初一数学思维培训班讲义(八)
2019-2020年中考数学思维方法讲义:第8讲 二次函数图象的应用

意林数学思维方法讲义之八 年级: 九年级2019-2020年中考数学思维方法讲义:第8讲 二次函数图象的应用【今日目标】1、二次函数图象与系数的关系(二次函数c bx ax y ++=2中a,b,c 的作用): ⑴a 决定__________。
①当__ 时,图象开口向上,当x=_________时,函数有最___值________;当x ﹥-a b 2时,y 随x 的增大而________;当x ﹤-ab2时,y 随x 的增大而________。
②当_________时,图象开口向下,当x=_________时,函数有最___值________;x ﹥-a b 2时,y 随x 的增大而________;当x ﹤-ab2时,y 随x 的增大而________。
③当|a |越大,图象开口越_____。
(2)a 和b 共同决定________。
①b=0时,对称轴为______;②a 和b 同号时对称轴在y 轴___侧;③a 和b 异号时对称轴在y 轴___侧。
简记为 。
(3)c 的大小决定抛物线与_____的交点的位置。
当___ 时,图象与y 轴正半轴相交;当___ 时,图象与y 轴负半轴相交;当___ 时,图象过原点。
(4)当__ _时,图象与x 轴有两个交点;当_ 时,图象与x 轴仅有一个交点;当__ _时,图象与x 轴没有交点。
2、以二次函数图象为载体,通过对四大要素的理解,结合动点、特殊三角形、特殊四边形、相似,利用勾股定理、相似为框架、以方程为工具解决存在型问题、最值问题、图形形状问题等。
【思想方法】数形结合法、特殊值法、整体思想、构造思想等。
【精彩知识】题型一 二次函数的图象与系数的关系【例1】已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a+c )2<b 2;⑤a >1.其中正确的项是 (填番号)●变式练习:如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A. 1B. 2C. 3D. 4题型二 二次函数的图象和性质的基本应用 【例2】已知,二次函数的解析式y 1=-x 2+2x +3. (1)求这个二次函数的顶点坐标;●变式练习:对于二次函数322--=mx x y ,有下列说法:①它的图象与x 轴有两个公共点; ②如果当x ≤1时y 随x 的增大而减小,则1=m ; ③如果将它的图象向左平移3个单位后过原点,则1-=m ;④如果当4=x 时的函数值与2008=x 时的函数值相等,则当2012=x 时的函数值为3-.其中正确的说法是 .(把你认为正确说法的序号都填上)【例3】 二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A .-3B .3C .-5D .9●变式练习:如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M =y 1=y 2.例如:当x =1时,y 1=0,y 2=4,y 1<y 2,此时M =0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M =1的x 值是或.其中正确的是 (填番号)题型三 二次函数图象为载体解决存在型问题、最值问题、图形形状问题等 【例4】如图,若抛物线y =-x 2+bx +c 的图像经过点A (m ,0)、B (0,n ),已知一元二次方程x 2-4x +3=0的两根是m ,n 且m <n . (1)求抛物线的解析式;(2)若(1)中的抛物线与x 轴的另一个交点为C.根据图像回答,当x 取何值时,抛物线的图像在直线BC 的上方? (3)点P 在线段OC 上,作PE⊥x 轴与抛物线交与点E ,若直线BC 将△CPE 的面积分成相等的两部分,求点P 的坐标.●变式练习:如图,已知二次函数c bx x y ++-=2的图象经过A (2-,1-),B (0,7)两点. ⑴求该抛物线的解析式及对称轴; ⑵当x 为何值时,0>y ?⑶在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.【例5】如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线y =ax 2+bx +c (a ≠0).所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求抛物线的解析式;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M A O M△∽ABC △?若存在,求出点M 说明理由.【例6】如图,在平面直角坐标系中,已知点A (-2,-4),OB =2,抛物线y =ax 2+bx +c 经过点A 、O 、B 三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM +OM 的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形.若存在,求点P 的坐标;若不存在,请说明理由.【例7】如图,在平面直角坐标系xOy 中,AB ⊥x 轴于点B ,AB =3,tan ∠AOB =34。
七年级数学培优辅导讲义(共十讲80页)

第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。
七年级数学优秀培训班讲义(教师版)[1].doc
![七年级数学优秀培训班讲义(教师版)[1].doc](https://img.taocdn.com/s3/m/842613545022aaea988f0f1b.png)
七年级数学优秀培训班讲义(教师版)[1]初中一年级基础数学讲义一、第一讲与绝对值相关的问题知识结构图:第二,绝对值的含义:(1)几何意义:通常,从数字轴上表示数字A的点到原点的距离称为数字A的绝对值,表示为|a|。
(2)代数意义:(1)正数的绝对值本身就是;(2)负数的绝对值是它的反数;(3)零的绝对值为零。
也可以写成:描述:(1)|a|≥0表示| a |是非负数;(ⅱ)| a | a |概念包含分类讨论的思想。
典型示例示例1。
(数字与形状相结合的概念)数字轴上的A、B和C的位置如下图所示。
那么代数表达式| a | | a | | b | | c-一、第一讲与绝对值相关的问题知识结构图:第二,绝对值的含义:(1)几何意义:通常,从数字轴上表示数字A的点到原点的距离称为数字A的绝对值,表示为|a|。
