华师大九年级(上)教案 第25章 解直角三角形(全)
数学九年级上华东师大版25.3解直角三角形11教案

25.3解直角三角形一.教学目标:1. 认知目标:熟练掌握解直角三角形的基本条件和方法,能选择适当的边角关系合理解直角三角形,能运用解直角三角形的方法来解决生活实践中的某些问题。
2. 能力目标:(a ) 了解数形结合的思想方法,学会用代数方法列出方程解决几何问题。
(b ) 初步学会将某些实际问题通过数学建模把问题转化为数学问题。
3. 情感目标:(a ) 了解上海的发展变化,激发学生的兴趣。
(b ) 通过对问题的讨论、交流来提高学生的交往能力。
二.教学重点和难点:重点:将实际问题转化为解直角三角形问题。
难点:将实际问题中的数量关系如何转化为直角三角形中元素间关系进行解题的思想方法。
三.教学过程:先请大家欣赏屏幕上的一座美丽建筑(投影图片) 请说出这座高楼的名称,它坐落在什么地方?(这座高楼的名称叫世茂国际广场,坐落在南京路、西藏路口,中百一店对面,这幢集五星级酒店和大型高档商场于一体的建筑共63层,总面积达17万平方米,2006年交付使用,建成后的世茂国际广场已经成为繁华的南京路再添一条靓丽的风景线)问题一:你有什么方法测量出这座高楼的高度?请设计一个测量方案(分小组讨论) 提示:如果手中有测角仪、卷尺等工具呢? 可能出现的方案一:用相似形法可能出现的方案二:用解直角三角形法等(重点讲评方案二)我们已经将实际问题转化为解直角三角形数学问题,你能说出解直角三角形所必须的条件吗?说明:在直角三角形中有三条边、三个角共六个元素,除直角外,我们还必须知道另外两个元素,其中至少有一个是边就能求出另外的边和角刚才我们用方案二解决了这个问题,现在将问题改变一下,请看问题二: 学生小王在浦东某地,他想利用手中的测角仪、卷尺计算器工具不过江测量出世茂国际广场的高度(投影图片),ABCa高楼只要知道BC 的长及角C 的度数就能解直角三角形求出AB 的长AD现已测出,140=∠ADB 由于不能过江,因此无法知道BD 的长度,于是向前走407米到达江边的C 处测得020=∠ACB ,但小王在计算中碰到困难,请大家一起帮助小王想想办法,求出AB 的长。
华师大版九年级第25章解直角三角形复习-2教案

华师大版 九年级(上) 《 第二十五章·解直角三角形 》第25章 解直角三角形 复习—2 教案【三维教学目标】知识与技能:1.经历由情景引出问题,探索掌握有关的数学 知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
2.知道30°、45°、60°角的三角函数值;会使用计算器由已知锐角求它的三角函数值, 由已知三角函数值求它对应的锐角。
3.理解并掌握直角三角形边角之间的关系。
4.能综合应用直角三角形的边角关系解决简单的实际问题。
过程与方法:①引导(教师指出学习目标) ②学生自学 ③分组交流、探究④展示(探究结果) ⑤教师点评(探究结果最终确认与知识、能力的提升)情感态度与价值观:教学重点、难点:能综合应用直角三角形的边角关系解决简单的实际问题。
【教学过程】下表是直角三角形中5个元素已知与未知之间的关系:【注:上表中“√”表示已知;a 、b 、c 代表直角三角形的三条边;∠A 、∠B 分别代表直角三角形的两个锐角;∠C=900】 a b c∠A∠B1 √ √22b ac +=b a A =tan a b B =tan 2 √ 22a c b -=√c aA =sinc aB =cos 3 √ b=a •cotA A a c sin =√A B ∠-=∠0904 √b=a •tanBB a c cos =B A ∠-=∠090√5 22b c a -=√ √c b A =cosc b B =sin6 a=b •tanA √ B b c cos =√A B ∠-=∠0907 a=b •cotB √ B b c sin =B A ∠-=∠090√8 a=c •sinA b=c •cosA √ √A B ∠-=∠0909 a=c •cosB b=c •sinB √ B A ∠-=∠090√ 10不可求不可求不可求√√例1:如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A 点处测得P 在它的北偏东600的方向, 继续行驶20分钟后, 到达B 处又测得灯塔P 在它的北偏东450方向. 问客轮不改变方向继续前进有无触礁的危险?解:过P 作PC ⊥AB 于C 点, 据题意知AB=962⨯=3, ∠PAB=900-600=300 ∠PBC=900-450=450, ∠PCB=900∴PC=BC在Rt △ABC 中: tan300=PCPCBC AB PC AC PC +=+=3 即:PC PC +=333 ∴PC=2333+>3 ∴客轮不改变方向继续前进无触礁危险。
华师大九年级(上)教案_第25章_解直角三角形(全).doc

第二十四章 解直角三角形24.1测量教学口标1、 在探索基础上掌握测量。
2、 掌握利用相似三角形的知识教学重难点重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。
