过程控制仪表自动化

合集下载

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。

本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。

设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。

•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。

•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。

设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。

通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。

实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。

通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。

自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。

通过校准测试,让学生了解测量误差来源和校准方法。

实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。

设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。

阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。

阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。

在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。

在实现的过程中,需要用到软件工具和实验平台。

阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。

测试过程中需要考虑实验中的各种随机与不确定因素。

现代化工仪表及化工自动化的过程控制分析

现代化工仪表及化工自动化的过程控制分析

现代化工仪表及化工自动化的过程控制分析【引言】随着工业科技的发展和化工工艺的复杂化,过程控制在化工行业中扮演着至关重要的角色。

现代化工仪表的广泛应用以及化工自动化技术的不断提升,使得化工过程的控制更加精准高效。

本文将分析现代化工仪表以及化工自动化技术在过程控制中的应用。

【一、现代化工仪表的应用】现代化工仪表的应用主要体现在以下几个方面:1. 流量仪表流量仪表用于测量流体的流量情况,如液体、气体等。

常见的流量仪表有流量计、节流装置等。

流量仪表的应用可以帮助掌握原料输入和产物输出的情况,实现对流体的控制和调节。

2. 压力仪表压力仪表主要用于测量流体介质的压力情况,如管道中的压力、容器内的压力等。

通过实时测量压力,可以及时调整和控制工艺过程中的压力,确保生产过程的安全和稳定。

3. 温度仪表温度仪表用于测量介质的温度情况,常见的有温度计、温度变送器等。

温度的测量对于化学反应过程中的温度控制和调节非常重要,可以有效避免温度过高导致的反应失控或温度过低导致的反应速率变慢等问题。

4. 液位仪表液位仪表用于测量容器内液体的液位高低,常见的有液位计、浮球液位计等。

液位的测量可以实时监控容器内液体的变化情况,从而控制和调节液体的输入和输出,确保生产过程的连续和安全。

5. 分析仪表分析仪表用于对化工过程中的物质成分进行分析和检测,常见的有气相色谱仪、液相色谱仪等。

分析仪表的应用可以帮助掌握反应过程中各组分的浓度变化情况,从而实现对反应过程的监控和调控。

1. 过程控制系统过程控制系统是化工自动化的核心,通过将各种仪表设备和控制元件连接起来,并进行编程控制,实现对化工过程的全面监控和调控。

过程控制系统可以实现对温度、压力、流量等参数的实时监测和控制,提高化工过程的稳定性和自动化水平。

2. 自动化调节阀自动化调节阀是通过电气信号控制阀门的开度,从而实现对液体或气体的流量调节。

自动化调节阀能够根据预设的控制要求,自动调整阀门的开度,控制介质的流量和压力,提高过程的自动化水平和控制精度。

过程控制与自动化仪表PPT

过程控制与自动化仪表PPT

图1-9 过渡过程品质指标示意图
假定自动控制系统在阶跃输入作用下,被控变量的 变化曲线如上图所示,这是属于衰减振荡的过渡过程
过程控制与自动化仪表
37
五种重要品质指标之一
1. 最大动态偏差或超调量
最大动态偏差是指在过渡过程中,被控变量偏 离稳态值的幅度。在衰减振荡过程中,最大偏差 就是第一个波的峰值。特别是对于一些有约束条 件的系统,如化学反应器的化合物爆炸极限、触 媒烧结温度极限等,都会对最大偏差的允许值有 所限制。
发散震荡过程
X
过程控制与自动化仪表
34
预备知识
○、数学模型的基本概念 一、控制系统的运动微分方程 二、非线性数学模型的线性化
微分方程 传递函数 脉冲响应函数
三、拉氏变换和拉氏反变换 四、传递函数
五、系统方框图和信号流图
六、控制系统传递函数推导举例
11/19/2019 过程控制与自动化仪表
自动化仪表 与
过程控制
1
概念
自动化:机器设备、系统或过程(生产、管理过程)在没
有人或较少人的直接参与下,按照人的要求,经过自动检测、 信息处理、分析判断、操纵控制,实现预期的目标的过程。
电力
过程控制 石油
煤炭
自动化钢铁运动控制Fra bibliotek冶金 化工
过程控制与自动化仪表
2
过程控制
过程控制----泛指石油、化工、电力、冶金、核能
态,这种状态就是静态。
过程控制与自动化仪表
29
动态——被控变量随时间变化的不平衡状态 。
从干扰作用破坏静态平衡,经过控制,直到系统 重新建立平衡,在这一段时间中,整个系统的各个环 节和信号都处于变动状态之中,这种状态叫做动态。

