
冶炼
△G﹤0成巨大的经济损失 2. 造成金属资源和能源的浪费 3. 造成设备的破坏事故 4. 阻碍新技术的发展
金属腐蚀原理(上册)
绪论
★ 什么是腐蚀? ★ 腐蚀的危害 ★ 腐蚀科学技术的发展和本课程的内容
铜爵(夏代) 目前中国发现的最早期的青铜酒器之一
越王勾践宝剑
曾侯乙编钟(战国)
返回
★ 什么是腐蚀?
金属材料和周围环境发生相互作用而破坏。
定义:工程材料和周围环境发生化学或电化学的
作用而破坏。
三 个 基 本
维修费50万美元,停产造成的税收损失高达500万美元。
美国:1949年
55亿美元
1960~1969年 150~200亿美元
1975年
700亿美元
1982年
1269亿美元
2002年
5520亿美元
英国: 1969年 中国: 2002年
13.65亿英镑(27.3亿美元) 4979亿元(占当年GDP的5%)
按环境分类:
腐 蚀 的 分
大气腐蚀 土壤腐蚀 海水腐蚀 高温气体腐蚀 化工介质腐蚀 按形态分类:

金属材料的腐蚀机理与控制

金属材料的腐蚀机理与控制

金属材料的腐蚀机理与控制腐蚀是金属材料在特定环境中发生的一种化学反应,导致金属表面发生损害或氧化。

了解金属材料腐蚀的机理,并采取控制措施,是保护金属材料并延长其使用寿命的关键。

本文将介绍金属材料的腐蚀机理以及可行的控制方法。

一、金属腐蚀的机理金属腐蚀主要受以下因素影响:1.1 金属自身性质每种金属材料都有自己的化学成分和晶体结构,这些特性将直接影响金属腐蚀的行为。

例如,铁质材料容易发生氧化腐蚀,而不锈钢则具有较强的抗腐蚀性能。

1.2 环境条件金属腐蚀的速度和程度与环境中的某些因素密切相关。

例如,温度、湿度、酸碱度、气体成分以及阳光照射等都会影响金属腐蚀的发生。

高温和高湿度环境以及强酸或强碱溶液通常会加剧金属腐蚀的速度。

1.3 电化学反应金属腐蚀通常是通过电化学反应发生的。

在腐蚀过程中,金属可以作为阳极或阴极参与电化学反应。

阳极反应是金属的氧化步骤,而阴极反应则是电子和还原剂之间的转移。

这些反应在金属表面产生了电位差,促使腐蚀反应的发生。

二、金属腐蚀的控制方法为了减缓金属腐蚀速度,以下控制方法可供选择:2.1 表面涂层通过在金属表面形成涂层可以提供一层保护层,减少金属与外界环境的直接接触。

例如,镀锌过程中将铁制品浸入锌溶液中,使其表面形成一层锌层,起到防腐蚀的作用。

2.2 阳极保护通过将一个更容易腐蚀的金属设为阳极,来保护所需保护的金属,从而降低了金属腐蚀的速率。

例如,在油罐等容器中,可以使用铝或锌作为阳极材料,来保护铁制品。

2.3 缓蚀剂缓蚀剂是一种可以控制金属腐蚀的化学物质,通过在金属表面形成保护层来阻止腐蚀反应的发生。

缓蚀剂可以通过溶液中的添加剂或覆盖在金属表面的薄膜来实现。

例如,在水中添加磷酸和亚磷酸盐可以减缓金属腐蚀的速度。

2.4 电化学防护电化学防护是通过控制金属表面的电位差来防止腐蚀反应的发生。

常见的电化学防护技术包括阳极保护和阴极保护。

阳极保护是通过提供一定的电流来保护金属,而阴极保护则是通过向金属表面提供足够的电子来防止氧化反应的发生。

第一章 金属腐蚀的基本原理

第一章 金属腐蚀的基本原理

O2+4H++4e→2H2O
氧化性的金属离子,产生于局部区域,虽然较少见,但能 引起严重的局部腐蚀。 一种是金属离子直接还原成金属,称为沉积反应,如锌 在硫酸铜中的反应 Zn+Cu2+→Zn2++Cu↓ 阴极反应 Cu2++2e→Cu↓ 另一种是还原成较低价态的金属离子,如锌在三氯化铁 溶液中的反应 Zn+2Fe3+→Zn2+2Fe2+ 阴极反应 Fe3++e→Fe2+
1、什么是原电池?举例说明并阐述工作机理。
原电池(丹尼尔电池) 是利用两个电极的电极 电势的不同,产生电势差, 从而使电子流动,产生电流。 又称非蓄电池,是电化学电 池的一种。其电化学反应不 能逆转,即是只能将化学能 转换为电能。简单说就即是 不能重新储存电力,与蓄电 池相对。需要注意的是,非 氧化还原反应也可以设计成 原电池。
试验表明,70%的硝酸可使铁表面形成保护膜,使它在后来 不溶于35%的硝酸中,但当表面膜一旦被擦伤,立即失去保护作 用,金属失去钝性。此外,如果铁不经70%的硝酸处理,则会受 到35%硝酸的强烈腐蚀。 当金属发生钝化现象之后,它的腐蚀速度几乎可降低为原 来的1/106~1/103,然而钝化状态一般相当不稳定,像上述试验 中擦伤一下膜就受到损坏。因此,钝态虽然提供了一种极好的 减轻腐蚀的机会,但由于钝态较易转变为活态,所以必须慎重 使用。
船舶腐蚀防护措施
船舶的防护直接关系到船舶的使用寿命和航行安全。船舶 的防护包括合理选材、合理设计结构、表面保护(涂层保护、 金属喷涂层、金属包覆层、衬里)、阴极保护等。船体防护系 统是保护船体免受腐蚀侵害的系统,主要有两大系统组成:防 腐蚀涂漆系统和外加电流或牺牲阳极的阴极保护系统。 1.防腐蚀涂料技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。