难点:应用勾股定理吋斜边的平方等于两直角边的平方和。
教学过程当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道, 操场旗杆冇多高?你可能会想到利用相似三角形的知识来解决这个问题.如图25. 1. 1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆 的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还 是利用相似三角形的知识.一如图25・1・2所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部, 视线AB 与水平线的夹角ZBAC 为34° ,并已知口高AD 为1.5米.现在若按1 : 500的比例将AABC 画在纸上,并记为AA' B‘ C',用刻度直尺量岀纸上B' C' 的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?实际上,我们利用图25. 1. 2 (1)中已知的数据就可以直接计算旗杆的高度, 而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三 条边所满足的关系(即勾股定理),那么它的边与角又冇什么关系?这就是本章要探 究的内容.练习1. 小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,ifc: ....♦ ♦ ■ ■ ♦图 25.1.1图 25.1.2(2)当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.2. 请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度. 习题25. 1 1. 如图,为测量某建筑的高度,在离该建筑底部30・0米处,目测其顶,视 线与水平线的夹角为40° , 口高1. 5米.试利用相似三角形的知识,求出该建筑 的高度.(精确到0. 1米)2. 在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到 -边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少?3. 如图,在一棵树的1()米高B 处有两只猴了,一只猴了爬卜•树走到离树20 米处的池塘A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两 只猴子所经过的距离相等,求这棵树的高度.小结与作业:小结本节内容:利用相似三角形的知识在直角三角形屮,知道两边可以求第三作业:一课一练1"划/< 40:zA 7 /QZ-30.0「n 匕(第1题)24. 2锐角三角函数教学目标正弦、余弦、正切、余切的定义。
华师大版-数学-九年级上册-25.3 解直角三角形-2 教案

图华师大版 九年级(上) 《 第二十五章·解直角三角形 》 第三节25.3 解直角三角形—2 教 案【三维教学目标】知识与技能:巩固用三角函数有关知识解决问题,学会解决观测问题。
过程与方法:①引导(教师指出学习目标) ②学生自学 ③分组交流、探究④展示(探究结果) ⑤教师点评(探究结果最终确认与知识、能力的提升)情感态度与价值观:逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法。
教学重点:用三角函数有关知识解决观测问题。
教学难点:选用恰当的直角三角形,解题思路分析。
【课堂导入】如下图,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.【教学过程】A 自 学:请同学们用10---15分钟时间自学教科书上本节内容。
B 交 流:例1: 如图4,为了测量电线杆的高度AB ,在离电线杆22.7米的C 处,用高1.20米的测角仪CD 测得电线杆顶端B 的仰角∠a =22°,求电线杆AB 的高.(精确到0.1米)分析: 因为AB =AE +BE ,AE =CD =1.20米,所以只要求出BE 的长度,问题就得到解决,在△BDE 中,已知DE =CA =22.7米,∠a =22°,那么用哪个三角函数可解决这个问题呢?显然正切或余切都能解决这个问题。
解: 在Rt △BDE 中,BE =DE ×tan a=AC ×tan a=22.7×tan 22°≈9.17,所以AB =BE +AE=BE +CD=9.17+1.20≈10.4(米).答: 电线杆的高度约为10.4米.C 探 究:例2:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o ,热气球与高楼的水平距离为120 m ,这栋高楼有多高? (结果精确到0.1m)4分析:在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC。
(华师版初中数学教案全)第二十五章解直角三角形

α 的值.若不成立,请说明理由.