过程控制与自动化仪表知识点

过程控制与自动化仪表知识点

1.过程控制系统由被控过程和自动化仪表两部分组成。

2.自动化仪表按能源形式分为:液动、气动和电动。

按信号类型分为:模拟式和数字式。

3.模拟仪表的信号可分为气动仪表的模拟信号与电动仪表的模拟信号。

4.气动仪表的输入/输出模拟信号统一使用0.02~0.1MPa 的模拟气压信号。

5.按照国际电工委员会规定,过程控制系统的模拟直流电流信号为4~20mA DC ,负载电阻为250Ω;模拟直流电压信号为1~5V DC 。

DDZ-Ⅲ型电动单元组合仪表就是这种信号标准。

6.气动仪表与电动仪表的能量供给分别来自于气源和电源。

1.过程参数检测仪表通常由传感器和变送器组成。

2.引用误差计算公式:%100x x minmax ⨯-∆=γ(其中△为最大绝对误差,等于实测值x 减真值a x 的最大差值,即a1x x -=∆,min max x x 与为测量表的上下限值)3.精确度及其等级:最大引用误差去掉“±”与“%”。

例:±5%的精度等级为0.5。

4.热电阻在500℃以下的中、低温度适合作测温元件(理解公式()()[]00t t 1t -+=αR R ,其中R(t)为被测温度t 时的电阻值;R 0为参考温度t 0时的电阻值,通常t 0=0℃,α为正温度系数);金属热电阻适用于-200℃~500℃;热敏电阻为-50~300℃。

5.热电阻接线有二线制、三线制、四线制三种接法,其中三线制可利用电桥平衡原理消去导线电阻。

6.热敏电阻由于互换性较差,非线性严重,且测温范围在-50~300℃左右,所以通常较多用于家电和汽车的温度检测和控制。

7.由于热电偶具有测温精度高、在小范围内线性度与稳定性好、测温范围宽、响应时间快等优点,因此在工业生产过程中应用广泛。

当温度高于2000℃时热电偶不能长期工作,需采用非接触式测温方法。

8.当被测为运动物体时,采用非接触式测温方法。

体积流量表示瞬时流量与累积流量:瞬时:A A A υυ==⎰d q v 累积:⎰=t 0v v dt q Q 质量流量表示瞬时流量与累积流量:瞬时:v m q q ρ= 累积:v m Q Q ρ=(ρ为流量密度)标准状态下的体积流量:n v n m vn /q /q q ρρρ==(n ρ为标准状态下气体密度)9.典型流量检测仪表有容积式流量计、速度式流量计、直接式质量流量计。

