华师大版九年级上册全册数学教案
华师大版九年级上册数学全册教案(2022年月修订)

华师大版九年级上册数学全册教案(2022年月修订)第二十一章二次根式21.1二次根式【知识与技能】1.理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2.理解(a≥0)是非负数和()2=a.3.理解=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度与价值观】通过具体的数据从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.1.形如(a≥0)的式子叫做二次根式.2.(a≥0)是一个非负数;()2=a(a≥0)及其运用.3.利用“(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出多媒体课件.回顾:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.一、思考探究,获取新知概括:(a≥0)表示非负数a的算术平方根,也就是说,(a≥0)是一个非负数,它的平方等于a.即有:(1)≥0;(2)()2=a(a≥0).形如(a≥0)的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时,=a;当a<0时,=-a.【教学说明】针对上述问题可给予时间让学生讨论,让学生独立思考。
1.下列计算正确的是A.B.C.D.=±32.已知=2是一元二次方程=0的一个解,则m的值是A.-3B.3C.0D.0或33.视力表对我们来说并不陌生。
华师大版九年级数学上册全册教案(用)

华师大,版,九年级,数学,上册,全册,教案,用,第,第22章一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x2-81=0;4,0,-81(3)4x2+8x-25=0;4,8,-25(4)3x2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;(3)x=(1-x)2;x2-3x+1=0.3.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-.四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.22.2 一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x1=5+5,x2=5-5(舍去).答:小圆形场地的半径为(5+5)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x2+6x+9=25(3)x2+6x=16(4)x2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即()2,使左边配成x2+bx+(b2)2的形式,得:x2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x1=2,x2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x2+8x+16=(x+4)2(2)x2-x+=(x-)2(3)4x2+4x+1=(2x+1)2例2 列方程:(1)x2+6x+5=0 (2)2x2+6x+2=0 (3)(1+x)2+2(1+x)-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.。
华师大版九年级数学上册全册教案用

第22章一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x2-81=0;4,0,-81(3)4x2+8x-25=0;4,8,-25(4)3x2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x 2=25;4x 2-25=0;(2)x (x-2)=100;x 2-2x-100=0;(3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根,求a 的值.解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-43. 四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分. 22.2 一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0 即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x=5+52,x2=5-52(舍去).1答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n ≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x2+6x+9=25(3)x2+6x=16(4)x2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2(2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax 2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x 2-4x-8=0(2)x 2-4x+2=0(3)x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求(xy )z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.3.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0解:(1)x1=-1,x2=-2 (2)无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题已知ax2+bx+c=0(a≠0),试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子a acbbx24 2-±-=就得到方程的根,当b2-4ac<0时,方程没有实数根.(2)a acbbx24 2-±-=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解下列方程:①2x2-4x-1=0 ②5x+2=3x2③(x-2)(3x-5)=0 ④4x2-3x+1=0解:①x1=1+26,x2=1-26②x1=2,x2=-31③x1=2,x2=35④无解【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c的值,注意它们的符号;(3)先计算b2-4ac的值,再代入公式.三、运用新知,深化理解1.用公式法解下列方程:(1)x2+x-12=0(2)x 2-2x-41=0 (3)x 2+4x+8=2x+11(4)x (x-4)=2-8x(5)x 2+2x=0(6)x 2+25x+10=0解:(1)x 1=3,x 2=-4;(2)x 1=232+,x 2=232-; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6;(5)x 1=0,x 2=-2;(6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.4.一元二次方程根的判别式【知识与技能】1.能运用根的判别式,判断方程根的情况和进行有关的推理论证;2.会运用根的判别式求一元二次方程中字母系数的取值范围. 【过程与方法】1.经历一元二次方程根的判别式的产生过程;2.向学生渗透分类讨论的数学思想;3.培养学生的逻辑思维能力以及推理论证能力.【情感态度】1.体验数学的简洁美;2.培养学生的探索、创新精神和协作精神.【教学重点】根的判别式的正确理解与运用.【教学难点】含字母系数的一元二次方程根的判别式的应用.一、情境导入,初步认识用公式法解下列一元二次方程(1)x2+5x+6=0(2)9x2-6x+1=0(3)x2-2x+3=0解:(1)x1=-2,x2=-3(2)x1=x2=31(3)无解【教学说明】让学生亲身感知一元二次方程根的情况,回顾已有知识.二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a,b,c的值,然后求出b2-4ac的值,它能决定方程是否有解,我们把b2-4ac叫做一元二次方程根的判别式,通常用符号“Δ”来表示,即Δ=b2-4ac.我们回顾一元二次方程求根公式的推导过程发现:【归纳结论】(1)当Δ>0时,方程有两个不相等的实数根:a acbbx24 21-+-=,aacbbx2422---=;(2)当Δ=0时,方程有两个相等的实数根,x1=x2=-ab2; (3)当Δ<0时,方程没有实数根.例1利用根的判别式判定下列方程的根的情况:解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.例2 当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0, (1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m <41且m ≠-1; (2)m=41; (3)m >41. 