4
尤新教育辅导学校
参考答案 【综合能力训练】
一、 1.2 2.
3 8 3.1+
2 2 , 轴 4.1-cos α 5.2 6.3+2
二、 9.C 10.B 11.A 12.B 13.C 14.C 15.B 16.C
5 2 7.44 ° 8. 13
4 三、 17. 原式 = x 3 =4( 2 +1) 18. k
)
A.都扩大两倍
B. 都缩小两倍
C.不变
D.都扩大四倍
14. 在△ ABC的三内角中, A∶B∶C=3∶2∶7,则 sinA ∶sinB =(
)
A.1∶ 3
B.1∶ 2
C. 2
D. 2 ∶ 3
1
1
sin 2
15.已知 0°< α <45°,则使
2 无意义的 α 的值是(
)
A.3O°
B.15°
C.不存在
尤新教育辅导学校
第二十五章 解直角三角形
即锐角三角函数
【重点难点提示】
重点:锐角三角函数的定义、特殊角的三角函数值,三角函数间的同角关系与互余关系.
难点:锐角三角函数在 0°~ 90°之间的变化规律的应用.
考点:锐角三角函数的有关知识在初中数学中占有比较重要的地位;近年各地中考试题中,
大多以填空或选择题的形式出现,约占考量的
6
尤新教育辅导学校
锐角三角函数( 1)
sin A= A的对边 叫∠ A 的正弦
例1
斜边
cos A= A的邻边 叫∠ A 的余弦 斜边
tanA=
A 的对边 A 的邻边
叫∠ A 的正切
华师大版-数学-九年级上册-25.3解直角三角形 课时3

《九年级上第二十五章第三节 解直角三角形 》教案课时3 解直角三角形【教学课型】:新课◆课程目标导航:【教学目标】:1.巩固勾股定理,熟练运用勾股定理。
2.学会运用三角函数解直角三角形。
3.掌握解直角三角形的几种情况。
4.学习仰角与俯角。
【教学重点】:使学生养成“先画图,再求解”的习惯.【教学难点】:灵活的运用有关知识在实际问题情境下解直角三角形.【教学工具】:投影仪◆ 教学情景导入读一读在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图5,坡面的铅垂高度(h )和水平长度(l )的比叫做坡面坡度(或坡比).记作i ,即i =l h . 坡度通常写成1∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作a ,有i =lh =tan a 显然,坡度越大,坡角a 就越大,坡面就越陡.◆教学过程一、新授:例4 如图6,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)解 作DE ⊥AB ,CF ⊥AB ,垂足分别为E 、F .由题意可知DE =CF =4.2(米),CD =EF =12.51(米).图5在Rt △ADE 中,因为︒===32tan 2.4AEAE DE i 所以 )(72.632tan 2.4米≈︒=AE 在Rt △BCF 中,同理可得)(90.728tan 2.4米≈︒=BF 因此 AB =AE +EF +BF≈6.72+12.51+7.90≈27.13(米).答: 路基下底的宽约为27.13米.二、巩固练习P 98练习三、小结内容总结:坡角是斜坡与水平线的夹角;坡度是指斜坡上任意一点的高度与水平距离的比值。
坡角与坡度之间的关系是:i =lh =tan a 。
坡度越大,坡角就越大,坡面就越陡。
方法归纳:在涉及梯形问题时,常常首先把梯形分割成我们熟悉的三角形、平行四边形,再借助这些熟悉图形的性质与特征来加以研究。
华师大版-数学-九年级上册-25.3解直角三角形学案设计

25.3解直角三角形课前知识管理(从教材出发,向宝藏纵深)1、正确理解解直角三角形的概念在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.要理清这个概念的涵义:(1)隐含条件是直角,这是前提条件,也是已知条件.(2)已知条件:必有两个,且必有一边才能解直角三角形.因为边角的组合有边边、边角、角角,但角角不能确定三角形大小,更无法求其边长了,即不能解三角形.2、掌握解直角三角形的依据在Rt△ABC中,∠C = 90°,a、b、c分别是∠A、∠B、∠C的对边.(1)三边之间的关系(即勾股定理):a2+b2=c2;(2)两锐角之间的关系:∠A+∠B= 90°;(3)边角之间的关系:sin A=ac=cos B,cos A=bc=sin B,tan A=ab.(4)面积关系:S△ABC=12ab=12ch(h是斜边上的高)=12ab sin C=12a csin B=12bc sin A(同学们自己可以证明)3、解直角三角形的解法分类及方法:(1)已知一条直角边和一个锐角解直角三角形;(2)已知两边解直角三角形.4、掌握与解直角三角形相关的几个概念:(1)仰角、俯角:测量时,在视线与水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角(如图).