(2)代数意义:(1)正数的绝对值本身就是;(2)负数的绝对值是它的反数;(3)零的绝对值为零。
也可以写成:描述:(1)|a|≥0表示| a |是非负数;(ⅱ)| a | a |概念包含分类讨论的思想。
典型示例示例1。
(数字与形状相结合的概念)数字轴上的A、B和C的位置如下图所示。
然后是代数表达式| a | | ab | | c | a | | ab | | c-a |-| b-c |=-a-(ab)(c-a)b-c=-3a分析:在解决绝对值问题时,通常需要去掉绝对值符号,并将其转换为一般的有理数计算。
当绝对值符号被去掉时,必须先确定绝对值符号,然后根据绝对值的代数意义去掉。
本例利用数形结合的数学思想,从数轴上A、B、C的对应位置判断绝对值符号中的数的符号,从而消除绝对值符号,完成简化。
例2。
已知:然后值(c) a是正数b,是负数c是零d,符号解不能确定:根据主题,x、y、z在数轴上的位置如下图所示:所以分析:数轴是数字和代数领域中数字和形式结合的重要载体。
本例中的三个看似复杂的不平等关系,借助数轴,直观、方便地找到了x、y、z三个数的大小关系,为我们顺利简化铺平了道路。
初中数学辅导讲义

初中数学辅导讲义(适用于课外辅导班)2016.06.06一、初中数学知识点七年级上知识点七年级上知识点第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 <0.有理数整式的加减 一元一次方程 图形的认识初步6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1 a 、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学思维训练班讲义第二讲 二元一次方程组

(1)有唯一一组解;(2)无解;(3)有无穷多组解.
①有唯一解;
②有无穷多解 ; ③无解.
2x 3y 3 3x 2y 1 例 8、已知关于 x、y 的方程组 ax by 1 和 2ax 3by 3 的解相同,求 a、b 的例 9.在解
ax by 2
x 3
x 2
方程组
cx
7
y
8
时,哥哥正确地解得
y
2
,弟弟因把
c
写错而解得
y
y
5
x
y
360
②
3x 5x
2 4
y y
1 9
④
2x 2x
5y
32x
1 5
y
7
3x 5y 10 ⑥ 5x 3y 6
x: y 2:3
⑦
x
y
15
⑧
x 2 y 2
y 5 x 5
7 7
2、二元一次方程组
3x 2 x
2y m y 2m
3 1
的解互为相反数,求
m
的值.
3、方程组
4x 8(x y) 840, (1) ②解方程组: 4y 9(x y) 840.(2)
例
4、解方程组:①
x 7
y 10
, (1)
2x 3 y 44.(2)
x : y 3: 5,(1) ② x y 16.(2)
例
5、解方程组:①
x 4 y 4
y 9 x 9
13, (1) 13.(2)
⑤把这个方程组的解写成
x y
a b
的形式.
【典型例题】
例
1、解方程组:①
x y 3x 8y
初一数学最新教案-北师版七年级数学第八章拓展思维 精品

1、小张在商店中买了14瓶汽水,又知每3个空汽水瓶可换1瓶汽水,问小张最多能够喝到多少瓶汽水?2、按要求运用数字135和25%编一道应用题,要求:(1)要联系市场经济,其解符合实际。
(2)数25%要用两次。
(3)列出的方程是一元一次方程,写出这道应用题的整个解的过程。
3、下面是工厂各部门提供的信息:人事部:明年生产工人不多于800人,每年每人工时按2400工时计算;市场部:预测明年的产品销量是10000—12000件;技术部:该产品平均每件需用120工时,每件需要装4个某种主要部件;供应部:今年年终库存存某种主要部件6000个,明年可采购到这种部件60000个。
请判断:(1)工厂明年的生产量至多为多少件?(2)为减少积压,至多裁减多少人用于开发其他新产品。
4、甲、乙两人骑自行车,同时从相距`65千米的两地相向而行,甲的速度为17.5千米/时,乙的速度为15千米/时,经过几小时两人相距32.5千米?5、在一直的长河中有甲、乙两船,现同时由A 地顺流而下,乙船到B 地时接到通知需立即返回到C 地执行任务,甲船继续顺流航行,已知甲、乙两船在静水中的速度都是每小时7.5千米,水流速度为每小时2.5千米,A 、C 两地间的距离为10千米,如果乙船从B 地再到达C 地共用了4小时,问乙船从B 地到达C 地时,甲船驶离B 地有多远?6、亚洲某国家规定工资收入的个人所得税计算方法是:(1)月收入不超过1200元的部分不纳税;(2)收入超过1200元至1700元的部分按税率5%(这部分收入的5%,下同)征税;(3)收入超过1700元至3000元的部分按税率10%征税……已知某人本月缴纳个人所得税65元,问此人本月收入多少元?7、李明以两种形式储蓄了500元钱,一种储蓄年利率是5%,另一种是4%,一年后共得利息23元5角,两种储蓄各存了多少钱?(不用纳利息税)。
8、我国股市交易中每买卖一次需交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利多少元?9、水源泉透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费,假设不超标部分每3m 水费1.3元,超标部分每3m 水费2.9元,某住楼房的三口之家七月份用水123m,交水费22元.(1)请你通过列方程求出北京市规定的三口之家楼房每月标准用水量为多少3m?(2)若某住楼房的三口之家每月用水a3m,应交水费为b元,用含a的代数式表示b.10、将6500元存入银行,年利率为2.2%,一年到期可得利息多少元?扣除利息税后实得多少元?答案:143元 144.14元11、为了准备小颖6年后上大学的学费20000元,她父母现在就参加了6年期的教育储蓄,6年期的教育储蓄年利率为2.88%,问她父母应存入银行多少元?答案:约17100元12、把100元钱按照国际惯例年定期储蓄存入银行,如果到期可以得到本息共102.25元,那么这种储蓄的年息是存款的百分之几?月息是存款的百分之几?答案:2.25% 0.1875%13、国家规定个人发表文章,出版图书所得的稿费的个人所得税的计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元的应缴纳全部稿费的11%的税。
学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)