【教学说明】注意(1)中的m+1≠0这一条件.三、运用新知,深化理解1.方程x 2-4x+4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.已知x 2+2x=m-1没有实数根,求证:x 2+mx=1-2m 必有两个不相等的实数根.【答案】1.B2.证明:∵x 2+2x-m+1=0没有实数根,∴4-4(1-m )<0,∴m <0.对于方程x 2+mx=1-2m,即x 2+mx+2m-1=0,Δ=m 2-8m+4,∵m <0,∴Δ>0,∴x 2+mx=1-2m 必有两个不相等的实数根.【教学说明】引导学生灵活运用知识.四、师生互动,课堂小结1.用判别式判定一元二次方程根的情况(1)Δ>0时,一元二次方程有两个不相等的实数根;(2)Δ=0时,一元二次方程有两个相等的实数根.(3)Δ<0时,一元二次方程无实数根.2.运用根的判别式解决具体问题时,要注意二次项系数不为0这一隐含条件.【教学说明】可让学生分组讨论,回忆整理,再由小组代表陈述.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.*5.一元二次方程的根与系数的关系【知识与技能】1.引导学生在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其关系的运用.2.通过观察、实践、讨论等活动,经历从观察判断到发现关系的过程.【过程与方法】通过探究一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励学生勇于探索的精神.【情感态度】在积极参与数学活动的同时,初步体验发现问题,总结规律的态度及养成质疑和独立思考的习惯.【教学重点】一元二次方程根与系数之间的关系的运用.【教学难点】一元二次方程根与系数之间的关系的运用.一、情境导入,初步认识1.完成下列表格问题你发现了什么规律?①用语言叙述你发现的规律:(两根之和为一次项系数的相反数;两根之积为常数项)②设方程x 2+px+q=0的两根为x 1,x 2,用式子表示你发现的规律.(x1+x2=-p,x1·x2=q )2.完成下列表格问题 上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律:(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比)②设方程ax 2+bx+c=0的两根为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-a b ,x 1·x 2=ac ) 二、思考探究,获取新知通过以上活动你发现了什么规律?对一般的一元二次方程ax 2+bx+c=0(a ≠0)这一规律是否成立?试通过求根公式加以说明.ax 2+bx+c=0的两根a ac b b x 2421-+-=,a ac b b x 2422---=,x1+x2=-a b , x 1·x 2=ac . 【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系,体会知识形成的过程,加深对知识的理解.例1 不解方程,求下列方程的两根之和与两根之积:(1)x 2-6x-15=0;(2)3x 2+7x-9=0;(3)5x-1=4x 2.解:(1)x1+x2=6,x1·x2=-15;(2)x1+x2=-37,x1·x2=-3; (3)x1+x2=45,x1·x2=41. 【教学说明】先将方程化为一般形式,找出对应的系数.例2 已知方程2x 2+kx-9=0的一个根是-3,求另一根及k 的值. 解:另一根为23,k=3. 【教学说明】本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.例3 已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.三、运用新知,深化理解1.不解方程,求下列方程的两根之和与两根之积:(1)x 2-3x=15(2)5x 2-1=4x 2(3)x 2-3x+2=10(4)4x 2-144=0(5)3x (x-1)=2(x-1)(6)(2x-1)2=(3-x)22.两根均为负数的一元二次方程是()A.7x2-12x+5=0B.6x2-13x-5=0C.4x2+21x+5=0D.x2+15x-8=0【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.【答案】1.(1)x1+x2=3,x1x2=-15(2)x1+x2=0,x1x2=-1(3)x1+x2=3,x1x2=-8(4)x1+x2=0,x1x2=-36(5)x1+x2=35,x1x2=32(6)x1+x2=-32,x1x2=-382.C【教学说明】可由学生自主完成抢答,教师点评.四、师生互动,课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程根与系数的关系成立的前提条件.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.22.3 实践与探索【知识与技能】使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型来建立一元二次方程.【过程与方法】让学生经历由实际问题转化为数学模型的过程,领悟数学建模思想,体会如何寻找实际问题中的等量关系.【情感态度】通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.【教学重点】列一元二次方程解决实际问题.【教学难点】寻找实际问题中的等量关系.一、情境导入,初步认识问题1 学校生物小组有一块长32m,宽20m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少?问题2 某药品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.二、思考探究,获取新知问题1 【分析】问题中的等量关系很明显,即抓住种植面积为540m2来列方程,设小道的宽为xm,如何来表示种植面积?方法一:如图,由题意得,32×20-32x-20x+x2=540方法二:如图,采用平移的方法更简便.由题意可得:(20-x)(32-x)=540解得x1=50,x2=2由题意可得x<20,∴x=2【教学说明】引导学生学会一题多解,同时要注意检验所解得的结果是否符合实际意义.问题2 【分析】这是增长率问题,问题中的数量关系很明了,即原价56元经过两次降价降为31.5元,设每次降价的百分率为x,由题意得56(1-x)2=31.5解得 x1=0.25,x2=1.75(舍去)三、运用新知,深化理解1.青山村种的水稻2011年平均每公顷产量为7200kg,2013年平均每公顷产量为8450kg,求水稻每公顷产量的年平均增长率.2.用一根长40cm的铁丝围成一个长方形,要求长方形的面积为75cm2.(1)求此长方形的宽.(2)能围成一个面积为101cm2的长方形吗?如能,说明围法.(3)若设围成一个长方形的面积为S(cm2),长方形的宽为x(cm),求S 与x的函数关系式,并求出当x为何值时,S的值最大,最大面积为多少.【答案】1.解:设年平均增长率为x,则有7200(1+x)2=8450,解得x1=121≈0.08,x 2=-1224≈-2.08(舍去).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.2.解:(1)设此长方形的宽为xcm,则长为(20-x)cm.根据题意,得x(20-x)=75解得:x1=5,x2=15(舍去).答:此长方形的宽是5cm.(2)不能.由x(20-x)=101,即x2-20x+101=0,,知Δ=202-4×101=-4<0,方程无解,故不能围成一个面积为101cm2的长方形.(3)S=x(20-x)=-x2+20x.由S=-x2+20x=-(x-10)2+100可知,当x=10时,S的值最大,最大面积为100cm2.【教学说明】注意一元二次方程根的判别式和配方法在第2题第(2)、(3)问中的应用.四、师生互动,课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.用一元二次方程解决特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.3.若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).1.布置作业:从教材相应练习和“习题22.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本章复习【知识与技能】掌握一元二次方程的基本概念及其解法;灵活运用一元二次方程知识解决一些实际问题.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及到的化归思想、建模思想的过程,加深对本章知识的理解.【情感态度】在运用一元二次方程的有关知识解决具体问题的过程中,进一步体会数学来源于生活又应用于生活,增强数学的应用意识,感受数学的应用价值,激发学生的学习兴趣.【教学重点】一元二次方程的解法及应用.【教学难点】一元二次方程的应用.一、知识框图,整体把握二、释疑解惑,加深理解1.一元二次方程的解法【教学说明】一般考虑选择方法的顺序:直接开平方法、因式分解法、配方法或公式法.2.一元二次方程根的判别式Δ=b2-4ac(1)当Δ>0时,方程有两个不相等的实数根;(2)当Δ=0时,方程有两个相等的实数根;(3)当Δ<0时,方程无实数根.