过程控制及自动化仪表总结

过程控制及自动化仪表总结
过程控制及自动化仪表总结
过渡过程的品质指标有哪些?请结合下图解释各种品质指 标的含义。
y
AB
新稳态值 原稳态值
B’
C
ts
t
过程控制及自动化仪表总结
2.过程参数检测技术
★温度的检测 热电偶、热电阻的测温原理、分度号的意义 热电偶产生热电势的条件 热电偶的应用定则 常用的冷端温度补偿方法
★压力的检测 弹性式压力计的测压原理 常用的弹性元件:弹簧管、膜片、波纹管 常用压力计的选过程型控制与及自使动化用仪表总结
❖ 用标准压力表来校准工业压力表时,应如何选用 标准压力表精度等级?可否用一台精度等级为 0.2级,量程为25MPa 的标准表来检验一台精 度等级为 1.5 级,量程为2.5MPa的压力表?为 什么?
过程控制及自动化仪表总结
练习题
❖ 用标准压力表来校准工业压力表时,应如何选用 标准压力表精度等级?可否用一台精度等级为 0.2级,量程为25MPa 的标准表来检验一台精 度等级为 1.5 级,量程为2.5MPa的压力表?为 什么? ▪ 标准表可能产生的最大绝对误差为 △max1=(25-0)×0.2%=0.05 (MPa) ▪ 被校表允许的最大绝对误差为 △max2=(2.5-0)×1.5%=0.0375 (MPa) ▪ △max1 > △max2 ,这种选择是不合适的。
❖ 什么是仪表的测量范围及上、下限和量程?彼此 有什么关系?
▪ 用于测量的仪表都有测量范围,测量范围的最 大值和最小值分别称为测量上限和测量下限, 量程是测量上限值和测量下限值的差,用于表 示测量范围的大小。
▪ 已知上、下限可以确定量程,但只给出量程则 无法确定仪表的上、下限以及测量范围。
过程控制及自动化仪表总结
过程控制及自动化仪表总结

仪表自动化在化工工业的应用

仪表自动化在化工工业的应用

仪表自动化在化工工业的应用
仪表自动化在化工工业的应用非常广泛。

下面列举了几个常见的应用领域:
1. 过程控制:仪表自动化用于控制化工过程中的温度、压力、流量等参数,以确保产品的质量和稳定性。

例如,流量计可以精确测量流体的流量,并自动调节供应和排放的速度,从而保持流程的稳定性和连续性。

2. 媒体分析:化工过程需要对生产中的原料、中间产物和成品进行分析和监测。

仪表自动化可以通过各种传感器和分析仪器,实时监测和控制媒体的成分和特性。

例如,气体分析仪可用于监测反应器中的气体组分,并通过反馈控制系统调整反应器的操作条件。

3. 安全监测:化工工业具有潜在的危险性,因此安全监测是至关重要的。

仪表自动化可用于监测环境参数,如气体浓度、温度和压力等,以确保工作场所的安全性。

如果检测到异常情况,系统可以自动触发报警和紧急停机程序。

4. 能源管理:化工过程通常需要大量的能源供应,如燃气、蒸汽和电力。

仪表自动化可以用于监测和控制能源的消耗,以提高能源效率和降低运营成本。

例如,压力传感器可以监测网络中的压力变化,并自动调整输送流量以优化能源利用率。

5. 数据记录与分析:仪表自动化可以持续记录和存储过程参数数据,如温度、压力、流量等,以进行后续的分析和优化。

通过对过程数据的分析,可以识别潜在的问题和改进点,并采取相应的措施来提高生产效率和质量。

综上所述,仪表自动化在化工工业中发挥着重要的作用,可以实现过程控制、媒体分析、安全监测、能源管理和数据分析等功能,提高生产效率、质量和安全性。

过程控制与自动化仪表教学设计

过程控制与自动化仪表教学设计背景介绍过程控制与自动化仪表主要用于工业领域中的自动化生产控制过程中,通过仪表测量和控制来实现生产自动化管理。

因此该领域的人才非常稀缺,且在目前的技术变革中,亟需培养更多实践操作的专业人才。

据此,我们开始进行过程控制与自动化仪表课程设计。

教学目标•理解过程控制的基本概念和原理;•掌握自动化仪表的结构和原理;•学习使用自动化仪表的技术方法和步骤;•培养学生自我学习和实践操作的能力。

课程内容•过程控制基础知识介绍:包括过程控制定义、分类、控制对象、控制系统、反馈控制等基础知识;•仪表基础知识介绍:包括仪表的分类、特点、结构、使用说明以及校验方法等基础知识;•传感器与执行机构:包括传感器原理、类型、特点以及执行机构原理、构造和使用等;•仪表信号处理技术:涵盖传感器输出信号处理、信号调理与放大、数字化技术原理以及信号调制和变换等;•自动化控制:详细介绍闭环控制、开环控制、PID控制、自适应控制等方法和工业控制的核心技术。

