2017考研数学线性代数之矩阵相似对角化解题方法
线性代数矩阵的相似对角化

第 一、相似矩阵的基本概念与性质
五 章
1. 相似矩阵的概念
2. 相似矩阵的性质
相 似 性质 (1) 反身性 A ~ A;
矩 阵
P144
(2) 对称性 若 A ~ B , 则 B ~ A;
(3) 传递性 若 A ~ B , B ~ C , 则 A ~ C .
P144 (4) 若 A ~ B , 则 r( A) r(B) .
的主对角线上的元素由 A 的全部特征值构成。
8
§5.2 矩阵的相似对角化
第 二、矩阵相似对角化的概念与问题分析
五 章
1. 问题分析
(2) P 如何构成?
相 似
设 P ( p1, p2 , , pn ), 则由 P 1 AP Λ 有 AP PΛ, 即
矩 阵
A( p1, p2 , , pn ) ( p1, p2 , , pn ) Λ,
11
§5.2 矩阵的相似对角化
第 三、矩阵相似对角化的方法步骤
五 章
步骤
(4) 若 ti si (i 1, 2, , r),
则以这些特征向量作为列向量构成矩阵 P,
相
似
从而有 P 1 AP Λ;
矩
阵
s1个
其中
Λ
s2
个
sr 个
12
§5.2 矩阵的相似对角化
第 三、矩阵相似对角化的方法步骤
§5.2 矩阵的相似对角化
第 五
§5.2 矩阵的相似对角化
章
一、相似矩阵的基本概念与性质
相 似
二、矩阵相似对角化的概念与问题分析
矩 阵
三、矩阵相似对角化的方法步骤
四、矩阵相似对角化的应用
1
§5.2 矩阵的相似对角化
[全]线性代数之实对称矩阵得相似对角化问题的方法总结[下载全]
![[全]线性代数之实对称矩阵得相似对角化问题的方法总结[下载全]](https://img.taocdn.com/s3/m/9013fa9c3169a4517623a301.png)
线性代数之实对称矩阵得相似对角化问题的方法总结
对于一个实对称矩阵不仅可以通过一个可逆矩阵相似对角化,还可以通过一个正交矩阵来相似对角化。
实对称矩阵的不同特征值所对应的特征向量正交,而且实对称矩阵的特征值全为实数。
在考研中,我们一定要重点掌握会求一个正交矩阵来相似对角化,这里的正交矩阵是矩阵的彼此正交且为单位向量的特征向量组成的,这里的对角矩阵是矩阵的特征值组成的。
实对称矩阵:元素都是实数的对称矩阵称为实对称矩阵。
实对称称矩阵的特征值、特征向量及相似对角化:
(1)实对称矩阵的特征值全部是实数;
(2)实对称矩阵的属于不同特征值对应的特征向量相互正交化;
(3)实对称矩阵必相似于对角矩阵。
求实对称矩阵矩阵正交相似于对角矩阵的步骤:
求实对称矩阵正交相似于对角矩阵的步骤
题型一:实对称矩阵的正交相似对角矩阵例1:
解题思路:(1)非齐次线性方程组有无穷多个解的充要条件为矩阵A的秩等于增广矩阵的秩且小于3.
(2)利用求实对称矩阵相似对角矩阵的方法求解
解:
题型二:相似对角矩阵的应用
例2:设A是n阶矩阵,有特征值1,2,3,....,n,求|3E+A| 分析:可以利用特征值和行列式的性质的计算。
解:。
线性代数 4-3实对称矩阵的相似对角化