一、腐蚀腐蚀是指材料在环境的作用下引起的破坏或变质。

这里所说的材料包括金属材料和非金属材料。

金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。

有时还伴随有机械、物理和生物作用。

非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。

这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。

二、腐蚀分类腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。

通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。

(1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。

1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。

例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。

实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。

2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。

它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。

例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。

金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。

(2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。

可以通过肉眼、放大镜或显微镜等进行观察分析。

根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。

1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。

如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。

由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。

所以,全面腐蚀的危害一般是比较小的。

2 局部腐蚀这是指腐蚀作用仅发生在金属的某一局部区域,而其他部位基本没发生腐蚀;或者是金属某一部位的腐蚀速度比其他部位的腐蚀速度快得多,显示了局部腐蚀破坏的痕迹。

由于局部腐蚀往往是在阳极面积较小、阴极面积较大的情况下进行,所以,局部的腐蚀速度特别快,甚至在难以预料的情况下突然发生破坏。

在金属腐蚀破坏的事例中,局部腐蚀要比全面腐蚀多。

也就是说局部腐蚀的危害性大于全面腐蚀的危害性。

且局部腐蚀的危险性也较大。

最常见的局部腐蚀破坏形式有以下几种。

a 小孔腐蚀(亦称点腐蚀),是指金属表面某一局部区域出现向深处发展的小孔,且其他部位不腐蚀或有轻微的腐蚀。

它的特点是腐蚀的孔深大于孔径,在金属表面呈分散状态或密集状态分布。

腐蚀孔一旦形成,便有向纵深加速进行的作用。

具有自钝化能力的金属材料,如不锈钢、钛及其合金、铝及其合金等。

在含有氯离子的介质中,最容易发生小孔腐蚀。

b 应力腐蚀破裂,是指金属材料在固定拉应力和特定介质的共同作用下引起的腐蚀破裂。

应力腐蚀开裂的特点,主要是在金属局部区域出现的从表及里的腐蚀裂纹,裂纹的形式有穿晶型、晶界型和混合型三种。

破裂口呈现出脆性断裂的特征。

例如,在固定的拉伸应力作用下,奥氏体不锈钢在氯化物溶液中容易产生应力腐蚀;黄铜在含氨蒸汽中容易产生应力腐蚀;熬碱锅的“碱脆”现象等都是典型的应力腐蚀破裂。

c 晶间腐蚀,是指仅发生在金属晶粒边界或邻近区域的一种腐蚀现象。

晶间腐蚀可使晶粒间的结合力大大削弱,严重时可使金属的机械强度完全丧失,造成设备突然破坏,危险性较大。

晶间腐蚀的特点是金属表面无明显变化,但强度已经降低,甚至完全丧失,而且失去金属音响。

通常可用敲击金属材料的方法来检查,若无金属音响和易碎裂,则可能存在晶间腐蚀。

不锈钢、镍基合金、铝合金、镁合金等都是晶间腐蚀敏感性较高的材料。

不同的材料在不同的介质中产生的晶间腐蚀的机理也不一样。

最常见的是奥氏体不锈钢在氧化性或弱氧化性介质中发生的晶间腐蚀。

d 缝隙腐蚀,是指在金属与金属,或金属与非金属之间形成特别小的缝隙(其宽度一般为0.025~0.1mm内发生的金属腐蚀。

缝隙腐蚀是一种很普遍的腐蚀现象,几乎所有的金属材料都会发生。

例如,法兰连接面、螺母压紧面、焊缝气孔、锈层,以及沉积在金属表面的泥砂、积垢、杂屑等,都会形成缝隙而使金属发生缝隙腐蚀。

e 电偶腐蚀(亦称接触腐蚀),是指在同一介质中,两种不同腐蚀电位的金属相互接触,而引起电位较低的金属在接触部位发生局部腐蚀。

这是常见的腐蚀现象。

例如,碳钢和黄铜在海水中互相接触,由于这两种金属在海水中的腐蚀电位不同,它们之间会形成一个宏观的电偶腐蚀电池,腐蚀电位较低的碳钢成为阳极而被腐蚀。

f 氢腐蚀,是指在生产过程中,由于各种化学或电化学反应(包括腐蚀反应)所产生的原子态氢,扩散到金属内部而引起的各种破坏。

主要有三种形态:第一是氢鼓泡,这是指原子态的氢分子不能扩散,就会在空穴内积累而形成巨大的内压,引起金属表面鼓泡,甚至破裂,含有硫化物、砷化物和氰化物等有害杂质,易产生此种形态;第二是氢脆,这是由于氢原子进入金属内部后,使金属晶格产生高度变形,从而降低了金属的韧性和延性,引起金属脆化;第三是氢蚀,这是由于高温高压下的氢原子进入金属内部,与金属中的一种组分或元素产生化学反应,从而引起金属的破坏。