教学方式本课程采取“理论学习+实验操作”相结合的教学方式,前期讲授理论知识,后期进行实验操作。

特别是在实验操作中,通过让学生使用仪器设备进行实际工作,提高学生的实践操作能力、分析问题的能力和创新思维。

课程评估方式•实验报告,记录实验操作过程中发现的问题和解决方案;•课堂小测验,测试学生对理论知识的掌握程度;•过程考核,考核学生对自动化仪表的掌握程度;•期末成绩,由理论考试和实验操作综合评估得出。

总结过程控制与自动化仪表已经成为现代工业生产的重要组成部分,通过本课程培养出高素质、应用型人才至关重要。

因此我们将不断完善课程内容和教学方法,全面提升学生成为实践操作的掌握者和优秀的自动化生产专业人才。

自动化仪表与过程控制课程设计

自动化仪表与过程控制课程设计引言自动化是现代科学技术的重要分支之一,是制造业和生产过程中提高企业自动化水平的重要手段。

而在自动化过程中,仪表的作用愈发重要,是自动化控制的重要组成部分。

因此,在工科专业中,自动化仪表与过程控制课程的设计至关重要。

本文将介绍一份适用于大学本科工科专业的自动化仪表与过程控制课程设计,主要针对课程设置、课程内容及教学方法进行说明。

课程设置本课程适用于大学自动化、机电、电子等工科专业及相关专业的本科生。

设置为必修课程。

课时数:64学时,分为48学时的理论课和16学时的实验课。

课程内容第一章仪表基础知识1.1 仪表的定义及分类1.2 量的概念1.3 误差及其类型1.4 仪表的精度1.5 温度补偿技术1.6 信号变换与传输第二章传感器2.1 传感器的概述2.2 压力传感器2.3 温度传感器2.4 液位传感器2.5 光电传感器2.6 传感器的选择和应用第三章过程控制基础3.1 进程控制的基本概念3.2 线性控制系统3.3 非线性控制系统3.4 离散控制系统3.5 工艺数学模型3.6 控制系统的组成要素第四章模拟控制技术4.1 信号的超前/滞后、反向作用及校正4.2 模拟控制系统的组成4.3 PID控制器4.4 模拟控制器的调节4.5 工业过程控制的典型应用第五章数字控制技术5.1 数字控制系统的组成5.2 采样定理及信号处理5.3 数字控制器5.4 数字化控制系统的参数调节5.5 数字化控制器的应用第六章实验6.1 传感器基本实验及性能测试6.2 测量实验6.3 PID控制实验6.4 数字化控制实验教学方法本课程采用理论授课与实验相结合的教学方法。

理论授课重点讲解基础理论知识,注重理论与实际应用的结合,引导学生了解自动化及仪表测控原理,为后续应用理论打下基础。

实验课重点围绕课程内容,从器件的使用、检测及调整、故障分析与处理等角度进行讲解,让学生实际操作并获得实际经验。

在平时教学过程中,老师应设置互动环节,引导学生思考、发问、交流,以达到更好的教学效果。

过程控制与自动化仪表

过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中不可缺少的一部分,它们在监测、控制和优化工业过程中起着重要的作用。