在应用时,要根据根的情况限定Δ的取值,同时应注意二次项系数不为0这一条件.3.一元二次方程y=ax2+bx+c(a≠0)的根与系数的关系,在应用时要注意变形.同时要明确根与系数的关系成立的两个条件:(1)a≠0,(2)Δ≥04.应用一元二次方程解决实际问题,要注重分析实际问题中的等量关系,列出方程,求出方程的解,同时要注意检验其是否符合题意.三、典例精析,复习新知例1 用适当的方法解下列方程(1)x2-7x=0(2)x2+12x+27=0(3)x(x-2)+x-2=0(4)x2+x-2=4(5)4(x+2)2=9(2x-1)2解:(1)x1=0,x2=7;(2)x1=-3,x2=-9;(3)x 1=2,x 2=-1;(4)x 1=2,x 2=-3;(5)x 1=47,x 2=-81. 【教学说明】依据各种不同方法所对应方程的特点来解.例2 关于x 的方程ax 2-(3a+1)x+2(a+1)=0,有两个不相等的实数根x 1,x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( ).A.1B.-1C.1或-1D.2例3 (2012·江苏徐州)为了倡导节能低碳生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a 千瓦时,则一个月的电费为20元;若超过a 千瓦时,则除交20元外,超过部分每千瓦时要交100a 元,某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a 的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时? 解:(1)由题意得20+(80-a )×100a =35,解得a 1=30,a 2=50,∵a >45,∴a=50.(2)设5月份用电x 千瓦时,依题意得20+(x-50)×10050=45,解得x=100,则该宿舍当月用电量为100千瓦时.【教学说明】现实生活中存在大量的实际应用问题,需要用一元二次方程的知识来解决,解决这类问题的关键是在充分理解题意的基础上构建方程模型.四、复习训练,巩固提高.1.方程x 2-3x=0的解为( )A.x=0B.x=3C.x 1=0,x 2=-3D.x 1=0,x 2=32.(2012·河北)用配方法解方程x 2+4x+1=0,配方后的方程是( )A.(x+2)2=3B.(x-2)2=3C.(x-2)2=5D.(x+2)2=53.(2012·辽宁本溪)已知一元二次方程x 2-8x+15=0的两个根恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( )A.13B.11或13C.11D.124.(2012·山东日照)已知关于x 的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k 的取值范围是( )A.k <34且k ≠2 B.k ≥34且k ≠2 C.k >43且k ≠2 D.k ≥43且k ≠2 5.设α,β是一元二次方程x 2+3x-7=0的两个根,则α2+4α+β= .6.(2012·内蒙古包头)关于x 的两个方程x 2-x-2=0与ax x +=+211有一个解相同,则a= .7.(2012·湖北鄂州)设x 1,x 2是一元二次方程x 2+5x-3=0的两个根,且2x 1(x 22+6x 2-3)+a=4,则a= .8.(2012·山东济宁)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?【答案】1.D 2.A 3.B 4.C 5.4 6.4 7.108.解:∵60棵树苗的售价为120×60=7200(元),而7200<8800,∴该校购买的树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80,当x1=220时,120-0.5×(220-60)=40<100,∴x=220不合题意,舍去;当x=80时,120-0.5×(80-60)=110>100,∴x=80,即该校共购买了80棵树苗.五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关一元二次方程的知识吗?你还有哪些困惑与疑问?1.布置作业:从教材本章“复习题”中选取.2.完成练习册中“本章热点专题训练”.第23章图形的相似23.1 成比例线段1.成比例线段【知识与技能】1.了解成比例线段的意义,会判断四条线段是否成比例.2.会利用比例的性质,求出未知线段的长.【过程与方法】培养学生灵活解题及合作探究的能力.【情感态度】感受数学逻辑推理的魅力.【教学重点】成比例线段的定义;比例的基本性质及直接运用.【教学难点】比例的基本性质的灵活运用,探索比例的其他性质.一、情境导入,初步认识挂上两张照片,问:1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似图形.2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例.二、思考探究,获取新知。
华师大版九年级数学上册全册教案(用)

华师大版九年级数学上册全册教案(用)22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义;能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中;使学生感受方程是刻画现实世界数量关系的工具;增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题;把实际问题转化为数学模型;引入一元二次方程的概念;让学生认识一元二次方程及其相关概念;提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学;并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后;还要考虑这些根是否确定是实际问题的根.一、情境导入;初步认识问题1 绿苑小区住宅设计;准备在每两幢楼房之间;开辟面积为900平方米的一块长方形绿地;并且长比宽多10米;那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米;不难列出方程x(x+10)=900;整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册;预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x;我们知道;去年年底的图书数是5万册;则今年年底的图书数是5(1+x)万册;同样;明年年底的图书数又是今年年底的(1+x)倍;即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2;整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程;解决问题.二、思考探究;获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然;这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数;并且未知数的最高次数是2;这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数;a≠0).其中ax2叫做二次项;a叫做二次项系数;bx叫做一次项系数;c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式;并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2;-13;11.【教学说明】将一元二次方程化成一般形式时;通常要将首项化负为正;化分为整.三、运用新知;深化理解1.将下列方程化成一元二次方程的一般形式;并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5;-4;-1;(2)4x2-81=0;4;0;-81(3)4x2+8x-25=0;4;8;-25(4)3x2-7x+1=0;3;-7;1.2.根据下列问题;列出关于x的方程;并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25;求正方形的边长x;(2)一个长方形的长比宽多2;面积是100;求长方形的长x;(3)把长为1的木条分成两段;使较短一段的长与全长的积;等于较长一段的长的平方;求较短一段的长x.解:(1)4x 2=25;4x 2-25=0; (2)x (x-2)=100;x 2-2x-100=0; (3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根;求a 的值. 解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-43.四、师生互动;课堂小结1.只含有一个未知数;并且未知数的最高次数是2的整式方程;叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0);一元二次方程的项及系数都是根据一般式定义的;这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中;体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取. 2.