11.6 一元一次不等式组(1)

合集下载

11.6一元一次不等式组(2)

11.6一元一次不等式组(2)

11.6一元一次不等式组(2)学习目标:1、进一步理解一元一次不等式组及其解的意义,2、学会利用一元一次不等式解集的数轴表示不等式组的解集的方法. 学习过程:一、自学检测解不等式组x13x 2x2x33+>-⎧⎪-⎨>⎪⎩二、探究学习1.解不等式组()x-3x-24 12x>2x≤⎧⎪⎨--⎪⎩解析:先利用一元一次不等式的解法分别求出两个不等式的解集,再在同一数轴找出他们的公共部分。

2.求不等式组352x52x<3-≤-⎧⎨-⎩的正整数解三、当堂达标:1. 在数轴上与原点的距离小于8的点对应的x满足___2.要使函数y﹦(2m-3)x+(3n+1)的图象经过x、y的正半轴,则m__,n__3.当k 取何值时,关于x 的方程(k-2)x ﹦k+3的解是负数?4.农场内有苹果20吨、桃子12吨,计划租用甲、乙两种货车共8辆,将这批水果全部运往外地销售,知一辆甲种货车可装苹果4吨、桃子1吨,一辆甲种货车可装苹果、桃子各2吨.⑴如何安排,才能使甲、乙两种货车可一次性运完?有几种方案?⑵若甲、乙两种货车各需运费300元、240元,如何选择使运费最少?是多少?教(学)后记:回想本节内容,你学到了什么?还有什么疑问?四、课后作业1.下列不等式组中,是一元一次不等式组的是( )A .2,3x x >⎧⎨<-⎩B .10,20x y +>⎧⎨-<⎩C .320,(2)(3)0x x x ->⎧⎨-+>⎩D .320,11x x x ->⎧⎪⎨+>⎪⎩2.下列说法正确的是( )A .不等式组3,5x x >⎧⎨>⎩的解集是5<x<3B .2,3x x >-⎧⎨<-⎩的解集是-3<x<-2C .2,2x x ≥⎧⎨≤⎩的解集是x=2D .3,3x x <-⎧⎨>-⎩的解集是x≠3(2010泰安)若3.关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是( )A .76<<mB .76<≤mC .76≤≤mD .76≤<m 4.不等式组2,3482x x x⎧>-⎪⎨⎪-≤-⎩的最小整数解为( )A .-1B .0C .1D .45.在平面直角坐标系中,点P (2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x<5B .-3<x<5C .-5<x<3D .-5<x<-36.设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为( )A .○□△ B.○△□ C.□○△ D.△□○7.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是 .8.(2009烟台)如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .9.不等式组2x x a>⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.10.已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是 .11.如果(1)5,24a x a x -<+⎧⎨<⎩的解集是x<2,则a 的取值范围是_____; 12.求不等式组⎪⎩⎪⎨⎧->--≥+352395)1(3x x x x 的正整数解.13.已知a a -=-33,当a 为何整数时,方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数?14.有甲,乙,丙三个人在一起讨论一个一元一次不等式组,•他们各说出该不等式组的一个性质.甲:它的所有解为非负数.乙:其中一个不等式的解集为x≤8.丙:其中一个不等式在解的过程中需改变不等号的方向.请试着写出符合上述条件的一个不等式组,并解答.15.(阅读理解题)先阅读不等式x2+5x-6<0的解题过程,然后完成练习.解:因为x2+5x-6<0,所以(x-1)(x+6)<0.因为两式相乘,异号得负.所以10,60xx->⎧⎨+<⎩或10,60xx-<⎧⎨+>⎩即1,6xx>⎧⎨<-⎩(舍去)或1,6xx<⎧⎨>-⎩所以不等式x2+5x-6<0的解集为-6<x<1.练习:利用上面的信息解不等式228xx-+<0.16.把若干个糖果分给几只猴子,若每只猴子分3个,则余8个;若每只猴子分5个,•则最后一个猴子分得的糖果数不足3个,问共有多少只猴子,多少个糖果?。