(ii ) 对每一个重特征值λi,求出对应的ri 个线性无关的特 征向量ξ i1 , ξ i 2 , L , ξ iri ; = 1,2, L , m ),由性质知∑ ri = n. (i
i =1 m
(iii ) 用施密特正交化方法将每一个重特征值λi 所对应的 ri 个线性无关的特征向量ξ i1 , ξ i 2 , L , ξ iri ; = 1,2, L , m ) (i 先正交化再单位化为ηi1 ,ηi 2 , L ,ηiri ; = 1,2, L , m ), (i 它们仍为属于λi的特征向量。
Q A对称, A = AT ,
∴ λ1 p1 = (λ1 p1 ) = ( Ap1 ) = p1 T AT = p1 T A,
T T T
(λ 2 p2 ) = λ 2 p1T p2 , 于是 λ1 p p2 = p Ap2 = p
T 1 T 1 T 1
(λ1 λ 2 ) p1T p2 = 0.
Q λ1 ≠ λ2 , ∴ p p2 = 0. 即p1与p2正交.
x1 + x2 + x3 = 0 2 x1 + 2 x2 + x3 = 0 1 1 1 → 1 1 1 → 1 1 0 0 0 1 0 0 1 2 2 1
x2 = x1 α 3 = 1, 1, T ( 0) x3 = 0
对于一般矩阵, 对于一般矩阵,只能保证相异特征值所对应的特征向 量线性无关,但不一定是正交的; 量线性无关,但不一定是正交的;实对称矩阵相异特 征值所对应的特征向量不仅线性无关,而且彼此正交。 征值所对应的特征向量不仅线性无关,而且彼此正交。
T
P = (ξ1 ξ 2
1 2 2 ξ3 ) = 2 1 0 2 0 1
矩阵相似对角化方法

矩阵相似对角化方法矩阵相似对角化方法是线性代数中的重要概念。
在许多应用领域,对角化矩阵是一种十分有用的工具,可以简化复杂的计算过程,提取矩阵的特征信息等。
相似对角化方法就是一种将矩阵通过相似变换转化为对角矩阵的技术。
在本文中,我们将介绍矩阵相似对角化方法的基本原理、应用场景以及具体操作步骤。
基本原理要理解矩阵相似对角化方法,首先需要了解相似矩阵的概念。
两个矩阵A和B 被称为相似矩阵,如果存在一个可逆矩阵P,使得B=P−1AP。
而对角化矩阵是指将一个矩阵通过相似变换转化为对角矩阵的过程。
对角化矩阵对于矩阵的特征值和特征向量有着重要的意义。
对角化矩阵能够帮助我们快速计算矩阵的幂运算、矩阵的逆等,同时也能够揭示矩阵的特征信息。
应用场景矩阵相似对角化方法在许多领域都有重要的应用。
其中,最常见的应用场景之一是在线性代数和矩阵论中。
通过对角化矩阵,我们可以简化矩阵的运算,求解矩阵的特征值和特征向量,从而分析矩阵的性质。
此外,在信号处理、图像处理、控制理论等领域,矩阵相似对角化方法也有着广泛的应用。
例如,在控制系统设计中,我们常常需要将状态空间表示的系统转化为对角形式,以便分析和设计控制器。
操作步骤要对一个矩阵进行相似对角化,通常需要以下步骤:1.计算矩阵的特征值和特征向量;2.构造特征向量矩阵,并将其逆作为相似变换矩阵;3.计算相似对角矩阵。
具体的操作步骤会根据矩阵的具体形式和要求略有不同,但以上步骤是相似对角化的基本流程。
总结:矩阵相似对角化方法是一种重要的线性代数技术,能够简化矩阵的运算并提取矩阵的特征信息。
在许多应用场景中都有着广泛的应用,是线性代数学习中的重要内容之一。
希望通过本文的介绍,读者能对矩阵相似对角化方法有一个全面的了解。
线性代数-矩阵相似对角化

代数重数为 当λ 2 = λ 3 = 2时:(代数重数为 2 ) 解齐次方程组 (λ 2E − A)x = 0
4 − 1 − 1 (2E − A) = 0 0 0 4 − 1 − 1
r
1 − 1 − 1 4 4 0 0 0 0 0 0
的特征值, 的特征向量, 设 λ 为方阵 A 的特征值, α为 A 的属于 λ 的特征向量, E 是单位矩阵
(1) k + λ 是 kE + A 的特征值 ( kE+ A )α = kα+ A α = kα + λα = ( k + λ )α + ( 2 )k λ 是 kA 的特征值 (kA )α = kA α = kλα = ( k λ )α ( 3 )λ m 是 A m 的特征值 A m α = A m − 1 A α = A m − 1 λα = λ A m − 1α = λ m α
11
☺特征值的性质 特征值的性质
定理1
设A为n阶方阵,λ1,λ 2, λ n为A的n个特征值,则有: 阶方阵, L 个特征值,则有: (1) λ1 + λ 2 + L + λ n = a11 + a 22 + L + a nn tr ( A) 迹 ( 2) λ1λ 2 Lλ n =| A |
f ( λ ) =| λ E − A | = a n λ n + a n − 1 λ n − 1 + L + a 2 λ 2 + a 1 λ + a 0
1 0 − 1 0 1 0 0 0 0
当λ1 = -1时: 解齐次方程组 (λ 1E − A)x = 0
(-E − A)
r
矩阵相似与对角化问题