完成练习册中本课时练习的“课时作业”部分.22.2 一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0;ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境;综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程;激发求知的欲望;体验求知的成功;增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入;初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方;得x+1=±16所以原方程的解是x1=15;x2=-17方法2:原方程可变形为:(x+1)2-256=0;方程左边分解因式;得(x+1+16)(x+1-16)=0 即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15;x2=-17【教学说明】让学生说出作业中的解法;教师板书.二、思考探究;获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时;最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时;注意整体划归的思想.三、运用新知;深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地;场地面积增加了一倍;求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.=5+52;x2=5-52(舍去).解得x1答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题;分小组展示结果;教师点评.四、师生互动;课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0;b≥0)的方程;只要把(x-k)看作一个整体;就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时;切不可约去相同因式;而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.2.配方法【知识与技能】1.使学生掌握配方法的推导过程;熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想;掌握一些转化的技能.【过程与方法】通过探索配方法的过程;让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦;并体验数学的价值;增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入;初步认识问题要使一块矩形场地的长比宽多6m;并且面积为16m2;场地的长和宽分别是多少?设场地的宽为xm;则长为(x+6)m;根据矩形面积为16m2;得到方程x(x+6)=16;整理得到x2+6x-16=0.【教学说明】创设实际问题情境;让学生感受到生活中处处有数学;激发学生的主动性和求知欲.二、思考探究;获取新知 探究如何解方程x 2+6x-16=0?问题1 通过上节课的学习;我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆;明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式;右边是一个非负常数;即(x+m )2=n (n ≥0);运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗? (1)(x+3)2=25 (2)x 2+6x+9=25 (3)x 2+6x=16 (4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式;将x 2+6x-16=0转化为(x+3)2=25的形式;从而求得方程的解.解:移项得:x2+6x=16;两边都加上9即(26)2;使左边配成x 2+bx+(b2)2的形式;得: x 2+6x+9=16+9;左边写成完全平方形式;得:(x+3)2=25;开平方;得:x+3=±5;(降次) 即x+3=5或x+3=-5解一次方程得:x 1=2;x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式;右边是一个非负常数;从而可以直接开平方求解;这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2(2)x 2-x+41=(x-21)2(3)4x 2+4x+1=(2x+1)2 例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题;小组展示;教师点评归纳. 【归纳总结】利用配方法解方程应该遵循的步骤: (1)把方程化为一般形式ax 2+bx+c=0; (2)把常数项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式;然后利用直接开平方法来解. 三、运用新知;深化理解 1.用配方法解下列方程:(1)2x 2-4x-8=0 (2)x 2-4x+2=0(3)x 2-21x-1=02.如果x 2-4x+y2+6y+2 z +13=0;求(xy )z 的值.【教学说明】学生独立解答;小组内交流;上台展示并讲解思路. 四、师生互动;课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取. 2.完成练习册中课时练习的“课时作业”部分.3.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程;了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程;引导学生推导出求根公式;使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程;培养学生抽象思维能力;渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入;初步认识用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0解:(1)x1=-1;x2=-2 (2)无解二、思考探究;获取新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0);你能否用上面配方法的步骤求出它们的两根?问题已知ax2+bx+c=0(a≠0);试推导它的两个根【分析】因为前面具体数字的题目已做得很多;现在不妨把a;b;c也当成具体数字;根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a;b;c而定;因此:(1)解一元二次方程时;可以先将方程化为一般形式ax2+bx+c=0;当b2-4ac≥0时;将a;b;c代入式子a acbbx24 2-±-=就得到方程的根;当b2-4ac<0时;方程没有实数根.(2)a acbbx24 2-±-=叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式;体验获取知识的过程;体会成功的喜悦;可让学生小组展示.例1 用公式法解下列方程:①2x2-4x-1=0 ②5x+2=3x2③(x-2)(3x-5)=0 ④4x2-3x+1=0解:①x1=1+26;x2=1-26②x1=2;x2=-31③x 1=2;x 2=35④无解【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a ;b ;c 的值;注意它们的符号;(3)先计算b 2-4ac 的值;再代入公式.三、运用新知;深化理解 1.用公式法解下列方程: (1)x 2+x-12=0(2)x 2-2x-41=0(3)x 2+4x+8=2x+11 (4)x (x-4)=2-8x (5)x 2+2x=0 (6)x 2+25x+10=0 解:(1)x 1=3;x 2=-4;(2)x 1=232+;x 2=232-;(3)x 1=1;x 2=-3;(4)x 1=-2+6;x 2=-2-6; (5)x 1=0;x 2=-2; (6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动;课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.4.一元二次方程根的判别式【知识与技能】1.能运用根的判别式;判断方程根的情况和进行有关的推理论证;2.会运用根的判别式求一元二次方程中字母系数的取值范围.【过程与方法】1.经历一元二次方程根的判别式的产生过程;2.向学生渗透分类讨论的数学思想;3.培养学生的逻辑思维能力以及推理论证能力. 【情感态度】1.体验数学的简洁美;2.培养学生的探索、创新精神和协作精神. 【教学重点】根的判别式的正确理解与运用.【教学难点】含字母系数的一元二次方程根的判别式的应用.一、情境导入;初步认识用公式法解下列一元二次方程(1)x2+5x+6=0(2)9x2-6x+1=0(3)x2-2x+3=0解:(1)x1=-2;x2=-3(2)x1=x2=31(3)无解【教学说明】让学生亲身感知一元二次方程根的情况;回顾已有知识.