过程控制与自动化仪表技术的应用可以提高工业生产的效率、质量和安全性,减少人力资源的消耗,实现工业自动化。

本文将介绍过程控制与自动化仪表的基本概念、发展历程以及在工业生产中的应用。

同时还会讨论一些常见的过程控制与自动化仪表的类型和工作原理,以及它们在不同行业中的具体应用案例。

2. 过程控制与自动化仪表基本概念过程控制与自动化仪表是指一系列用于监测、控制和调节工业过程的设备和系统。

它们可以通过测量和分析过程变量,控制工艺参数并实现自动化控制。

通过使用合适的传感器、执行器和控制算法,可以实现对工业过程的精密控制和优化。

过程控制与自动化仪表主要由以下几个组成部分构成:•传感器:用于测量各种物理量,如温度、压力、流量等;•控制器:根据传感器测量值和设定值进行逻辑运算,生成控制信号;•执行器:接收控制信号,并执行相应的动作,如开关、阀门等;•监控系统:用于监视和记录工业过程中的各种参数和状态;•人机界面:提供工业过程的可视化显示和人机交互界面。

3. 过程控制与自动化仪表的发展历程过程控制与自动化仪表的发展可以追溯到工业革命时期。

在工业革命之前,工业生产主要依靠人工操作,效率低下且易出错。

随着机械设备和工业化的发展,工业生产越来越复杂,对自动化控制的需求也越来越迫切。

20世纪初,工程师们开始研究和开发过程控制与自动化仪表技术。

最早的控制系统是基于机械和电气设备的。

随着电子技术的发展,电子仪表逐渐取代了机械仪表,实现了对工业过程更加精确的控制。

到了20世纪中叶,随着计算机技术的进一步发展,数字化控制系统开始应用于工业生产。

数字化控制系统通过采集和处理大量数据,实现了对工业过程的智能化控制,并提高了系统的可靠性和稳定性。

近年来,随着互联网和物联网技术的快速发展,过程控制与自动化仪表也越来越趋向于网络化和智能化。

2024版自动化仪表与过程控制培训教材


01
反馈控制原理
将被控变量的测量值与设定值进 行比较,根据偏差进行调节,使
被控变量稳定在设定值附近。
02
前馈控制原理
根据扰动量的大小和方向,提前 对系统进行调节,以减小或消除
扰动对被控变量的影响。
03
过程控制方法
包括PID控制、模糊控制、神经 网络控制等,根据被控对象的特 点和控制要求选择合适的控制方
制定维护保养计划表
将维护保养内容按照周期进行排列, 形成计划表,方便执行和检查。
明确维护保养内容
包括仪表的清洁、润滑、紧固、调整 以及防腐等。
常见故障类型及诊断方法
01
仪表无指示或指示异常
检查电源、信号线路、传感器 等是否正常,判断是否为仪表
内部故障。
02
仪表控制失灵
检查控制阀门、执行器等是否 正常,判断是否为控制系统故
自动化仪表与过程控制培训教 材
目录
• 自动化仪表概述 • 过程控制基本原理 • 自动化仪表选型与安装 • 过程控制系统设计与实施 • 自动化仪表维护与故障排除
目录
• 过程控制系统优化与升级 • 培训教材编写与使用方法
01
自动化仪表概述
自动化仪表定义与分类
01
自动化仪表定义
02
自动化仪表分类
自动化仪表是一种能够自动完成测量、控制、显示、记录等功能的设 备,广泛应用于各种工业自动化领域。
性能评估模型构建
03
基于数据分析,构建性能评估模型,对系统性能进行量化评估。
优化策略制定及实施效果评估
1 2
瓶颈分析 针对系统性能瓶颈,进行深入剖析,找出制约因 素。
优化方案制定 根据瓶颈分析结果,制定针对性的优化方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动化仪表及DCS 实验报告学生姓名:王万秋学号:11052204专业班级:自动化11-1班实验二S7-200 PLC基本操作练习一、实验目的1、熟悉S7-200PLC实验系统及外部接线方法。