(2)方向角:如图所示,在平面上过观测点O ,画一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与铅垂线(南北方向线)的夹角,叫做点O 的方向角(或称为象限角),例如,图中点A 的方向角为北偏东30°,点B 的方向角为南偏西45°(或称为西南方向).注意:①方向角通常是以南北方向线为主,分南偏和北偏(东、西);②观测点不同,所得的方向角不同(如图所示,从点O 出发观测点A 的方向角为北偏东30°,而从点A 观测点O 的方向角为南偏西30°),但各个观测点的南北方向线是互相平行的.(3)坡度问题的相关概念:如图,我们通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母i 表示,即lh i =.坡度一般写成1︰m 的形式,如1︰3;坡面与水平面之间的夹角记作α(叫做坡角),那么αtan ==l h i .名师导学互动(切磋琢磨,方法是制胜的法宝)典例精析类型一:航海问题例1、如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?【解题思路】本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.【解】在Rt △ABD 中,716284AD =⨯=(海里),∠BAD=90°-65°45′=24°15′. ∵cos24°15′=AD AB , ∴2830.71cos 24150.9118AD AB ==≈'︒(海里).AC=AB+BC=30.71+12=42.71(海里). 在Rt △ACE 中,sin24°15′=CE AC,∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里).∵17.54<18.6,∴有触礁危险.【方法归纳】本题有两个难点,一是要能将实际问题抽象为数学问题,二是构造合适的直角形。
华师大版-数学-九年级上册-25.3 解直角三角形-4 教案

华师大版 九年级(上) 《 第二十五章·解直角三角形 》 第三节25.3 解直角三角形—4 教 案【三维教学目标】 知识与技能:把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决。
过程与方法:①引导(教师指出学习目标) ②学生自学 ③分组交流、探究 ④展示(探究结果) ⑤教师点评(探究结果最终确认与知识、能力的提升)情感态度与价值观:渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识。
教学重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决。
教学难点:如何添作适当的辅助线。
【课堂导入】我们解决的实际问题可以应用正弦及余弦解直角三角形,同时也可以应用正切和余切来解直角三角形,这一节课我们就从以上两个方面加以研究。
【教学过程】A 自 学:请同学们用10---15分钟时间自学教科书上本节内容。
B 交 流:例1:如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B 取∠ABD = 140°,BD = 520m ,∠D=50°,那么开挖点E 离D 多远正好能使A ,C ,E 成一直线(精确到0.1m )解:要使A 、C 、E 在同一直线上,则 ∠A BD 是 △BDE 的一个外角∴∠BED=∠ABD -∠D=90°答:开挖点E 离点D 332.8m 正好能使A ,C ,E 成一直线。
C 探 究:例2:公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m ,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围50°140° 520mA BC ED cos DE BDE BD ∠=cos DE BDE BD ∴=∠cos505200.64520332.8=⨯≈⨯=100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q2. 解:1008030sin 1<=︒=∆AP AP APB Rt 中,)在(∴ 会影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1 测量教学目标1、在探索基础上掌握测量。
2、掌握利用相似三角形的知识教学重难点重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。
难点:应用勾股定理时斜边的平方等于两直角边的平方和。