二、思考探究;获取新知观察解题过程;可以发现:在把系数代入求根公式之前;需先确定a;b;c的值;然后求出b2-4ac的值;它能决定方程是否有解;我们把b2-4ac叫做一元二次方程根的判别式;通常用符号“Δ”来表示;即Δ=b2-4ac.我们回顾一元二次方程求根公式的推导过程发现:【归纳结论】(1)当Δ>0时;方程有两个不相等的实数根: a acbbx24 21-+-=;a acbbx24 22---=;(2)当Δ=0时;方程有两个相等的实数根;x1=x2=-ab2; (3)当Δ<0时;方程没有实数根.例1利用根的判别式判定下列方程的根的情况:解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.例2 当m为何值时;方程(m+1)x2-(2m-3)x+m+1=0;(1)有两个不相等的实数根?(2)有两个相等的实数根? (3)没有实数根?解:(1)m <41且m ≠-1; (2)m=41;(3)m >41.【教学说明】注意(1)中的m+1≠0这一条件.三、运用新知;深化理解1.方程x 2-4x+4=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有一个实数根 D.没有实数根2.已知x 2+2x=m-1没有实数根;求证:x 2+mx=1-2m 必有两个不相等的实数根. 【答案】1.B2.证明:∵x 2+2x-m+1=0没有实数根;∴4-4(1-m )<0;∴m <0.对于方程x 2+mx=1-2m ;即x 2+mx+2m-1=0;Δ=m 2-8m+4;∵m <0;∴Δ>0;∴x 2+mx=1-2m 必有两个不相等的实数根.【教学说明】引导学生灵活运用知识. 四、师生互动;课堂小结1.用判别式判定一元二次方程根的情况(1)Δ>0时;一元二次方程有两个不相等的实数根;(2)Δ=0时;一元二次方程有两个相等的实数根.(3)Δ<0时;一元二次方程无实数根.2.运用根的判别式解决具体问题时;要注意二次项系数不为0这一隐含条件.【教学说明】可让学生分组讨论;回忆整理;再由小组代表陈述.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.*5.一元二次方程的根与系数的关系【知识与技能】1.引导学生在已有的一元二次方程解法的基础上;探索出一元二次方程根与系数的关系;及其关系的运用.2.通过观察、实践、讨论等活动;经历从观察判断到发现关系的过程.【过程与方法】通过探究一元二次方程的根与系数的关系;培养学生观察分析和综合判断的能力;激发学生发现规律的积极性;鼓励学生勇于探索的精神.【情感态度】在积极参与数学活动的同时;初步体验发现问题;总结规律的态度及养成质疑和独立思考的习惯.【教学重点】一元二次方程根与系数之间的关系的运用.【教学难点】一元二次方程根与系数之间的关系的运用.一、情境导入;初步认识1.完成下列表格问题你发现了什么规律?①用语言叙述你发现的规律:(两根之和为一次项系数的相反数;两根之积为常数项)②设方程x2+px+q=0的两根为x1;x2;用式子表示你发现的规律.(x1+x2=-p;x1·x2=q)2.完成下列表格问题上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律:(两根之和为一次项系数与二次项系数之比的相反数;两根之积为常数项与二次项系数之比)②设方程ax2+bx+c=0的两根为x1;x2;用式子表示你发现的规律.(x1+x2=-ab;x 1·x2=ac)二、思考探究;获取新知通过以上活动你发现了什么规律?对一般的一元二次方程ax2+bx+c=0(a≠0)这一规律是否成立?试通过求根公式加以说明.ax2+bx+c=0的两根a acbbx24 21-+-=;aacbbx2422---=;x1+x2=-ab;x 1·x2=ac.【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系;体会知识形成的过程;加深对知识的理解.例1 不解方程;求下列方程的两根之和与两根之积:(1)x2-6x-15=0;(2)3x2+7x-9=0;(3)5x-1=4x 2.解:(1)x1+x2=6;x1·x2=-15;(2)x1+x2=-37;x1·x2=-3; (3)x1+x2=45;x1·x2=41.【教学说明】先将方程化为一般形式;找出对应的系数. 例2 已知方程2x 2+kx-9=0的一个根是-3;求另一根及k 的值.解:另一根为23;k=3.【教学说明】本题有两种解法;一种是根据根的定义;将x=-3代入方程先求k ;再求另一个根;一种是利用根与系数的关系解答.例3 已知α;β是方程x2-3x-5=0的两根;不解方程;求下列代数式的值.三、运用新知;深化理解1.不解方程;求下列方程的两根之和与两根之积: (1)x 2-3x=15 (2)5x 2-1=4x 2 (3)x 2-3x+2=10 (4)4x 2-144=0(5)3x (x-1)=2(x-1) (6)(2x-1)2=(3-x )22.两根均为负数的一元二次方程是( ) A.7x 2-12x+5=0 B.6x 2-13x-5=0 C.4x 2+21x+5=0 D.x 2+15x-8=0【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数;两根之积为正数.【答案】1.(1)x 1+x 2=3;x 1x 2=-15 (2)x 1+x 2=0;x 1x 2=-1 (3)x 1+x 2=3;x 1x 2=-8 (4)x 1+x 2=0;x 1x 2=-36(5)x 1+x 2=35;x 1x 2=32(6)x 1+x 2=-32;x 1x 2=-382.C【教学说明】可由学生自主完成抢答;教师点评. 四、师生互动;课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程根与系数的关系成立的前提条件.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.22.3 实践与探索【知识与技能】使学生利用一元二次方程的知识解决实际问题;学会将实际问题转化为数学模型来建立一元二次方程.【过程与方法】让学生经历由实际问题转化为数学模型的过程;领悟数学建模思想;体会如何寻找实际问题中的等量关系.【情感态度】通过合作交流进一步感知方程的应用价值;培养学生的创新意识和实践能力;通过交流互动;逐步培养合作的意识及严谨的治学精神.【教学重点】列一元二次方程解决实际问题.【教学难点】寻找实际问题中的等量关系.一、情境导入;初步认识问题1 学校生物小组有一块长32m;宽20m的矩形试验田;为了管理方便;准备沿平行于两边的方向纵、横各开辟一条等宽的小道;要使种植面积为540m2;小道的宽应是多少?问题2 某药品经过两次降价;每瓶零售价由56元降为31.5元;已知两次降价的百分率相同;求每次降价的百分率.二、思考探究;获取新知问题1 【分析】问题中的等量关系很明显;即抓住种植面积为540m2来列方程;设小道的宽为xm;如何来表示种植面积?方法一:如图;由题意得;32×20-32x-20x+x2=540方法二:如图;采用平移的方法更简便.由题意可得:(20-x)(32-x)=540解得x1=50;x2=2由题意可得x<20;∴x=2【教学说明】引导学生学会一题多解;同时要注意检验所解得的结果是否符合实际意义.问题2 【分析】这是增长率问题;问题中的数量关系很明了;即原价56元经过两次降价降为31.5元;设每次降价的百分率为x;由题意得56(1-x)2=31.5解得 x1=0.25;x2=1.75(舍去)三、运用新知;深化理解1.青山村种的水稻2011年平均每公顷产量为7200kg;2013年平均每公顷产量为8450kg;求水稻每公顷产量的年平均增长率.2.用一根长40cm的铁丝围成一个长方形;要求长方形的面积为75cm2.(1)求此长方形的宽.(2)能围成一个面积为101cm2的长方形吗?如能;说明围法.(3)若设围成一个长方形的面积为S(cm2);长方形的宽为x(cm);求S与x的函数关系式;并求出当x为何值时;S的值最大;最大面积为多少.【答案】1.解:设年平均增长率为x;则有7200(1+x)2=8450;解得x1=121≈0.08;x 2=-1224≈-2.08(舍去).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.2.解:(1)设此长方形的宽为xcm;则长为(20-x)cm.根据题意;得x(20-x)=75解得:x1=5;x2=15(舍去).答:此长方形的宽是5cm.(2)不能.由x(20-x)=101;即x2-20x+101=0;;知Δ=202-4×101=-4<0;方程无解;故不能围成一个面积为101cm2的长方形.(3)S=x(20-x)=-x2+20x.由S=-x2+20x=-(x-10)2+100可知;当x=10时;S的值最大;最大面积为100cm2.【教学说明】注意一元二次方程根的判别式和配方法在第2题第(2)、(3)问中的应用.四、师生互动;课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.用一元二次方程解决特殊图形问题时;通常要先画出图形;利用图形的面积找相等关系列方程.3.若平均增长(降低)率为x;增长(或降低)前的基数是a;增长(或降低)n次后的量是b;则有:a(1±x)n=b(常见n=2).1.布置作业:从教材相应练习和“习题22.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本章复习。
华师大版九年级上册数学教学设计含反思全册+教学计划+教学进度表

华师大版九年级上册数学教学设计含反思全册+教学计划+教学进度表一. 教材分析华师大版九年级上册数学教材,是在学生掌握了八年级数学知识的基础上,进一步深化和拓展数学知识,为高中数学学习打下基础。