2、熟悉编程软件STEP7-Micro/WIN的程序开发环境。

3、掌握基本指令的编程方法。

二、实验设备1、智能仪表开发综合实验系统一套(包含PLC主机、各实验挂箱、各功能单元、PC机及连接导线若干)三、实验系统使用注意事项1、实验接线前必须先断开电源开关,严禁带电接线。

接线完毕,检查无误后,方可上电。

2、实验过程中,实验台上要保持整洁,不可随意放置杂物,特别是导电的工具和多余的导线等,以免发生短路等故障。

系统上电状态下,电源总开关下方L、N端子间有220VAC输出,实验中应特别注意!3、本实验系统上的各档直流电源设计时仅供实验使用,不得外接其它负载。

4、实验完毕,应及时关闭各电源开关(置关端),并及时清理实验板面,整理好连接导线并放置规定的位置。

四、实验内容(一)熟悉S7-200PLC的接线方法S7-200PLC是西门子公司生产的小型可编程逻辑控制器,其CPU模块接线方法如下图所示:实验系统将输入输出接点用固定连接线连到实验面板的固定插孔处。

如下图所示:在实验中使用导线将主机挂箱与其它挂箱连接,连接时要将主机的L+电源与各实验模块的L+输入连接;主机输出M端与实验模块中的M端相连;主机输出端1L、2L、3L与主机的M相连;主机输入端的1M、2M与主机电源L+相连,输入输出端子对应相连即可。

本次实验使用S21-2挂箱中的“基本指令编程练习”单元,如右图所示。

(二)STEP7-Micro/WIN软件简介STEP7-Micro/WIN编程软件为用户开发PLC应用程序提供了良好的操作环境。

在实验中应用梯形图语言进行编程。

编程的基本规则如下:1、外部输入/输出继电器、内部继电器、定时器、计数器等器件的接点可多次重复使用,无需用复杂的程序结构来减少接点的使用次数。

2、梯形图每一行都是从左母线开始,线圈接在右边。

接点不能放在线圈的右边,在继电器控制的原理图中,热继电器的接点可以加在线圈的右边,而PLC的梯形图是不允许的。

3、线圈不能直接与左母线相连。

如果需要,可以通过一个没有使用的内部继电器的常闭接点或者特殊内部继电器的常开接点来连接。

4、同一编号的线圈在一个程序中使用两次称为双线圈输出。

双线圈输出容易引起误操作,应尽量避免线圈重复使用。

5、梯形图程序必须符合顺序执行的原则,即从左到右,从上到下地执行,如不符合顺序执行的电路就不能直接编程。

6、在梯形图中串联接点使用的次数是没有限制,可无限次地使用。

7、两个或两个以上的线圈可以并联输出。

以下通过一个实例简单介绍STEP7-Micro/WIN软件的使用,该实例实现的功能为由S21-2挂箱中的I0.0开关控制灯Q0.0与Q0.1的亮灭,当I0.0闭合时灯Q0.0亮,当I0.0断开时灯Q0.1亮。

首先设计PlC输入输出端口分配方案(如下表所示)并按前文所述接线。

然后应用STEP7-Micro/WIN软件编写控制程序并下载程序。

程序开发的具体过程如下:1、左键单击“开始”,选择“所有程序”—“Simatic”—“STET 7_MicroWIN V4.0.3.08”—“STEP 7-MicroWIN”,进入编程环境如下图所示。

2、在程序编辑器中选择“主程序”标签。

3、在指令树中选择相应指令并拖入网络1中,如下左图所示:4、指令地址区域中键入所需的数值,以指定地址,如上右图所示:5、点击“PLC”菜单中“编译”项,编译程序。