教学过程当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高?你可能会想到利用相似三角形的知识来解决这个问题.图25.1.1如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识.试一试如图25.1.2所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?图25.1.2实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.练习1.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.2.请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度.习题25.11.如图,为测量某建筑的高度,在离该建筑底部30.0米处,目测其顶,视线与水平线的夹角为40°,目高1.5米.试利用相似三角形的知识,求出该建筑的高度.(精确到0.1米)(第1题)(第3题)2.在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少?3.如图,在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处.另一只爬到树顶D后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树的高度.小结与作业:小结本节内容:利用相似三角形的知识在直角三角形中,知道两边可以求第三边 作业:一课一练25.2 锐角三角函数教学目标3、正弦、余弦、正切、余切的定义。
4、正弦、余弦、正切、余切的应用 教学重难点重点:正弦、余弦、正切、余切。
难点:正弦、余弦、正切、余切的应用。
教学过程第一节.锐角三角函数在§25.1中,我们曾经使用两种方法求出操场旗杆的高度,其中都出现了两个相似的直角三角形,即△ABC ∽△A ′B ′C ′.按5001的比例,就一定有 5001=''=''AC C A BC C B , 5001就是它们的相似比. 当然也有ACBCC A C B =''''. 我们已经知道,直角三角形ABC 可以简记为Rt △ABC ,直角∠C 所对的边AB 称为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a 、b 表示(如图25.2.1).图25.2.1前面的结论告诉我们,在Rt △ABC 中,只要一个锐角的大小不变(如∠A =34°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.思考一般情况下,在Rt △ABC 中,当锐角A 取其他固定值时,∠A 的对边与邻边的比值还会是一个固定值吗?图25.2.2观察图25.2.2中的Rt △11C AB 、Rt △22C AB 和Rt △33C AB ,易知 Rt △11C AB ∽Rt △_________∽Rt △________, 所以111AC C B =_________=____________. 可见,在Rt △ABC 中,对于锐角A 的每一个确定的值,其对边与邻边的比值是唯一确定的.我们同样可以发现,对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是唯一确定的.因此这几个比值都是锐角A 的函数,记作sinA 、cosA 、tanA 、cotA ,即 sinA =斜边的对边A ∠,cosA =斜边的邻边A ∠,tanA =的邻边的对边A A ∠∠,cotA =的对边的邻边A A ∠∠.分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.显然,锐角三角函数值都是正实数,并且0<sinA <1,0<cosA <1.根据三角函数的定义,我们还可得出A A 22cos sin +=1,tanA ·cotA =1.图25.2.3例1 求出图25.2.3所示的Rt △ABC 中∠A 的四个三角函数值.解1728922==+=AC BC AB ,sinA =178=AB BC ,cosA =1715=AB AC , tanA =158=AC BC ,cotA =815=BC AC . 练习:P76.1.2.小结本节内容: 正弦、余弦、正切、余切,统称为锐角∠A 的三角函数作业:一课一练第二课时教学目标1、探索直角三角形中锐角三角函数值与三边之间的关系。
2、掌握30°、45°、60°等特殊角的三角函数值。
3、掌握三角函数定义式:sin A =斜边的对边A ∠, cosA =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠教学重难点重点:三角函数定义的理解。
