2018秋(华师大版)九年级数学上册课件:第24章《解直角三角形》单元检测题(共38张PPT)
华东师大版九上数学24章《解直角三角形》单元测试卷(含解析)

华东师大版 九上数学 24章 《解直角三角形》单元测试卷(含解析)一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B.34 C. 53 D.35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A. 21B.33 C. 1 D. 3 3. 在△ABC 中,若22cos =A ,3tan =B ,则那个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( ) A.EG EF G =sin B. EF EHG =sinC. FGGH G =sinD. FGFH G =sin5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是( )A. B. C. D.7. 在△ABC 中,∠C=90°,52sin A ,则sinB 的值是( )A.32B.52 C.54 D. 521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.375 C. 9 D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米 C. 12米 D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3.12. 若,则锐角α=__________。
第24章 解直角三角形 华东师大版数学九年级上册单元复习题(含解析)

;华东师大版九年级数学上册第24章解直角三角形单元复习题一、选择题1.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是( )A.9.6m B.10.8m C.12m D.14m2.如图,在矩形中,已知于,,,则的长为( )A.3B.2C.D.3.已知,是锐角,则的度数为( )A.B.C.D.4.用计算器求的值,以下按键顺序正确的是( )A.B.C.D.5.如图,在中,,,则的值为( )A.2B.3C.D.6.如图,利用标杆BE测量建筑物的高度,已知标杆高,测得.则建筑物的高是( )A.B.C.D.7.边长为5,7,8的三角形的最大角和最小角的和是( ).A.90°B.150°C.135°D.120°8.如图,在中,,若,,点是上一点,且,则的值为( ).A.B.C.D.9.如图,某超市电梯的截面图中,的长为15米,与的夹角为,则高是( )A.米B.米C.米D.米10.如图,在一笔直的沿湖道路l上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则( )A.B.C.4D.6二、填空题11.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为 米.12.已知在中,,,,,则BC的长等于 .13.如图,已知大正方形的面积是25,小正方形的面积是1,那么 .14.河堤横断面如图所示,斜坡的坡度(即BC:AC),,则的长是 .三、解答题15.为测量一棵大树的高度,设计的测量方案如图所示:标杆高度,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,B、D、N三点共线,,求大树的高度.16.如图,在矩形中,两条对角线相交于点O,,求这个矩形对角线的长.17.先化简,再求代数式的值,其中.18.如图,小聪全家自驾到某风景区旅游,到达A景点后,导航显示沿北偏西方向行驶8千米到达B景点,在B景点查询C景点显示在北偏东方向上,到达C景点,小聪发现C景点恰好在A 景点的正北方向,求B,C两景点的距离.四、综合题19.小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物的影长为16米,的影长为20米,小明的影长为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且,.已知小明的身高为1.8米.(1)求建筑物OB的高度;(2)求旗杆的高AB.20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12,求的值.21.如图,点是矩形中边上一点,沿折叠为,点落在上.(1)求证:;(2)若,,求的值.22.如图,在一片海域中有三个岛屿,标记为,,.经过测量岛屿在岛屿的北偏东,岛屿在岛屿的南偏东,岛屿在岛屿的南偏东.(1)直接写出的三个内角度数;(2)小明测得较近两个岛屿,求、的长度(最终结果保留根号,不用三角函数表示).答案解析部分1.【答案】B【解析】【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,∴CD=10.8(米).故答案为:B.【分析】利用EB∥CD可证得△ABE∽△ACD,利用相似三角形的对应边成比例,可得比列式,即可求出CD的长.2.【答案】B【解析】【解答】解:四边形为矩形,,,,,,故答案为:B.【分析】由矩形的性质求出∠ABD=90°,利用三角形内角和求出∠BAE=30°,再根据含30°角的直角三角形的性质即可求解.3.【答案】A【解析】【解答】解:∵,且是锐角,∴,故答案为:A.【分析】根据特殊角的三角函数值进行解答.4.【答案】A【解析】【解答】解:先按键“sin”,再输入角的度数24°37′,按键“=”即可得到结果.故答案为:A.【分析】利用计算器的使用步骤得到结论。
华师大版九年级数学上册 第24章《解直角三角形》单元测试题及答案

华师大版九年级数学上册第24章《解直角三角形》单元检测试卷一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A. B.C. D.2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A. 15B. 16C. 18D. 193.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E.如图所示,若测得BE=90m,EC=45m,CD=60m,则这条河的宽AB等于()A. 120mB. 67.5mC. 40mD. 30m4.等腰三角形的周长为20cm,腰长为x cm,底边长为y cm,则底边长与腰长之间的函数关系式为()A. y=20﹣x(0<x<10)B. y=20﹣x(10<x<20)C. y=20﹣2x(10<x<20)D. y=20﹣2x(5<x<10)5.一段拦水坝横断面如图所示,迎水坡AB的坡度为i=1:,坝高BC=6m,则坡面AB的长度()A. 12mB. 18mC. 6D. 126.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3007.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A. 4.5米B. 6米C. 7.2米 D. 8米8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为()A. 10B. 12C. 14D. 169.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3 米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A. 5米B. 6米C. 8米 D. (3+ )米10.如图,在□ABCD中,AB∶AD=3∶2,∠ADB=60°,那么cosA的值等于()A. B. C.D.二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________.13.如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的正切值是 ,则x=________,cosα=________.15.在Rt△ABC中,∠C=90°,如果AC=4,sinB=,那么AB=________16.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.20.已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a <b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= , cos53 °= , tan53 °= ,≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈,tan37°≈,sin21°≈,tan21°≈)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= =5.∴sinA= ,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。
(华师大版)九年级数学上册课件:第24章《解直角三角形》单元检测题(共38张PPT)

•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/62021/9/6Monday, September 06, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/62021/9/62021/9/69/6/2021 1:45:53 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/62021/9/62021/9/6Sep-216-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/62021/9/62021/9/6Monday, September 06, 2021
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。