学⽽思七年级数学培优讲义word版(全年级章节培优-绝对经典)第1讲与有理数有关的概念考点·⽅法·破译1.了解负数的产⽣过程,能够⽤正、负数表⽰具有相反意义的量. 2.会进⾏有理的分类,体会并运⽤数学中的分类思想. 3.理解数轴、相反数、绝对值、倒数的意义.会⽤数轴⽐较两个有理数的⼤⼩,会求⼀个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7⽶⑵收⼈-50元⑶体重增加-3千克【解法指导】⽤正、负数表⽰实际问题中具有相反意义的量.⽽相反意义的量包合两个要素:⼀是它们的意义相反.⼆是它们具有数量.⽽且必须是同类两,如“向前与⾃后、收⼊与⽀出、增加与减少等等”解:⑴向前-7⽶表⽰向后7⽶⑵收⼊-50元表⽰⽀出50元⑶体重增加-3千克表⽰体重减⼩3千克.【变式题组】01.如果+10%表⽰增加10%,那么减少8%可以记作() A .-18% B .-8% C .+2% D .+8% 02.(⾦华)如果+3吨表⽰运⼊仓库的⼤⽶吨数,那么运出5吨⼤⽶表⽰为( ) A .-5吨 B .+5吨 C .-3吨 D .+3吨 03.(⼭西)北京与纽约的时差-13(负号表⽰同⼀时刻纽约时间⽐北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数正整数整数0负整数正分数分数负分数;其中分数包括有限⼩数和⽆限循环⼩数,因为π=3.1415926…是⽆限不循环⼩数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是⽆限循环⼩数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】02.(河北秦皇岛)请把下列各数填⼊图中适当位置 15,-1,2,-13,0.1.-5.32,123, 2.333【例3】(宁夏)有⼀列数为-1,12,-13,14.-15,16,…,找规律到第2017个数是 .【解法指导】从⼀系列的数中发现规律,⾸先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进⾏验证.解本题会有这样的规律:⑴各数的分⼦部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2017个数的分⼦也是1.分母是2017,并且是⼀个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第⼀个数是3=2 +1,第⼆个数是5=3 +2,第三个数是9=5+4,第四⼗数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了⼀种“馨折形”填数法,如图则?填____. 03.(茂名)有⼀组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2017年河北张家⼝)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和⼏何意义,代数意义只有符号不同的两个数叫互为相反数.⼏何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表⽰的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C .-5 D .-1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为⼀个正⽅体纸盒的展开图,若在其中的三个正⽅形A 、B 、C 内分别填⼈适当的数,使得它们折成正⽅体.若相对的⾯上的两个数互为相反数,则填⼈正⽅形A 、B 、C 内的三个数依次为( )A .- 1 ,2,0B . 0,-2,1C .-2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的⼤⼩顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b <b【解法指导】理解绝对值的⼏何意义:⼀个数的绝对值就是数轴上表⽰a 的点到原点的距离,即|a|,⽤式⼦表⽰=??-标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a≠b ,则|a|≠|b|;④若|a|≠|b|,则a≠b ,其中正确的个数为()A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c= .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运⽤,因为任何有理数a 的绝对值都是⾮负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.⽽两个⾮负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,⼜|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A .-4 B .-1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从⽽把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,⽽(m +n)2+|m|=m ∴ m≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ①⼜∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a≤x≤96,求y 的最⼤值. 演练巩固·反馈提⾼ 01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B .-6C . 16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若⼀个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表⽰互为相反数的两点之间距离是6,这两个数是( )06.若-a 不是负数,则a( )A .是正数B .不是负数C .是负数D .不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如图所⽰,则a 、b ,-a ,|b|的⼤⼩关系正确的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-a09.⼀个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____. 