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

【开学春季备课】苏科版七年级数学下11.6一元一次不等式组【课时训练一】及答案

【开学春季备课】苏科版七年级数学下11.6一元一次不等式组【课时训练一】及答案

11.6一元一次不等式组一、认真选一选(1)下列不等式组中,解集是2<x <3的不等式组是( )A .⎩⎨⎧>>23x xB .⎩⎨⎧<>23x xC .⎩⎨⎧><23x xD .⎩⎨⎧<<23x xA .x ≤bB .x <aC .b ≤x <aD .无解A .m =3B .m ≥3C .m ≤3D .m <3二、请你填一填(3)如果三角形的三边长分别是3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.三、如果关于x 、y 的方程组⎩⎨⎧=+=-ay x y x 53102的解满足x >0且y <0,请确定实数a 的取值范围.四、用数学眼光看世界某企业现有工人80人,平均每人每年可创产值a 元.为适应市场经济改革,现决定从中分流一部分人员从事服务行业.分流后企业工人平均每人每年创造产值可增加30%,服务行业人员平均每人每年可创产值2.5a 元.要使分流后企业工人的全年总产值不低于原来全年总产值,而且服务行业人员全年创产值不低于原企业全年总产值的一半.假设你是企业管理者,请你确定分流到服务行业的人数.参考答案一、(1)C (2)C (3)A (4)C二、(1)2≤x <5 (2)a ≤2 (3)-5<a <-2 三、解方程组⎩⎨⎧=+=-ay x y x 53102得这个方程组的解是⎩⎨⎧-=+=622a y ax∵ x >0且y <0,∴ ⎩⎨⎧<->+06202a a解得:-2<a <3四、解:设分流x 人从事服务行业,则剩余(80-x )人从事企业生产.根据题意得:⎪⎩⎪⎨⎧⨯≥≥-+a ax a x a 80215.280)80(%)301( 即⎩⎨⎧≥≤aax a ax 405.2243.1∴ ⎪⎩⎪⎨⎧≥≤1613618x x又∵ x 是整数∴ x =16,17或18即可分流16人或17人、18人去从事服务行业.。