矩阵相似与对角化问题引言矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
在研究矩阵的性质和应用时,矩阵相似与对角化问题是常见且重要的问题之一。
本文将对矩阵相似和对角化的概念、性质和关系加以讨论。
矩阵相似定义给定两个 n × n 矩阵 A 和 B,如果存在一个可逆矩阵 P,使得P⁻¹AP = B,则称A 和 B 相似。
记作A ∼ B。
性质矩阵相似具有以下性质:1.若A ∼ B,则B ∼ A。
2.若A ∼ B,B ∼ C,则A ∼ C。
(相似关系是传递的)3.若A ∼ B,那么 A 的特征多项式和 B 的特征多项式相同。
4.若 A 和 B 相似,则 A 和 B 具有相同的特征值和特征向量。
相似对角化对于相似矩阵 A 和 B,我们可以进行相似对角化,即将 A 变换为一个对角矩阵B。
具体步骤如下:1.设 A 是一个 n × n 矩阵,A 有 n 个线性无关的特征向量。
2.将这 n 个特征向量按列组成矩阵 P。
3.计算P⁻¹AP,得到对角矩阵 B。
对角化的好处是简化了矩阵的计算和处理,形式更加规整,便于求解特定的问题。
对角化问题定义给定矩阵 A,如果存在一个可逆矩阵 P,使得P⁻¹AP = D,其中 D 是一个对角矩阵,则称 A 可对角化。
充分条件一个矩阵 A 可对角化的充分条件是存在 n 个线性无关的特征向量。
如果 A 的 n 个特征向量线性无关,则 A 必定可对角化。
对角化步骤求解矩阵对角化的步骤如下:1.解特征方程 |A - λI| = 0,得到矩阵 A 的特征值λ1, λ2, …, λn。
2.对于每个特征值λi,解特征方程 (A - λiI)xi = 0,得到特征向量 xi。
3.如果通过步骤 2 得到的 n 个特征向量线性无关,则 A 可对角化。
将这些特征向量按列组成矩阵 P,并将对应的特征值按对角线排列得到对角矩阵D。
可对角化的性质可对角化的矩阵具有以下性质:1.可对角化的矩阵 A 的迹等于其特征值之和。
线性代数课件4-1矩阵的对角化

对于$lambda_2 = lambda_3 = 3$,解方程 组$(B - 3I)X = 0$得特征向量$beta_2 = (0, 1,
0)^T, beta_3 = (4, 0, 1)^T$。
对于$lambda_1 = 2$,解方程组$(B - 2I)X = 0$得特征向量$beta_1 = (0, -4, 1)^T$。
通过相似变换,将线性方程组的系数矩阵转换为对角矩 阵,从而简化方程组的形式。
简化后的方程组求解
对角化后的方程组具有更简单的形式,可以直接求解各 个未知数。
提高线性方程组求解效率
减少计算量
通过对角化,可以避免对原始系数矩阵 进行复杂的运算,从而减少计算量。
VS
并行计算
对角化后的方程组可以方便地进行并行计 算,进一步提高求解效率。
02
性质
03
反身性:$A sim A$(任何矩阵都与自身相似)。
04
对称性:若$A sim B$,则$B sim A$。
05
传递性:若$A sim B$且$B sim C$,则$A sim C$。
06
相似矩阵具有相同的特征多项式,从而有相同的特征值。
相似对角化条件与方法
01
条件
02
$n$阶矩阵$A$可对角化的充分必要条件是$A$有$n$个线性 无关的特征向量。
Jordan标准型概念及性质
Jordan标准型定义:对于n阶方阵A,如果存在一个可逆 矩阵P,使得$P^{-1}AP$为Jordan矩阵,则称A为 Jordan可约的,对应的Jordan矩阵称为A的Jordan标准 型。 性质
线性代数 矩阵相似对角化