10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a+|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表⽰为1、a 、a +b 也可以表⽰成0、b 、ba的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有⾮负性,也有最⼩值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最⼩值,如果有,求出最⼩值;如果没有,说明理由.15.点A 、B 在数轴上分别表⽰实数a 、b ,A 、B 两点之间的距离表⽰为|AB|.当A 、B 两点中有⼀点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a -b| 当A 、B 两点都不在原点时有以下三种情况: ①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b -a =|a -b|;②如图3,点A 、B 都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a)=|a -b|;③如图4,点A 、B 在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b -(-a )=|a -b|;综上,数轴上A 、B 两点之间的距离|AB|=|a -b|.回答下列问题:⑴数轴上表⽰2和5的两点之间的距离是 , 数轴上表⽰-2和-5的两点之间的距离是 , 3 ,数轴上表⽰1和-3的两点之间的距离是 4 ;⑵数轴上表⽰x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 |x+1| ,如果|AB|=2,那么x = 1或3;⑶当代数式|x +1|+|x -2|取最⼩值时,相应的x 的取值范围是 7 .培优升级·奥赛检测 01.(重庆市竞赛题)在数轴上任取⼀条长度为201719的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 2017B . 2017C . 2017D . 2017 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所⽰,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( ) A . 4个 B . 3个 C . 2个 D . 1个03.如果a 、b 、c 是⾮零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为()A .-1D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( )A .-1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最⼩值( ) A . 30 B . 0 C . 15 D .⼀个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最⼩值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成⽴的x 取值范围 . 08.(武汉市选拔赛试题)⾮零整数m 、n 满⾜|m|+|n|-5=0所有这样的整数组(m ,n)共有组 09.若⾮零有理数m 、n 、p 满⾜|m|m +|n|n +|p|p =1.则2mnp |3mnp|= .11.已知(|x+l|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+l|)=36,求x+2y+3的最⼤值和最⼩值.12.电⼦跳蚤落在数轴上的某点k0,第⼀步从k0向左跳1个单位得k1,第⼆步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电⼦跳蚤落在数轴上的点k100新表⽰的数恰好19.94,试求k0所表⽰的数.13.某城镇,沿环形路上依次排列有五所⼩学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校⾥电脑数相同,允许⼀些⼩学向相邻⼩学调出电脑,问怎样调配才能使调出的电脑总台数最⼩?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·⽅法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运⽤有理数加法法则进⾏运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会⽤有理数减法解决⽣活中的实际问题.4.会把加减混合运算统⼀成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐⼭)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时⼜涨了0.3元,则股票A 这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,⾸先将具有相反意义的量确定⼀个为正,另⼀个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并⽤绝对值相加,是异号相加,取绝对值较⼤符号,并⽤较⼤绝对值减去较⼩绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元⽉份某⼀天的天⽓预报中,延安市最低⽓温为-6℃,西安市最低⽓温2℃,这⼀天延安市的最低⽓温⽐西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的⾼度为2400⽶,上升250⽶,⼜下降了327⽶,这是飞机的⾼度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔⾼度为-155 m,则它们的平均海拔⾼度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应⽤加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合⼀起;⑵相加得整数结合⼀起;⑶同分母的分数或容易通分的分数结合⼀起;⑷相同符号的数结合⼀起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-01.