如编译错误,则修改程序重新编译直至编译正确,如编译正确,则进行下一步。

6、点击“PLC”菜单中“STOP”项并确认,此时PLC进入停止状态。

7、点击“文件”菜单中“下载”项,出现下载对话框,点击“下载”按钮下载程序。

8、点击“PLC”菜单中“RUN”项并确认,此时PLC进入运行状态,程序描述的控制逻辑得以实现。

(三)写简单程序并运行程序1、与或非功能的实现在同一程序中编程实现如下控制功能:a、当开关I0.0与I0.1均处于闭合状态时,灯Q0.0亮,否则灯灭。

b、当开关I0.2与I0.3均处于断开状态时,灯Q0.1亮,否则灯灭,要求不使用取反指令实现c、当开关I0.4与I0.5中至少有一个处于闭合状态时灯Q0.2亮,否则灯灭。

d、当开关I0.6与I0.7中至少有一个处于断开状态时灯Q0.3亮,否则灯灭,要求应用取反指令实现。

2、定时器指令的应用定时器指令简介:S7-200 PLC 的定时器指令包含三种基本指令,分别为:接通延时定时器指令(TON ),有记忆的接通延时定时器指令(TONR)以及断开延时定时器指令(TOF)。

这里对接通延时定时器指令进行简单介绍,其详细说明以及其他两种定时器指令的使用说明可以查阅STEP-7Micro/WIN 帮助文件。

接通延时定时器指令的形式(以定时器T37,定时一秒为例)如下图所示:指令在IN 输入接通时,开始计时。

当前值(Txxx )大于或等于预设时间(PT )时,定时器位为"打开"。

IN 输入断开时,接通延时定时器当前值被清除。

达到预设值后,定时器仍继续计时,达到最大值32767时,停止计时。

TON 定时器有三种分辨率,分辨率由定时器号码决定。

每一个当前值都是时间分辨率的倍数。

例如,10毫秒定时器中的计数50表示500毫秒。

TON 定时器号码与相应的时间基准如下所示:在同一程序中编程实现如下控制功能:a 、开关I0.0闭合3秒后灯Q0.0亮,I0.0断开,灯Q0.0灭。

b 、当开关I0.1闭合3秒后灯Q0.1亮,再过2秒钟后灯Q0.2亮,I0.1断开,灯Q0.1、Q0.2灭。

3.计数器指令的应用计数器指令简介:S7-200PLC的计数器指令包含三种基本指令,分别为:增计数器指令(CTU),减计数器指令(CTD)以及增/减计数器指令(CTUD)。

这里对增计数器指令进行简单介绍,其详细说明以及其他两种计数器指令的使用说明可以查阅STEP-7Micro/WIN帮助文件。

增计数器指令的形式(以计数器C1,计数预置值为5为例)如下图所示:增计数器从当前计数值开始,从每一个(CU)输入状态从低到高时递增计数。

当CXX当前值大于等于预置值PV时,计数器CXX置位,当复位端(R)接通或执行复位指令时,计数器复位。

当达到最大值(32767)后,计数器停止计数。

在同一程序中编程实现如下控制功能:a、当开关I0.6闭合3次后灯Q0.0亮,I1.0闭合,灯Q0.0灭。

b、当开关I0.7闭合2次后灯Q0.1亮,I1.1闭合,灯Q0.1灭,当Q0.1第2次亮时灯Q0.2亮,I1.2闭合,灯Q0.2灭。

实验三S7-200 PLC控制程序开发一、实验目的1、熟练掌握S7-200PLC的应用方法。

2、掌握应用PLC实现简单控制系统的方法。

二、实验设备1、智能仪表开发综合实验系统一套(包含S7-200 PLC主机、各实验挂箱、各功能单元、PC机及连接导线若干)三、实验系统使用注意事项1、实验接线前必须先断开电源开关,严禁带电接线。