本册教材主要包括:实数与函数、几何、统计与概率、初等数学应用等内容。
教材内容丰富,既有理论知识的讲解,也有实践操作的练习,使学生在掌握知识的同时,提高解决问题的能力。
二. 学情分析九年级的学生已经具备一定的数学基础,对于一些基本的数学概念和运算规则已有所了解。
但同时,学生在这一阶段也会面临一些问题,如:对数学知识的深入理解不足,解题思路不清晰,运算速度和准确度有待提高等。
因此,在教学过程中,需要关注学生的个体差异,针对不同学生的实际情况进行有针对性的教学。
三. 教学目标1.知识与技能:使学生掌握实数与函数、几何、统计与概率、初等数学应用等基本知识,提高学生的数学素养。
2.过程与方法:通过自主学习、合作交流、探究实践等方法,培养学生解决数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生认识到数学在生活中的重要性。
四. 教学重难点1.教学重点:实数与函数、几何、统计与概率、初等数学应用等基本知识的讲解和运用。
2.教学难点:对一些概念的理解,如函数、概率等,以及一些复杂的数学问题的解决。
五. 教学方法1.情境教学法:通过生活实例引入数学知识,使学生感受到数学与生活的紧密联系。
2.问题驱动法:引导学生提出问题,通过自主学习、合作交流等方式解决问题。
3.实践操作法:让学生在实际操作中掌握数学知识,提高解决问题的能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的实际情况,设计合理的教学方案。
2.学生准备:预习教材内容,了解本节课的学习目标。
七. 教学过程1.导入(5分钟)通过生活实例引入本节课的学习内容,激发学生的学习兴趣。
2.呈现(10分钟)讲解本节课的基本知识,如概念、定理、公式等,让学生初步了解并掌握。
最新版华师版九年级上册数学全册教案

华师版九年级上册全册教案第21章二次根式21.1 二次根式教学目标:知识与技能:1、了解二次根式的概念、2、掌握二次根式的基本性质。
过程与方法:经历观察、比较、总结二次根式的定义,培养学生的归纳能力。
情感、态度与价值观:经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识。
教学过程一、提出问题上一节我们学习了平方根和算术平方根的意义,引进了一个新的记号a,现在请同学们思考并回答下面两个问题:1、a表示什么?2、a需要满足什么条件?为什么?二、合作交流,解决问题让学生合作交流,然后回答问题(可以补充),归纳为;1、当a是正数时,a表示a的算术平方根,即正数a的两个平方根中的一个正数;2、当a是零时,a表示零,也叫零的算术平方根;3、a≥0,因为任何一个有理数的平方都大于或等于零、三、归纳特点,引入二次根式概念1、基本性质、问题1 你能用一句话概括以上3个结论吗?让一个学生回答、其他学生补充,概括为:a(a≥0)表示非负数a 的算术平方根,也就是说,a(a≥0)是一个非负数,即a≥0(a≥0)。
问题2 (a)2(a≥0)等于什么?说说你的理由并举例验证。
让学生小组讨论或自主探索得出结论:(a)2=a(a≥0),如(4)2=4,(2)2=2等、以上两个问题的结论就是基本性质,特别是(a)2=a(a≥0)可以当公式使用,直接应用于计算。
反过来,把(a)2=a(a≥0)写成a=(a)2(a ≥0)的形式,这说明:任何一个非负数a都可以写成一个数的平方的形式、例如:3=(3)2,0.3= (0.3)2提问:(1)0=(0)2对不对?(2)-5=(-5)2对不对?如果不对,错在哪里?2、二次根式概念形如a(a≥0)的式子叫做二次根式、说明:二次根式必须具备以下特点;(1)有二次根号;(2)被开方数不能小于0。
让学生举出二次根式的几个例子,并判断-5,a(a<0)、3a、-a(a<o)是不是二次根式。
华师大版九年级上册全册数学教案

华师大版九年级上册全册数学教案25.1 测量教学目标1、在探索基础上掌握测量。
2、掌握利用相似三角形的知识教学重难点重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。
难点:应用勾股定理时斜边的平方等于两直角边的平方和。
教学过程当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高?你可能会想到利用相似三角形的知识来解决这个问题.图25.1.1如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识.试一试如图25.1.2所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD 为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?图25.1.2实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.练习1.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.2.请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度.习题25.11.如图,为测量某建筑的高度,在离该建筑底部30.0米处,目测其顶,视线与水平线的夹角为40°,目高1.5米.试利用相似三角形的知识,求出该建筑的高度.(精确到0.1米)(第1题)(第3题)2.在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少? 3.如图,在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树的高度.小结与作业:小结本节内容:利用相似三角形的知识在直角三角形中,知道两边可以求第三边作业:一课一练25.2 .1锐角三角函数第二课时教学目标1、探索直角三角形中锐角三角函数值与三边之间的关系。
华东师大版九年级数学上册教案全册

华东师大版九年级数学上册教案全册目录21.1《二次根式》教案21.2.1《二次根式的乘法》教案21.2.2《积的算术平方根》教案21.2.3《二次根式的除法》教案21.3《二次根式的加减》教案22.1《一元二次方程》教案22.2.1《直接开平方法和因式分解法》教案22.2.2《配方法》教案22.2.3《公式法》教案22.2.4《一元二次方程根的判别式》教案22.2.5《一元二次方程的根与系数的关系》教案22.3《实践与探索》教案23.1.1《成比例线段》教案23.1.2《平行线分线段成比例》教案23.2《相似图形》教案23.3.1《相似三角形》教案23.3.2《相似三角形的判定(第1课时)》教案23.3.2《相似三角形的判定(第2课时)》教案23.3.3《相似三角形的性质》教案23.3.4《相似三角形的应用》教案23.4《中位线》教案23.5《位似图形》教案23.6.1《用坐标确定位置》教案23.6.2《图形的变换与坐标》教案24.1《测量》教案24.2《直角三角形的性质》教案24.3.1《锐角三角函数(第1课时)》教案24.3.1《锐角三角函数(第2课时)》教案24.3.2《用计算器求锐角三角函数值》教案24.4《解直角三角形(第1课时)》教案24.4《解直角三角形(第2课时)》教案24.4《解直角三角形(第3课时)》教案25.1《在重复试验中观察不确定现象》教案25.2.1《概率及其意义》教案25.2.2《频率与概率》教案25.2.3《列举所有机会均等的结果》教案第21章《二次根式》复习》教案第22章《一元二次方程》复习》教案第23章《图形的相似》复习》教案第24章《解直角三角形》复习》教案第25章《随机事件的概率》复习》教案第25章《随机事件的概率》复习教案二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.3.理解2a=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a ≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a (a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a ≥0);(2)当a≥0时,2a=a;当a<0时,2a=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.二次根式的乘除法1.二次根式的乘法【知识与技能】a•=ab(a≥b,b≥0),并利用它们进行计算和化理解b简.【过程与方法】a•=ab(a≥0,b≥0)并运由具体数据发现规律,导出b用它进行计算.【情感态度】a•=ab(a≥0,b≥0),培养特殊到一般的探究通过探究b精神,培养学生对事物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab(a≥0,b≥0),及它的运用.b【教学难点】a•=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.【教学说明】由学生通过具体数据,发现规律,导出a•=ab(a≥0,b≥0).b二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a•=ab(a≥0,b≥0).:b【教学说明】引导学生应用公式a•=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab(a≥0,b≥2.教师总结归纳二次根式的乘法规定b0).