难点:掌握三角函数定义式。
教学过程 探索根据三角函数的定义,sin30°是一个常数.用刻度尺量出你所用的含30°角的三角尺中,30°角所对的直角边与斜边的长,与同伴交流,看看常数sin30°是多少.通过计算,我们可以得出图25.2.4sin30°=21斜边对边, 即斜边等于对边的2倍.因此我们可以得到:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 思考上述结论还可通过逻辑推理得到.如图25.2.4,Rt △ABC 中,∠C =90°,∠A =30°,作∠BCD =60°,点D 位于斜边AB 上,容易证明△BCD 是正三角形,△DAC 是等腰三角形,从而得出上述结论.做一做在Rt △ABC 中,∠C =90°,借助于你常用的两块三角尺,或直接通过计算,根据锐角三角函数定义,分别求出下列∠A 的四个三角函数值: (1) ∠A =30°;(2) ∠A =60°;(3) ∠A =45°.练习求值:2cos60°+2sin30°+4tan45°.四、学习小结:记忆特殊角的函数值五、布置作业习题:1第三课时教学目标1、进一步复习直角三角形中锐角三角函数值与三边之间的关系。
2、进一步掌握30°、45°、60°等特殊角的三角函数值。
3、掌握三角函数定义式:sin A =斜边的对边A ∠, cosA =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠教学重难点重点:三角函数定义的理解。
难点:掌握三角函数定义式。
教学过程例1 求出如图所示的Rt △DEC (∠E =90°)中∠D 的四个三角函数值.(第2题)sin30゜是一个常数.用刻度尺量出你所用的含30゜的三角尺中,30゜所对的直角边与斜边的长,sin30゜=21=斜边对边 即斜边等于对边的2倍.因此我们还可以得到:在直角三角形中,如果一个锐角等于30゜,那么它所对的直角边等于斜边的一半. 做一做在Rt △ABC 中,∠C =90゜,借助于你常用的两块三角尺,根据锐角三角函数定义求出∠A 的四个三角函数值:(1)∠A=30゜(2)∠A=60゜(3)∠A=45゜.为了便于记忆,我们把30゜、45゜、60゜的三角函数值列表如下.(请填出空白处的值)课堂练习1.如图,在Rt△MNP中,∠N=90゜.∠P的对边是__________,∠P的邻边是_______________;∠M的对边是__________,∠M的邻边是_______________;(第1题)(第2题)2.求出如图所示的Rt△DEC(∠E=90゜)中∠D的四个三角函数值.3.设Rt△ABC中,∠C=90゜,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值.(1)a=3,b=4; (2)a=6,c=10.4.求值:2cos60゜+2sin30゜+4tan45゜.学习小结: 记忆特殊角的函数值布置作业习题:练习册习题:22.用计算器求锐角三角函数值教学目标学会计算器求任意角的三角函数值。
教学重难点重点:用计算器求任意角的三角函数值。
难点:实际运用。
教学过程拿出计算器,熟悉计算器的用法。
下面我们介绍如何利用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角.(1)求已知锐角的三角函数值.3、求sin63゜52′41″的值.(精确到0.0001)解先用如下方法将角度单位状态设定为“度”:显示再按下列顺序依次按键:显示结果为0.897 859 012.所以sin63゜52′41″≈0.8979例3求cot70゜45′的值.(精确到0.0001)解在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为0.349 215 633.所以cot70゜45′≈0.3492.(2)由锐角三角函数值求锐角例4 已知tan x =0.7410,求锐角x .(精确到1′)解 在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x ≈36゜32′.例5 已知cot x =0.1950,求锐角x .(精确到1′)分析 根据tan x =xcot 1,可以求出tan x 的值,然后根据例4的方法就可以求出锐角x 的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a 的三角函数值,使用计算器求锐角a .(精确到1′)(1)sin a =0.2476; (2)cos a =0.4174;(3)tan a =0.1890; (4)cot a =1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。