(-2.5)+(-312)+(-134)+(-114)13216411618141202.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算111112233420082009++++【解法指导】依111(1)1n n n n =-++进⾏裂项,然后邻项相消进⾏化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)2的长⽅形,接着把⾯积为12的长⽅形等分成两个⾯积为14的正⽅形,再把⾯积为14的正⽅形等分成两个⾯积为18的长⽅形,如此进⾏下去,试利⽤图形揭⽰的规律计算11111111248163264128256+++++++=__________.-a -b 0b a 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是() A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的⼤⼩,然后根据相反数的关系将它们在同⼀数轴上表⽰出来,即可得出结论. 解:∵a <0,b >0,∴a +b 是异号两数之和⼜a +b <0,∴a 、b 中负数的绝对值较⼤,∴| a |>| b |将a 、b 、-a 、-b 表⽰在同⼀数轴上,如图,则它们的⼤⼩关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试⽐较a 、b 、c 、a +b 、a +c 的⼤⼩【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利⽤有理数的加法法则进⾏运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下⾯⼀列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第⼏个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找⼀系列数的规律,应该从特殊到⼀般,找到前⾯⼏个数的规律,通过观察推理、猜想出第n 个数的规律,再⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分⼦与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴⽤关于n(n≥1的⾃然数)的等式表⽰这个规律;⑵当这个等式的右边等于2017时求n.【例7】(第⼗届希望杯竞赛试题)求12+(13+23)+(24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极⼤简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(50+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+3+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+49 50+4850+…+250+150)即2S=1+2+3+4+…+49=49(491) 2+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+210 02.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提⾼01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.⽐是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最⼤值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下⾯说法中正确的是()A.两数⼀定都是正数B.两数都不为0C.⾄少有⼀个为负数D.⾄少有⼀个为正数05.下列等式⼀定成⽴的是()A.|x|-x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=006.⼀天早晨的⽓温是-6℃,中午⼜上升了10℃,午间⼜下降了8℃,则午夜⽓温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx-值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.⽤含绝对值的式⼦表⽰下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修⼩组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收⼯时所⾛的路线(单位:千⽶)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收⼯时距离A地多远?⑵若每千⽶耗油0.2千克,问从A地出发到收⼯时共耗油多少千克?14.将2017减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国⼀样,也是世界著名的⽂明古国,古代埃及⼈处理分数与众不同,他们⼀般只使⽤分⼦为1的分数,例如13+115来表⽰25,⽤14+17+128表⽰37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于() A .14B .14-C .12D .12-02.⾃然数a 、b 、c 、d 满⾜21a +21b +21c +21d =1,则31a +41b +51c +61d 等于() A .18B .316C .732D .156403.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是() A .30 B .32 C .34 D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c ⼤⼩关系是()A .a <b <cB .b <c <aC .c <b <aD .a <c <b25632015201051216158412410982654321534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++的值得整数部分为()A .1B .2C .3D .406.(-2)2017+3×(-2)2017的值为() A .-22017 B .22017 C .-22017 D .2201707.