11.6.2一元一次不等式组的实际应用课课练及答案(苏科版七年级下)pfd版

11.6.2一元一次不等式组的实际应用课课练及答案(苏科版七年级下)pfd版

第2课时㊀一元一次不等式组的实际应用㊀用不等式组解决实际问题.㊀开心预习梳理,轻松搞定基础.1.一个矩形,两边长分别为x c m和10c m,如果它的周长小于80c m,面积大于100c m2.求x的取值范围.2.一本科普读物共98页,王力读了一周(7天)还没有读完,而张勇不到一周就读完了,张勇平均每天比王力多读3页,王力平均每天读多少页?(答案取整数)㊀重难疑点,一网打尽.3.某地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲㊁乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲㊁乙两种设备各多少台?在我们的生活中,不等关系更为普遍.㊀㊀4.某工厂现有A种原料290k g,B种原料220k g,计划利用这两种原料生产甲㊁乙两种产品共40件,已知每生产一件甲种产品需A种原料8k g,B种原料4k g,每生产一件乙种产品需A种原料5k g,B种原料9k g.试问:有几种符合题意的生产方案?5.在 保护地球,爱护家园 活动中,校团委把一批树苗分给九(1)班同学去栽种,如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设九(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).(2)九(1)班至少有多少名同学?最多有多少名同学?㊀源于教材,宽于教材,举一反三显身手.6.某工厂现有甲种原料226k g,乙种原料250k g,计划利用这两种原料生产A㊁B两种产品共40件,生产A㊁B两种产品用料情况如下表:需要甲原料需要乙原料一件A种产品7k g4k g一件B种产品3k g10k g设生产A产品x件,请解答下列问题:(1)求x的值,并说明有哪几种符合题意的生产方案;(2)若甲种原料50元/k g,乙种原料40元/k g,说明(1)中哪种方案较优?七年级数学(下)㊀㊀7.某公司计划明年生产一种新型环保电视机,下面是公司各部门提供的数据信息:人事部:明年生产工人不多于80人,每人每年工作时间按2400h计算;营销部:预测明年销量至少为10000台;技术部:生产一台电视机,平均用12个工时,每台电视机需要安装5个某种主要部件;供应部:今年年终将库存主要部件2000件,明年能采购到这种主要部件为80000件.根据以上信息,明年生产新型电视机的台数应控制在什么范围内?㊀瞧,中考曾经这么考!8.(2012 四川自贡)暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?第2课时㊀一元一次不等式组的实际应用1.矩形的周长是2(x +10)c m ,面积是10x c m 2.根据题意,得2(x +10)<8010x >100.{,解得x <30,x >10.{所以x 的取值范围是10<x <30.2.设王力平均每天读x 页,则张勇平均每天读(x +3)页.根据题意,得7x <98,7(x +3)>98.{①②解不等式①,得x <14.解不等式②,得x >11.因此不等式组的解集是11<x <14.ȵ㊀x 取整数,ʑ㊀x =12或x =13.故王力平均每天读书12页或13页.3.设购买甲种设备x 台,则购买乙种设备(12-x )台.由题意,得4000x +3000(12-x )ɤ40000,600x +800(12-x )ɤ9200.{解得2ɤx ɤ4.又㊀x 为整数,ʑ㊀x =2,3,4.ʑ㊀可购甲种设备2台,乙种设备10台或购甲种设备3台,乙种设备9台或购甲种设备4台,乙种设备8台.4.设生产x 件甲种产品.由题意,得8x +5(40-x )ɤ290,4x +9(40-x )ɤ220.{解得28ɤx ɤ30.因为x 是整数,所以x =28,29,30.因此生产方案有三种:生产甲种产品28件,乙种产品12件;生产甲种产品29件㊁乙种产品11件;生产甲种产品30件,乙种产品10件.5.(1)这批树苗有(2x +42)棵.(2)根据题意,得2x +42-3(x -1)<52x +42-3(x -1)ȡ1.{解这个不等式组,得40<x ɤ44.故九(1)班至少有41名同学,最多有44名同学.6.(1)设徒弟每天组装x 辆摩托车,则师傅每天组装(x +2)辆.依题意,得7x <287(x +2)>28.{解得2<x <4.ȵ㊀x 取正整数,ʑ㊀x =3.故徒弟每天组装3辆摩托车.(2)设师傅工作m 天,师徒两人所组装的摩托车辆数相同.依题意,得3(m +2)=5m .解得m =3.若徒弟先工作2天,师傅工作3天,师徒两人组装的摩托车辆数相同.7.(1)根据题意,得7x +3(40-x )ɤ2264x +10(40-x )ɤ250.{这个不等式组的解集为25ɤx ɤ26.5.又x 为整数,所以x =25或26.所以符合题意的生产方案有两种:①生产A 种产品25件,B 种产品15件;②生产A 种产品26件,B 种产品14件.(2)一件A 种产品的材料价钱是7ˑ50+4ˑ40=510(元).一件B 种产品的材料价钱是3ˑ50+10ˑ40=550(元).方案①的总价钱是(25ˑ510+15ˑ550)元.方案②的总价钱是(26ˑ510+14ˑ550)元.25ˑ510+15ˑ550-(26ˑ510+14ˑ550)=550-510=40元.由此可知:方案②的总价钱比方案①的总价钱少,所以方案②较优.8.设明年生产的新型环保电视机为x 台.由题意,得x ȡ10000,12x ɤ80ˑ2400,5x ɤ2000+80000,{解得10000ɤx ɤ16000.所以明年生产新型电视机的台数应控制在10000台到16000台之间.9.(1)设弟弟每天编x 个中国结,则哥哥每天编(x +2)个中国结.依题意,得7x <28,7(x +2)>28.{解得2<x <4.ȵ㊀x 取正整数,ʑ㊀x =3.故弟弟每天编3个中国结.(2)设哥哥工作m 天,两人所编中国结数量相同,依题意,得3(m +2)=5m ,解得,m =3.若弟弟先工作2天,哥哥才开始工作,那么哥哥工作3天,两人所编中国结数量相同.。