【教学说明】教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.这节课教师引导学生通过具体数据,发现规律,导出ba•=ab(a≥0,b≥0),并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.积的算术平方根【知识与技能】a•(a≥0,b≥0);1.理解ab=b2.运用ab=ba•(a≥0,b≥0).【过程与方法】a•(a≥0,b≥0),并运用它解利用逆向思维,得出ab=b题和化简.【情感态度】a•(a≥0,b≥0)以训练逆向思维,通过让学生推导ab=b严谨解题,增强学生准确解题的能力.【教学重点】a•(a≥0,b≥0)及其运用.ab=b【教学难点】a•(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a•=ab(a≥0,b≥0).一般地,对二次根式的乘法规定为ba•(a≥0,b≥0).反过来,ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规a•(a≥0,b≥0).定,利用逆向思维,得出ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab=ba•(a≥0,b≥0)直接化简即可.例2判断下列各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a≥0,b≥0.三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.1gt2(g为重力加速度,它的值为2.自由落体的公式为s=210m/s2),若物体下落的高度为120m,则下落的时间是s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由老师总结归纳.四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即a•(a≥0,b≥0).ab=b【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算.2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算.2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【情感态度】通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力.【教学重点】 1.理解b a b a =(a ≥0,b >0),ba b a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题. 1.写出二次根式的乘法规定及逆向公式. 2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评.二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b aba =(a ≥0,b >0) 反过来, bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】直接利用b aba (a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点: (1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2. 【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解 1.化简:3.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm,BC=6cm,求AB 的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x2-81=0;4,0,-81(3)4x2+8x-25=0;4,8,-25(4)3x2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x2=25;4x2-25=0;(2)x(x-2)=100;x2-2x-100=0;(3)x=(1-x)2;x2-3x+1=0.3.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根.3.∴4a+8-5=0解得:a=-4四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x 2+6x+9=25(3)x 2+6x=16(4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得:x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2(2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x2+6x+5=0 (2)2x2+6x+2=0 (3)(1+x)2+2(1+x)-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x2-4x-8=0(2)x2-4x+2=01x-1=0(3)x2-22.如果x2-4x+y2+6y+2 z+13=0,求(xy)z的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0解:(1)x1=-1,x2=-2 (2)无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题已知ax2+bx+c=0(a≠0),试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a,b,c 代入式子aac b b x 242-±-=就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解下列方程:①2x 2-4x-1=0 ②5x+2=3x 2③(x-2)(3x-5)=0 ④4x 2-3x+1=0解:①x 1=1+26,x 2=1-26 ②x 1=2,x 2=-31 ③x 1=2,x 2=35 ④无解【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解1.用公式法解下列方程:(1)x2+x-12=0 (2)x2-2x-41=0 (3)x2+4x+8=2x+11 (4)x(x-4)=2-8x (5)x2+2x=0(6)x2+25x+10=0 解:(1)x1=3,x2=-4;(2)x1=232+,x2=232-;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2;(6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1 测量教学目标1、在探索基础上掌握测量。
2、掌握利用相似三角形的知识教学重难点重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。
难点:应用勾股定理时斜边的平方等于两直角边的平方和。
教学过程当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高?你可能会想到利用相似三角形的知识来解决这个问题.图25.1.1如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识.试一试如图25.1.2所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?图25.1.2实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.练习1.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度. 2. 请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度. 习题25.11. 如图,为测量某建筑的高度,在离该建筑底部30.0米处,目测其顶,视线与水平线的夹角为40°,目高1.5米.试利用相似三角形的知识,求出该建筑的高度.(精确到0.1米)(第1题)(第3题)2. 在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少? 3. 如图,在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树的高度.小结与作业:小结本节内容:利用相似三角形的知识在直角三角形中,知道两边可以求第三边 作业:一课一练25.2 .1锐角三角函数第二课时教学目标1、探索直角三角形中锐角三角函数值与三边之间的关系。
2、掌握30°、45°、60°等特殊角的三角函数值。
3、掌握三角函数定义式:sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠教学重难点重点:三角函数定义的理解。
难点:掌握三角函数定义式。