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2017=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32017×72017×132017所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘⽅考点·⽅法·破译1.理解有理数的乘法法则以及运算律,能运⽤乘法法则准确地进⾏有理数的乘法运算,会利⽤运算律简化乘法运算.2.掌握倒数的概念,会运⽤倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进⾏有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进⾏有理数的混合运算. 5.理解有理数乘⽅的意义,掌握有理数乘⽅运算的符号法则,进⼀步掌握有理数的混合运算. 经典·考题·赏析【例1】计算⑴11()24?- ⑵1124? ⑶11()()24-?- ⑷25000? ⑸3713()()(1)()5697-?-??-【解法指导】掌握有理数乘法法则,正确运⽤法则,⼀是要体会并掌握乘法的符号规律,⼆是细⼼、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248?-=-?=-⑵11111() 24248?=?=⑶11111 ()()() 24248 -?-=+?=⑷250000=⑸3713371031 ()()(1)()() 569756973 -?-??-=-=-【变式题组】01.⑴(5)(6)-?-⑵11()124-?⑶(8)(3.76)(0.125)-??-⑷(3)(1)2(6)0(2)-?-??-??-⑸111112(2111)42612-?-+-02.24(9)5025-?3.1111(2345)()2345---04.111 (5)323(6)3333 -?+?+-?【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号D.a、b异号且负数的绝对值较⼤【解法指导】依有理数乘法法则,异号为负,故a、b异号,⼜依加法法则,异号相加取绝对值较⼤数的符号,可得出判断.解:由ab<0知a、b异号,⼜由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较⼤,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>003.(⼭东烟台)如果a +b <0,0b a >,则下列结论成⽴的是()A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >0 04.(⼴州)下列命题正确的是()A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进⾏有理数除法运算时,若不能整除,应⽤法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应⽤法则2,可直接确定符号,再把绝对值相除. 解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=?-=-⑶131255()()()()10251036-÷=-?=-⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷?⑵311()(3)(1)3524-?-÷-÷ ⑶530()35÷-?03.113()(10.2)(3)245÷-+-÷?-【例4】(茂名)若实数a 、b 满⾜0a ba b+=,则ab ab=___________.【解法指导】依绝对值意义进⾏分类讨论,得出a 、b 的取值范围,进⼀步代⼊结论得出结果. 2(0,0)2(0,0)a b a b a b a b >>?+=?-<当ab<0,a ba b+=,∴ab<0,从⽽abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数B.0 C.负数D.⾮负数02.若A.b都是⾮零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试⽐较xy-与xy的⼤⼩.【例5】已知223(2),1 x y=-=-⑴求2008xy的值;⑵求32008xy的值.【解法指导】n a表⽰n个a相乘,根据乘⽅的符号法则,如果a为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1 x y=-=-⑴当2,1x y==-时,200820082(1)2xy=-=当2,1x y=-=-时,20082008(2)(1)2xy=-?-=-⑵当2,1x y==-时,33 2008200828(1)xy==-当2,1x y=-=-时,33 20082008 (2)8(1)xy-==--【变式题组】01.(北京)若2(2)0m n m-+-=,则nm的值是___________.02.已知x、y互为倒数,且绝对值相等,求()n nx y--的值,这⾥n是正整数.【例6】(安徽)2017年我省为135万名农村中⼩学⽣免费提供教科书,减轻了农民的负担,135万⽤科学记数法表⽰为()【解法指导】将⼀个数表⽰为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学⽣参加中考,103000⽤科学记数法表⽰为() A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2017年到2012年新增林地⾯积253万亩,253万亩⽤科学记数法表⽰正确的是()A .25.3×105亩 B .2.53×106亩 C .253×104亩 D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k +++++-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k +++++-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50+++++-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++ -+-+-+=49222+1+++个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006A .31003B .31004C .1334D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求11111111 2581120411101640---+--++的值.