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。

】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。

4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。

” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。

2.不等式与一次函数的关系,可以利用函数图像来分析解答。

如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。

专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)一、单选题1.(2020·浙江省杭州市萧山区高桥初级中学八年级期中)如果代数式32x-的值不小于3-,那么x 的取值范围是( ) A .0x ≥B .0x >C .12x ≤D .12x <-2.(2021·浙江湖州市·八年级期末)某超市开展促销活动,一次购买的商品超过88元时,就可享受打折优惠.小明同学准备为班级购买奖品.需买6本笔记本和若干支钢笔.已知笔记本每本4元.钢笔每支7元,如果小明想享受打折优惠,那么至少买钢笔( ) A .12支B .11支C .10支D .9支3.(2020·浙江杭州市·八年级期末)根据数量关系“y 与6的和不小于1”列不等式,正确的是( ) A .61y +>B .61y +≥C .61y +<D .61y +≤4.(2020·山东日照市·九年级二模)为了奉献爱心,贡献自己的一份力量,本次新冠状病毒疫情期间,九年级4班18名团员计划在家加工2250个口罩,奉献给社区志愿者,并规定每人每天加工a 个口罩(a 为整数),干了几天以后,其中4人因特殊情况没能继续,若剩下的同学每人每天多加工3个口罩,则提前完成了这次任务,由此可知a 的值最多是( ) A .8B .9C .10D .115.(2020·河北九年级其他模拟)x 的3倍与它的14的差不少于5,列出的关系式为( ) A .1354x x -≥ B .1354x x -≤C .1354x x ->D .1354x x -<6.(2019·山西七年级期末)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .57.(2020·瑞安市安阳实验中学八年级月考)商店为了对某种商品进行促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过8件,则按原价付款;若一次性购买8件以上,则超出的部分打八折,小明带了70元钱,最多可以购买该商品( )A .14件B .15件C .16件D .17件8.(2021·全国七年级)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( ) A .105(20)80x x -- B .105(20x x +- )80 C .105(20)80x x -->D .105(20x x +- )80>9.(2021·湖南益阳市·八年级期末)李老师网购了一本《好玩的数学》,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x (元)所在的范围为( ) A .10≤x <12B .10≤x ≤12C .10<x <12D .10<x ≤1210.(2021·浙江湖州市·八年级期末)假期,小云带150元去图书馆,下表记录了他当天的所有支出,其中小零食支出的金额不小心被涂黑了,如果平均每包小零食的售价为5元,那么小云可能剩下的金额是( )A .1元B .2元C .3元D .4元11.(2021·广东佛山市·八年级期末)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟12.(2021·全国八年级)运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A.7B.8C.9D.10 13.(2020·贵州黔西南布依族苗族自治州·八年级期末)等腰三角形的周长为20cm且三边均为整数,底边可能的取值有()个.A.1B.2C.3D.4 14.(2021·黑龙江齐齐哈尔市·九年级期末)某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种15.(2021·广东潮州市·七年级期末)某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是().A.两胜一负B.一胜两平C.五平一负D.一胜一平一负二、填空题16.(2021·浙江杭州市·八年级期末)“比x小1的数大于x的2倍”用不等式表示为_________.17.(2020·山西七年级期末)某超市在一次促销活动中规定:消费者消费满300元或超过300元就可领取礼品.某人准备买15瓶啤酒和若干袋火腿肠,已知啤酒每瓶5元,火腿肠每袋15元,他至少买_______袋火腿肠才能领取礼品.18.(2020·全国课时练习)当x______________时,114x--的值是非负数.19.(2020·广西百色市·七年级期中)华润超市在2019年中从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于疫情影响,该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打____折20.(2020·浙江杭州市·八年级期末)一次生活常识知识竞赛一共有30道题,答对一题得4分,不答得0分,答错扣2分.小聪有2道题没答,竞赛成绩超过80分,则小聪至多答错了________道题.21.(2020·广东江门市·七年级期末)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折,现有98元钱,最多可以购买该商品_______件.22.(2020·全国七年级课时练习)某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元23.(2020·湖北武汉市·七年级期末)某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务,则a 与m 的数量关系是_____________,a 的值至少为__________24.(2020·全国单元测试)当13x <<时,化简213x x -+-=________.25.(2020·四川巴中市·七年级期末)某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.26.(2020·江苏徐州市·七年级期末)疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售__________件衬衫,所得销售额才能超过进货总价.27.(2020·河南洛阳市·七年级期末)现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.28.(2020·洛阳市实验中学九年级月考)为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.29.(2020·浙江省开化县第三初级中学八年级期中)“x 的4倍与1的差不大于3”用不等式表示为 ________________ .30.(2020·沙坪坝区·重庆八中八年级月考)今年立冬,某超市发起限时抢购饺子活动,规定立冬前一天(11月6日)价格打九折,立冬当天(11月7日)价格打八折,其余时间不打折,11月5日王老师在该超市选购甲、乙、丙三种饺子,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在立冬当天(11月7日)的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在立冬前一天(11月6日)总价的2027,且4千克甲立冬前一天(11月6日)的总价不低于65元,也不超过100元.如果三种饺子每千克的价格均为正整数,则王老师11月5日买2千克甲,1千克乙,1千克丙共付款______元.三、解答题31.(2021·四川绵阳市·八年级期末)受“疫情”的影响,绵阳某水果批发市场某月只购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)32.(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.33.(2021·全国八年级)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?34.(2021·高台县城关初级中学)某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