教学过程 探索根据三角函数的定义,sin30°是一个常数.用刻度尺量出你所用的含30°角的三角尺中,30°角所对的直角边与斜边的长,与同伴交流,看看常数sin30°是多少. 通过计算,我们可以得出图25.2.4sin30°=21斜边对边, 即斜边等于对边的2倍.因此我们可以得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 思考上述结论还可通过逻辑推理得到.如图25.2.4,Rt △ABC 中,∠C =90°,∠A =30°,作∠BCD =60°,点D 位于斜边AB 上,容易证明△BCD 是正三角形,△DAC 是等腰三角形,从而得出上述结论.做一做在Rt △ABC 中,∠C =90°,借助于你常用的两块三角尺,或直接通过计算,根据锐角三角函数定义,分别求出下列∠A 的四个三角函数值: (1) ∠A =30°;(2) ∠A =60°;(3) ∠A =45°.为了便于记忆,我们把30°、45°、60°角的三角函数值列表如下:练习 求值: 2cos60°+2sin30°+4tan45°. 四、学习小结:记忆特殊角的函数值 五、布置作业 习题:125.2 .1锐角三角函数第三课时教学目标1、进一步复习直角三角形中锐角三角函数值与三边之间的关系。
2、进一步掌握30°、45°、60°等特殊角的三角函数值。
3、掌握三角函数定义式:sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠教学重难点重点:三角函数定义的理解。
难点:掌握三角函数定义式。
教学过程例1 求出如图所示的Rt △DEC (∠E =90°)中∠D 的四个三角函数值.(第2题)sin30゜是一个常数.用刻度尺量出你所用的含30゜的三角尺中,30゜所对的直角边与斜边的长,sin30゜=21=斜边对边 即斜边等于对边的2倍.因此我们还可以得到:在直角三角形中,如果一个锐角等于30゜,那么它所对的直角边等于斜边的一半. 做一做在Rt △ABC 中,∠C =90゜,借助于你常用的两块三角尺,根据锐角三角函数定义求出∠A 的四个三角函数值:(1)∠A =30゜ (2)∠A =60゜ (3)∠A =45゜.为了便于记忆,我们把30゜、45゜、60゜的三角函数值列表如下.(请填出空白处的值)课堂练习1.如图,在Rt△MNP中,∠N=90゜.∠P的对边是__________,∠P的邻边是_______________;∠M的对边是__________,∠M的邻边是_______________;(第1题)(第2题)2.求出如图所示的Rt△DEC(∠E=90゜)中∠D的四个三角函数值.3.设Rt△ABC中,∠C=90゜,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值.(1)a=3,b=4; (2)a=6,c=10.4.求值:2cos60゜+2sin30゜+4tan45゜.学习小结: 记忆特殊角的函数值布置作业习题:练习册习题:225.2.1锐角三角函数(第一课时)1、锐角三角函数教学目标:1.初步了解正弦、余弦、正切、余切的概念;能较正确地用siaA 、 cosA 、 tanA 、ciotA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
2.逐步培养学生观察、比较、分析,概括的思维能力。
3.提高学生对几何图形美的认识。
教学重点: 正弦,余弦,正切、余切的概念教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 、ciotA 表示正弦,余弦,正切、 余切。
教学过程:1、直角三角形边角之间的关系:图25.2.12、阅读P 88页的内容锐角A 的函数,记作sinA 、cosA 、tanA 、cotA ,即 sinA =斜边的对边A ∠,cosA =斜边的邻边A ∠,tanA =的邻边的对边A A ∠∠,cotA =的对边的邻边A A ∠∠.分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.(0<sinA <1,0<cosA <1)根据三角函数的定义,我们还可得出A A 22cos sin +=1,tanA ·cotA =1.3、教学例题:(略)4、探索根据三角函数的定义,sin30°是一个常数.用刻度尺量出你所用的含30°角的三角尺中,30°角所对的直角边与斜边的长,与同伴交流,看看常数sin30°是多少. 通过计算,我们可以得出图25.2.4sin30°=21斜边对边, 即斜边等于对边的2倍.因此我们可以得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.5、做一做在Rt △ABC 中,∠C =90°,借助于你常用的两块三角尺,或直接通过计算,根据锐角三角函数定义,分别求出下列∠A 的四个三角函数值: (1) ∠A =30°;(2) ∠A =60°;(3) ∠A =45°.6、练习:P 91页7、小结:8、作业:P 91页 3题25.2.2.用计算器求锐角三角函数值(第一课时)教学目标学会计算器求任意角的三角函数值。
教学重难点重点:用计算器求任意角的三角函数值。
难点:实际运用。
教学过程拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1) 求已知锐角的三角函数值.3、求sin63゜52′41″的值.(精确到0.0001) 解 先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以 sin63゜52′41″≈0.8979例3 求cot70゜45′的值.(精确到0.0001)解 在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以 cot70゜45′≈0.3492. (2) 由锐角三角函数值求锐角例4 已知tan x =0.7410,求锐角x .(精确到1′)解 在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x ≈36゜32′.例5 已知cot x =0.1950,求锐角x .(精确到1′)分析 根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1.使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2.已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。
同一锐角的正切值与余切值互为倒数。
在生活中运用计算器一定要注意计算器说明书的保管与使用。
方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
一、布置作业习题:3,4,5;练习册25.2.2、用计算器求锐角三角函数值(第二课时)教学目标:1、求已知锐角的三角函数值2、由锐角三角函数值求锐角教学难点:求已知锐角的三角函数值、由锐角三角函数值求锐角教学重点:如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角教学过程:1、 求已知锐角的三角函数值例2 求sin63°52′41″的值.(精确到0.0001) 解 先用如下方法将角度单位状态设定为“度”:(SETUP)显示再按下列顺序依次按键:显示结果为0.897859012.所以sin63°52′41″≈0.8979.例3 求cot70°45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示,按下列顺序依次按键:.所以cot70°45′≈0.3492.2、 由锐角三角函数值求锐角例4已知tanx =0.7410,求锐角x .(精确到1′) 例5 已知cotx =0.1950,求锐角x .(精确到1′)分析 根据xx cot 1tan =,可以求出tanx 的值,然后根据例4的方法就可以求出锐角x的值.3、练习:P 93页4、小结:5、作业:P 93页 4题25.3解直角三角形(第一课时)教学目标:使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 教学难点: 直角三角形的解法教学重点: 三角函数在解直角三角形中的灵活运用 教学过程: (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.(二)教学例题:例1如图25.3.1所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?图25.3.1解利用勾股定理可以求出折断倒下部分的长度为26241022=+,26+10=36(米).所以,大树在折断之前高为36米.在例1中,我们还可以利用直角三角形的边角之间的关系求出另外两个锐角.像这样,在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.例2如图25.3.2,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东40°的方向,炮台B 测得敌舰C 在它的正南方,试求敌舰与两炮台的距离.(精确到1米)图25.3.2解在Rt △ABC 中,∵ ∠CAB =90°-∠DAC =50°,ABBC=tan ∠CAB , ∴ BC =AB ·tan ∠CAB=2000×tan50°≈2384(米).∵ACAB=cos50°, ∴ AC =︒=︒50cos 200050cos AB ≈3111(米).答: 敌舰与A 、B 两炮台的距离分别约为3111米和2384米. 解直角三角形,只有下面两种情况: (1) 已知两条边;(2) 已知一条边和一个锐角. (三)巩固练习:P 95页 (四)小结:1、在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素. 2、解决问题要结合图形。