演练巩固·反馈提⾼01.三个有理数相乘,积为负数,则负因数的个数为()A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数()A .互为相反数B .其中绝对值⼤的数是正数,另⼀个是负数C .都是负数D .其中绝对值⼤的数是负数,另⼀个是正数A.b<0,c>0 B.b>0,c<0 C.b<0,c<0 D.b>0,c>0 04.若|ab|=ab,则()A.ab>0 B.ab≥0 C.a<0,b<0 D.ab<005.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式a bm cdm+-+的值为()A.-3 B.1 C.±3 D.-3或106.若a>1a,则a的取值范围()A.a>1 B.0<a<1 C.a>-1 D.-1<a<0或a>107.已知a、b为有理数,给出下列条件:①a+b=0;②a-b=0;③ab<0;④1ab=-,其中能判断a、b互为相反数的个数是()A.1个B.2个C.3个D.4个08.若ab≠0,则a ba b+的取值不可能为()A.0 B.1 C.2 D.-209.1110(2)(2)-+-的值为()A.-2 B.(-2)21 C.0 D.-21010.(安徽)2010年⼀季度,全国城镇新增就业⼈数289万⼈,⽤科学记数法表⽰289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×10411.已知4个不相等的整数a、b、c、d,它们的积abcd=9,则a+b+c+d=___________.12.21221(1)(1)(1)n n n+--+-+-(n为⾃然数)=___________.13.如果2x yx y+=,试⽐较xy-与xy的⼤⼩.14.若a、b、c为有理数且1a b ca b c++=-,求abcabc的值.15.若a、b、c均为整数,且321a b c a-+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x、y、z两两不相等,则,,x y y z z xy z z x x y------中负数的个数是()。
七升八暑期衔接班数学讲义
2017年七升八暑期连接班数学培优讲义目录1.第一讲:与三角形相关的线段;2.第二讲:与三角形相关的角;3.第三讲:与三角形相关的角度乞降;4.第四讲:专题一:三角形题型训练 ( 一) ;5.第五讲:专题二:三角形题型训练 ( 二) ;6.第六讲:全等三角形;7.第七讲:全等三角形的判断(一) SAS;8.第八讲:全等三角形的判断(二) SSS,ASA,AAS;9.第九讲:全等三角形的判断(三) HL;10.第十讲:专题三:全等三角形题型训练;11.第十一讲:专题四:全等三角形知识点扩大训练;12.第十二讲:角均分线的性质定理及逆定理;13.第十三讲:轴对称;14.第十四讲:等腰三角形;15.第十五讲:等腰直角三角形;16.第十六讲:等边三角形(一);17.第十七讲:等边三角形(二) ;18.第十八讲:专题五:全等、等腰三角形综合运用(一)19.第十九讲:专题六:全等、等腰三角形综合运用(二)20.第二十讲:专题七:综合题题型专题训练;第一讲与三角形相关的线段【知识重点】一、三角形A 1.看法:①三条线段;②不在同向来线上;③首尾相连.2.几何表示:①极点;②内角、外角;③边;④三角形.B C3.三种重要线段及画法:①中线;②角均分线;③高线.二、三角形按边分类:(注意:等边三角形是特别的等腰三角形)三、三角形的三边关系( 教具 )引例:已知平面上有 A、 B、 C 三点 . 依据以下线段的长度判断 A、B、C 存在的地点状况:(1)若 AB=9, AC=4, BC=5,则 A、B、C 存在的地点状况是:(2)若 AB=3, AC=10, BC=7,则 A、 B、 C 存在的地点状况是:(3)若 AB=5, AC=4, BC=8,则 A、B、C 存在的地点状况是:(4)若 AB=3, AC=9, BC=10,则 A、 B、 C 存在的地点状况是:(5)若 AB=4, AC=6, BC=12,则 A、 B、 C 存在的地点状况是:总结:三角形的三边关系定理:三角形任意两边之和大于第三边.三角形的三边关系定理的推论:三角形任意两边之差小于第三边.【应用】利用定理判断三条线段可否构成三角形或确立三角形第三边的长度或范围 .1.已知 BC=a,AC=b,AB=c.(1)A、B、C三点在同一条直线上,则 a,b,c 知足:;(2)若构成△ ABC,则 a,b,c 知足:;2.已知 BC=a,AC=b,AB=c,且 a<b< c.( 1 ) A 、 B 、 C三点在同一条直线上,则 a , b , c满足:;( 2)若构成△ ABC,则 a,b, c 知足:;【新知讲解】例一、如图,在△ABC中 .①AD为△ ABC的中线,则线段==12②AE为△ ABC的角均分线,则==12③AF为△ ABC的高线,则==90°;④以 AD为边的三角形有⑤∠ AEC是的一个内角;是个外角 .G 例二、已知,如图,BD⊥AC, AE⊥ CG, AF⊥ AC,AG⊥ AB,A;B F ED C;;的一F则△ ABC的 BC边上的高线是线段().EBA D C(A)BD(B) AE(C) AF(D) AG例三、(1)以以下各组长度的线段为边,能.构成三角形的是 ().(A)7cm, 5cm, 12cm(B)6cm , 8cm, 15cm(C)4cm, 6cm, 5cm(D)8cm, 4cm, 3cm(2)知足以下条件的三条线段不可以构成三角形的是...( a、b、c均为正数)① a=5,b=9, c=7;中 1+a> b;④ a,b,c,此中②a∶ b∶ c=2∶3∶5;a+b> c;⑤ a+2,a+6, 5;③ 1, a, b,其⑥a<b< c,此中 a+b> c.例四、已知三角形的三边长分别为2,5,x,则x 的取值范围是.发散:①已知三角形的三边长分别为 2 , 5 , 2x-1 ,则x 的取值范围是.②已知三角形的三边长分别为2, 5,24x,则x的取值范围3是.③已知三角形三边长分别为个数为 ().2, x, 13,若x 为正整数,则这样的三角形(A)2(B)3(C)5(D)13④已知三角形的两边长分别为 2 , 5,则三角形周长l的取值范围是.⑤已知一个三角形中两边长分别为a、 b,且 a> b,那么这个三角形的周长 l 的取值范围是.