用一元一次不等式组解决实际问题

11.6用一元一次不等式组解决问题
Hale Waihona Puke 例1:一个长方形足球场,宽是65m.它的 周长大于330m,面积不大于7150m2,求这 个足球场的长的范围.
想一想:
用一元一次不等式组解决实际问题的 步骤是什么?
1、审题 2、找出2个不等关系 3、设出未知数 4、列出不等式组 5、解不等式组 6、答话
练一练
例3:
为创建国家生态城市,市园林部门决定 利用现有的3600盆甲种花卉和2900盆乙种花卉 搭配A、B两种园艺造型共50个,摆放在淮海路 的两侧.搭配每个造型所需花卉情况如下表:
造型


A
90盆
30盆
B
40盆
100盆
综合上述信息, 解答下列问题: (1)符合题意的搭配方案有哪几种? (2)若搭配一个A造型的成本为1000元,搭配一个 B造型的成本为1200元, 试说明选用(1)中哪种 方案成本最低?
练一练
某花农培育甲种花木2株,乙种花木3株, 共需成本1700元;培育甲种花木3株,乙种花木 1株,共需成本1500元.
(1)求甲、乙两种花木每株成本各为多少元?
(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本 不超过30000元的前提下培育甲乙两种花木,若 培育乙种花木的株数是甲种花木的3倍还多10株 ,那么要使总利润不少于21600元,花农有哪几 种具体的培育方案?
1、用载重20吨的货车载货,如果货物总质量 为360~400吨,那么需要这种载重20吨的货车 不少于多少辆?不多于多少辆?
2、把价格为每千克20元的甲种糖果8kg和价格 为每千克18元的乙种糖果若干千克混合,要使总 价不超过400元,且糖果不少于15kg,所混合的 乙种糖果最多是多少?最少是多少?

《一元一次不等式组》说课稿

《一元一次不等式组》说课稿《一元一次不等式组》说课稿1各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。

下面我就分别从教材、教法、学法、教学过程设计四个方面来说明我对这节课的教学设想。

一、教材分析教材的地位和作用在前面已学习了一元一次方程的相关知识和不等式的性质,本节课主要是通过类比一元一次方程的解法总结归纳出一元一次不等式的解法,并熟练运用不等式的性质解一元一次不等式。

只有学生掌握好了一元一次不等式的解法,才能更好学习后面的不等式组及不等式(组)的应用。

同时,学习本节课时涉及的类比思想、化归思想和数形结合思想对后续学习也是十分有益的,所以本课的教学不能仅仅停留在知识的探索上,更要注重数学方法和数学思想的渗透和传播。

日常生产生活中不等关系的情况常常发生,所以不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。

可见,本节课内容在本章乃至整个初中数学中都具有承上启下的作用,处于一个基础性、工具性的地位,不仅是对已有知识的运用和深化,还为后续继学习打下基础。

教学目标根据《课标》要求和上述教材分析,结合学生的实际情况,我制定了以下教学目标:知识与技能1.了解一元一次不等式、2.利用不等式性质解一元一次不等式,并通过解一元一次方程的步骤来探索解一元一次不等式的一般步骤,体会“比较”和“转化”的数学学习方法、3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握、过程与方法1.通过类比一元一次方程的解法,引导启发学生掌握一元一次不等式的解法、2.通过练习巩固,能正确应用不等式性质解一元一次不等式、情感、态度与价值观3.在教学过程中引导学生体会数学中“比较”和“转化”的思想方法、4.通过本节的学习让学生体会不等式解集的奇异的数学美,激发学生学习数学的兴趣、教学重难点和教学关键根据上面的教材分析和《课标》要求,确定本节课的教学重点是:初步掌握一元一次不等式的解法;掌握解一元一次不等式的一般步骤,并能用数轴表示解集、为突出重点,本节课让学生积极参与、自主探索并掌握一元一次不等式的解法。