g 其他的局部腐蚀形式还有很多。

例如,选择性腐蚀、空泡腐蚀、腐蚀疲劳等。

(3)按腐蚀环境分类因为金属在各种环境中都可能发生腐蚀,所以,金属腐蚀又可以按腐蚀环境来进行分类。

如化学介质腐蚀、大气腐蚀、高温腐蚀、海水腐蚀、土壤腐蚀等。

当然,这种分类方法不十分严密,因为大气和土壤中都含有各种化学介质,而海水本身就是一种化学介质。

不过这种分类方法可以从宏观环境因素去分析和认识腐蚀的规律。

三、金属腐蚀机理金属腐蚀破坏形式虽然多种多样,但就其腐蚀过程的反应来说,绝大部分都属于电化学腐蚀的范畴,都可以用电化学反应过程来解释。

由于金属的电化学腐蚀是金属和电解质溶液互相作用的过程,金属与电解质的性质与腐蚀过程有着密切的关系。

所以,想要了解电化学腐蚀的机理,就需要了解金属和电解质溶液的一些电化学性质,以及金属和电解质溶液界面上的特性。

(一)金属和电解质溶液的性质1. 金属的电化学性质金属原子是由原子核和核外电子组成。

当金属的不同部位存在电位差时,其中的自由电子就会在电位差的作用下,由电位较低的部位向电位较高的部位运动,形成电流。

所以,金属的最大特性之一是它的导电性。

金属的另一个特性是:当金属与电解质溶液接触时,金属表面上带正电荷的金属阳离子在溶液中的极性水分子的吸引下,会以水化金属阳离子的形式进入溶液中,而在金属表面留下相应的带负电荷的电子。

通常将金属与溶液接触时发生的溶解现象称为金属的自动溶解。

金属在电解质溶液中的自动溶解性能,是金属发生电化学腐蚀的基本原因之一。

2. 电解质溶液的电化学性质所谓电解质是指在溶解或熔融状态下能导电的物质。

如各种酸、碱、盐等。

将电解质溶解于水中即成为电解质溶液。

电解质溶液也是一种导体,能导电,这也是它的特性之一。

但电解质溶液的导电原理与金属不同。

这是因为电解质一般都是离子化合物,当它们溶解于水中时,就会部分或全部离解成带正电荷的阳离子和带负电荷的阴离子。

例如:这些带着不同电荷的离子在直流电场的作用下,发生定向移动。

带正电荷的阳离子移向阴极,并在阴极上获得电子;带负电荷的阴离子移向阳极,并在阳极上放出电子,因而形成了电流。

所以,电解质溶液的导电是依靠溶液中阴阳离子的定向移动,并在电极上放电而实现的。

电解质的导电性,也是引起金属发生电化学腐蚀的重要原因之一。

(二)金属与电解质溶液界面上的特性1. 双电层如上所述,当金属与电解质溶液接触时,金属表面的部分离子会以水化金属离子的状态进入电解质溶液中,并在金属表面留下相应数量带负电荷的电子。

由于异电相吸的作用,进入溶液中的金属阳离子被金属表面带负电荷的电子吸引在金属与溶液的界面上,并有一部分金属离子重新沉积在金属表面上。

这种金属的沉积与溶解过程是可逆的,并建立起如下的动态平衡:由此而使金属与溶液界面上形成了带相反电荷的所谓“双电层”。

如图1-1-1 所示。

表1-1-1 对于研究金属的腐蚀问题是很有用的,可以很方便地根据表中金属的标准电极电位来粗略判断金属的腐蚀倾向。

一般的规律是:金属的标准电极电位越低,越容易被腐蚀;当两种金属互相接触时,电位较低的金属被腐蚀。

例如,从表中查得锌的标准电极电位为-0.7V,铜的标准电极电位为=0.34V,锌的电位比铜低得多。

由此可以判断,在相同条件下,锌容易被腐蚀。

当它们相互接触时,也是锌被腐蚀。

但是,应当指出,利用表1-1-1 来判断金属的腐蚀倾向是很粗略的,并且有一定的局限性,要特别注意金属所处的条件和状态。

例如,从表中查得铝的标准电极电位比锌低,理论上铝比锌更容易被腐蚀,但实际上在很多情况下(如在大气条件下),铝比锌更耐腐蚀。

日常用的铝锅、饭盒等能使用十几年而不坏,就是一个很好的例子。

这是因为铝是一种很活泼的金属,它在大气中能生成一层致密的、具有保护作用的氧化膜,所以,它在大气中不容易被腐蚀。

相关文档
最新文档