0 2
k2X0
上述必须有两个线性无关的解向量,r(-I-A)=1
4 2 2 4 2 2
rk4
0 2
k2rk0
0 0
0k1
k0
(2)代入k=0, 1,2 1 时,线性无关的特征向量:
1 120 T ,2 102 T
(4)A~B,则 RA=RB
(5)A~B,则 A B
(6)A~B,且A可逆,则 A1~B1
定理
若n阶矩阵A与B相似,则A与B有相同的特征 多项式,从而A与B有相同的特征值.
IAIB
QIBIP1A PP1IPP1A P
P1IAPIA
推论 若n阶矩阵A与对角矩阵
y1
x1
令Y
y2
P1
x2
,
y3
x3
Y
'
y1' y2'
P1
x1' x2'
,
y3'
x3'
故有
5 Y'00
0 3 0
003Yyyy231
推论 如果n阶矩阵A有n个不同的特征值,则矩阵A
可相似对角化.
推论 若n阶矩阵A可相似对角化A的任 t i 重特征值
i 对应 t i 个线性无关的特征向量.
注意 (1)P中的列向量 p1,p2, ,pn的排列顺序要与
1,2, ,n的顺序一致.
(2)因 p i 是 (A E )x0 的基础解系中的解向量,
的λ都是方阵A的特征值.
(1)由 f()EA0求出A的所有特征值 1,2,L,n,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017考研数学线性代数之矩阵相似对角
化解题方法
矩阵的相似对角化是考研的重要考点,该部分内容既可以出大题,也可以出小题。
所以同学们必须学会如何判断一个矩阵可对角化,现把该部分的知识点总结如下: 一般方阵的相似对角化理论
这里要求掌握一般矩阵相似对角化的条件,会判断给定的矩阵是否可以相似对角化,另外还要会矩阵相似对角化的计算问题,会求可逆阵以及对角阵。
事实上,矩阵相似对角化之后还有一些应用,主要体现在矩阵行列式的计算或者求矩阵的方幂上,这些应用在历年真题中都有不同的体现。
1、判断方阵是否可相似对角化的条件:
(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;
(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足1.jpg
(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;
(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。
【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。
2、求方阵的特征值:
(1)具体矩阵的特征值:
这里的难点在于特征行列式的计算:方法是先利用行列式的性质在行列式中制造出两个0,然后利用行列式的展开定理计算;
(2)抽象矩阵的特征值:
抽象矩阵的特征值,往往要根据题中条件构造特征值的定义式来求,灵活性较大。
实对称矩阵的相似对角化理论
其实质还是矩阵的相似对角化问题,与一般方阵不同的是求得的可逆阵为正交阵。
这里要求大家除了掌握实对称矩阵的正交相似对角化外,还要掌握实对称矩阵的特征值与特征向量的性质,在考试的时候会经常用到这些考点的。
这块的知识出题比较灵活,可直接出题,即给定一个实对称矩阵A,让求正交阵使得该矩阵正交相似于对角阵;也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A;另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值的特征向量确定出对应的特征向量,从而确定出矩阵A。
最重要的是,掌握了实对称矩阵的正交相似对角化就相当于解决了实二次型的标准化问题。
1、掌握实对称矩阵的特征值和特征向量的性质
(1)不同特征值的特征向量一定正交
(2)k重特征值一定满足1.jpg
【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。
2、会求把对称矩阵正交相似化的正交矩阵
【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不
正交)。
3、实对称矩阵的特殊考点:
实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:
(1)实对称矩阵的秩等于非零特征值的个数
这个结论只对实对称矩阵成立,不要错误地使用。
(2)两个实对称矩阵,如果特征值相同,一定相似
同样地,对于一般矩阵,这个结论也是不成立的。
4、实对称矩阵在二次型中的应用
使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。