鲁教版七年级下册数学期末复习知识点(第十一章)

鲁教版七年级下册数学期末复习知识点(第十一章)读书使学生认识丰富多彩的世界,获取信息和知识,拓展视野。

接下来小编为大家精心准备了鲁教版七年级下册数学期末复习知识点,希望大家喜欢!11.1 不等关系一、目标与要求1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;11.2 不等式的基本性质1、知识概念1.用符号“”“≤ ”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

11.3 不等式的解集①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

11.4 一元一次不等式一元一次不等式的解法与一元一次方程的解法类似,其步骤为:1.去分母;2.去括号;3.移项;11.5 一元一次不等式与一次函数●重点了解一元一次不等式与一次函数之间的关系.●难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.11.6 一元一次不等式组一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

一元一次不等式组的概念可以从以下几个方面理解:(1)组成不等式组的不等式必须是一元一次不等式;(2)从数量上看,不等式的个数必须是两个或两个以上;鲁教版七年级下册数学期末复习知识点整理的很及时吧,提高学习成绩离不开知识点和练习的结合,因此大家想要取得更好的成绩一定要注重从平时中发现问题查缺补漏~。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学 七年级(下册)
11.6 一元一次不等式组(1)
11.6 一元一次不等式组(1)
小丽早晨7时30分骑自行车上学,要在7时 50分至7时55分之间到达离家3400m的学校, 小丽骑自行车的速度应在什么范围内? 【问题】 (1)如果设小丽骑自行车的速度为x m/min. 你可以列出几个不等式?
x 4
11.6 一元一次不等式组(1)
2 x 10 【例题2】利用数轴确定不等式组 x 1 2
的解集.
11.6 一元一次不等式组(1)
【巩固提高】
x 2 (1)不等式组 的解集在数轴上 x 5
表示正确的是( )
11.6 一元一次不等式组(1)
x 2
11.6 一元一次不等式组(1)
【练一练】:利用数轴确定下列不等式组的解集.
x 2 ①不等式组 的解集是 x 1 x 2 ②不等式组 的解集是 x 1
. . . .
x 4 的解集是 ③不等式组 x 1 x5 ④不等式组 的解集是
【议一议】如何找出使 20 x 3400 ① 与 25 x 3400 ②
成立的未知数x的值? 【问题2】如何在数轴上表示使不等式 25 x 3400 成立的未知数x的值? 【问题3】观察所画图形,使不等式 20 x 3400 、
都成立的未知数x的值?作业】 1.课本P137-138页第1、2题; 2.思考题(选做) x a 一元一次不等式组 (a≠b)的解集为 x b x>a,则a与b的大小关系为_ _.
(2)所列的几个不等式有什么相同之处?
11.6 一元一次不等式组(1)
不等式解集的概念:这时有未知数x 同时满
足两个不等式,把这两个不等式联立在一起,可
20x 3400 以记作 25x 3400

像这样,把几个含有同一个未知数的一次不等
式联立在一起,就组成了一个一元一次不等式组.
11.6 一元一次不等式组(1)
【巩固提高】
x 2 (2)不等式组 的负整数解是( x 3 A.-2,0,-1; B.-2;
C.-2,-1;

D.不能确定.
11.6 一元一次不等式组(1)
【小结】
通过今天的学习,你学会了什么?你会正
确运用吗?通过这节课的学习,你有什么感受
呢,说出来告诉大家.
11.6 一元一次不等式组(1)
25 x 3400 都成立的未知数x的值有多少个?
11.6 一元一次不等式组(1)
不等式组的解集: 不等式组中所有不等式解集的公共部分,叫 做不等式组的解集.
解不等式组: 求不等式组的解集的过程叫做解不等式组.
11.6 一元一次不等式组(1)
【例题1】利用数轴确定不等式组 x 1 的解集.
相关文档
最新文档