接线完毕,检查无误后,方可上电。

2、实验过程中,实验台上要保持整洁,不可随意放置杂物,特别是导电的工具和多余的导线等,以免发生短路等故障。

系统上电状态下,电源总开关下方L、N端子间有220VAC输出,实验中应特别注意!3、本实验系统上的各档直流电源设计时仅供实验使用,不得外接其它负载。

4、实验完毕,应及时关闭各电源开关(置关端),并及时清理实验板面,整理好连接导线并放置规定的位置。

四、实验内容(一)应用PLC实现水塔水位控制1、在实验中应用S21-3挂箱上的水塔水位控制单元模拟实际的控制对象,其中开关S1、S2、S3及S4模拟液位信号,灯M1、Y分别模拟水泵及进水阀的状态。

S21-3挂箱面板如右图所示:2、控制要求:当水池水位低于水池低水位界限(S4为ON)时,阀Y打开进水(灯Y亮),当水池水位高于水池高水位界限(S3为ON)时,阀Y关闭(灯Y灭)。

若阀Y打开5秒钟后水池水位仍然低于水池低水位界限,则灯Y闪烁。

当S4为OFF,且水塔水位低于水塔低水位界限时(S2为ON),电机M1运转抽水(灯M1亮)。

当水塔水位高于水塔高水位界限时(S1为ON)电机M1停止(灯M1灭)。

(二)应用PLC实现十字路口交通灯控制1、在实验中应用S21-2挂箱中的十字路口交通灯控制单元模拟实际的控制对象,如右图所示。

2、控制要求:信号灯受启动开关控制,当启动开关接通时,信号灯系统开始工作,且先南北红灯亮,东西绿灯亮。

当启动开关断开时,所有信号灯都熄灭;南北红灯亮维持25秒,在南北红灯亮的同时东西绿灯也亮,并维持20秒;到20秒时,东西绿灯闪亮,闪亮3秒后熄灭。

在东西绿灯熄灭时,东西黄灯亮,并维持2秒。

到2秒时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭,绿灯亮,东西红灯亮维持30秒。

南北绿灯亮维持25秒,然后闪亮3秒后熄灭。

同时南北黄灯亮,维持2秒后熄灭,这时南北红灯亮,东西绿灯亮。

周而复始。

实验报告:实验1程序连接图:实验2程序连接图:实验总结通过本次试验,我熟悉了S7-200PLC实验系统及外部接线方法,掌握应用PLC 实现单控制系统的方法。

在具体编写液位系统和交通灯系统过程中,由于按键比较多,且还有各种复杂的相互联系,一开始设计遇到很多问题,后来静心研究,回去又仔细思考了一下,发现两个程序的共通之处后,最后顺利完成了实验。

谢谢老师的细心指导。

实验四执行器一、实验目的1、了解气动执行机构的结构和工作原理,掌握调校方法。

2、了解电/气阀门定位器的结构和工作原理。

3、了解电动执行器的结构和工作原理。

二、实验设备1、气动定值器一个2、标准压力表一块3、气动执行器一台4、配有电/气阀门定位器的气动执行器一台5、电动执行器一台6、直流信号源(0~20mA)一台7、直流电流表(0~20mA)一台8、24V交流电源一台9、500Ω电阻一支三、实验内容(一)观察结构1、观察气动执行器的外形和内部结构,了解各部件的作用。

明确铭牌上各项指标的含义。

2、观察电/气阀门定位器的外形和内部结构,了解其工作原理。

3、观察电动执行器的结构,了解其构成及工作原理。

(二)气动执行器的调校1、按下图接线定值器2、调零:输入信号压力小于20KPa时,推杆应不动作,当输入压力略大于20KPa 时,推杆应开始动作,否则可调整调节件的位置,来调整弹簧的预紧量。

3、调量程:继续增大信号压力,在20~100KPa之间,阀杆应一直动作,当信号压力大于100KPa时,阀杆应停止动作,否则可调节阀杆,直到满足要求。

注意:若在增压过程中发现推杆停止走动,应立即停止增加压力,这是由于阀心被阀座抵住,若一直增压,会将阀杆压弯。

相关文档
最新文档