(A)3b< l< 3a(B)2a< l< 2a+2b(C)a+2b< l< 2a+b(D)a+2b< l<3a-b例五、已知三角形的三边长分别为5, 11-x , 3x-1.(1)则x 的取值范围是;(2)则它的周长l 的取值范围是;(3)若它是一个等腰三角形,则x 的值是.发散:①已知三角形的三边长分别为是.2 ,, x-1,则的取值范围②已知三角形两边的长分别为3和7,则第三边a 的取值范围是;若它的周长是偶数,则知足条件的三角形共有个;若它是一个等腰三角形,则它的周长为.③已知等腰三角形腰长为 2 ,则三角形底边a的取值范围是;周长l 的取值范围是.④已知三角形三边的长范围是.个 .a、b、c 是三个连续正整数,则它的周长l 的取值若它的周长小于19,则知足条件的三角形共有⑤若a、 b、 c是△ ABC 的三边长,化简| a b c | +|a b c |的结果为( ).(A)2b(B)0(C)2a(D)2a 2c⑥已知在△ ABC 中, AB=7, BC∶ AC=4∶ 3,则△ ABC 的周长l的取值范围为.【题型训练】1.以以下各组线段为边,能构成三角形的是().(A)2cm,3cm,5cm (B)5cm ,6cm,10cm (C)1cm ,1cm,3cm (D)3cm ,4cm,9cm2.各组线段的比分别为①1∶3∶4;②1∶2∶ 3;③1∶4∶6;④3∶ 4∶5;⑤3∶3∶ 6. 此中能构成三角形的有().(A)1组(B)2组(C)3组(D)4组3.三角形的以下线段中能将三角形的面积分红相等两部分的是()(A) 中线(B)角均分线(C)高线(D)角均分线或中线4.已知三角形的三边长分别为6,7, x,则 x 的取值范围是 ().(A)2 < x < 12(B)1<x<13(C)6<x<7 (D)1 < x< 75.已知三角形的两边长分别为 3 和 5,则周长l的取值范围是 ().( A)6<l<15(B)6<l<16(C)11<l<13(D)10<l<166.已知等腰三角形的两边长分别为 5 和 11,则周长是 ().(A)21(B)27(C)32(D)21或27 7.等腰三角形的底边长为8,则腰长 a 的范围为.8.等腰三角形的腰长为8,则底边长 a 的范围为.9.等腰三角形的周长为8,则腰长 a 的范围为;底边长 b 的范围为.10.三角形的两边长分别为6,8,则周长l的范围为.11.三角形的两边长分别为6,8,则最长边 a 的范围为.12.等腰三角形的周长为 14,一边长为3,则另两边长分别为.13.若 a、 b、 c 分别为△ ABC 的三边长,则| a+b-c | - | b-c-a| +| c-b-a |=.14.已知在 ABC中, AB=AC,它的周长为 16 厘米, AC 边上的中线 BD把 ABC 分红周长之差为 4 厘米的两个三角形,求ABC各边的长 . A15.等腰三角形一腰的中线(如图,等腰△ ABC中, AB=AC,BD为△ ABC的中线)把它的周长分为 15 厘米和 6 厘米两部分,求该三角形各边长.A D综合研究、三角形两条内、外角均分线的夹角与第三个内角之间的关系DB CB C1.如图,△ ABC中,∠ ABC、∠ ACB的均分线交于点I ,研究∠ I 与∠ A 的关系;2.如图,在△ ABC中,∠ ABC、∠ ACB的外角∠ ACD的均分线交于点I ,研究∠ I 与∠ A 的关系;3.如图,在△ ABC中,∠ ABC的外角∠ CBD、∠ ACB的外角∠ BCE的均分线A 交于点 I ,研究∠ I 与∠ A 的关系 .B C例三、“箭形”、“蝶形”、“四边形”两条内、外角均分线的夹角与另两个内角之D E间的关系I发散研究一:如图,∠ ABD、∠ ACD的均分线交于点I ,研究∠ I与∠A、∠D之A A I A间的数目关系 .DII发散研究二:如图,∠ ABD的均分线与∠ ACD的邻补角∠ ACE的均分线所在的直D B A CB B ACD IA C DIEB发散研究三:如图,∠ ABD的邻补角∠ DBE均分线与∠ ACD的邻补角∠ DCF的平B DC A C B CA E AI E D分线交于点 I ,研究∠ I 与∠ A、∠ D 之间的数目关系 .DD BC 第二讲与三角形相关的角B C B DE【知识重点】E C FE FI F AI一、三角形按角分类 : ①锐角三角形;②直角三角形;③钝角三角形;I二、三角形的内角和定理:三角形内角和为180°(∠ A+∠B+∠1=180°);12三、三角形的内角和定理的推论:B C①直角三角形两锐角互余;②三角形的任意一个外角等于和它不相邻的两个内角之和(∠ 2=∠ A+∠ B );③三角形的任意一个外角大于任意一个和它不相邻的内角;四、 n 边形的内角和定理: ( n-2 )× 180°;五、 n 边形的外角和为 360° .【新知讲解 】例一、①正方形的每个内角的度数为;正五边形的每个内角的度数为;正六边形的每个内角的度数为;正八边形的每个内角的度数为;正十边形的每个内角的度数为;正十二边形的每个内角的度数为.②若一个正多边形的内角和等于等于外角和的5 倍,则它的边数是.③ 若一个正多边形的每一个内角都等于 144°,则它的边数是.④若一个正多边形的每一个内角都等于相邻外角的2 倍°,则它的边数是.例二、如图,△ ABC 中,∠ A=50°,两条高线 BD 、CE 所在直线交于点 H ,求∠ BHC 的度数 . A AE例三、如图,△ ABC 中,∠ A=50°,两条角均分线 BD 、CE 交于点 I ,求∠ BIC 的 度数 .EADBCH例四、如图,四边形EDABCD 中,∠ A=∠ C ,∠ B=∠D ,求证: AB ∥ CD ,AD ∥BC.AI D DBCHC例五、如图, AB ∥ CD , AD ∥ BC ,AE ⊥ BC , AF ⊥CD ,求证:∠ B AD+∠ EAF=180°.BC例六、如图,六边形ABCDEF 中, AF ∥ CD ,∠ A=∠D ,∠ B=∠E ,求证: BC ∥ EF.例七、如图,在凸六边形 ABCDEF 中,∠ A+∠ B+∠ F=∠ C+∠D+∠E ,求证: BC ∥DEF.ECFA B【题型训练】1.如图,△ ABC 中, BD、 CE 为两条角均分线,若∠BDC=90°,∠ BEC=105°,求∠ A.2.如图,△ ABC中, BD、CE为两条角均分线,若∠BDC=∠ AEC,求∠ A 的度数 .3.如图,在△ ABC中, BD为内角均分线, CE为外角均分线,若∠BDC=125°,E ∠E=40°,求∠ BAC的度数 .AD4.如图,在△ ABC中, BD为内角均分线, CE为外角均分线,若∠BDC与∠ E 互补,求∠ BAC的度数 .B EC MAD第二讲作业B C M1.假如一个三角形三个内角的度数之比为2∶ 3∶ 7,这个三角形必定是 ().(A) 等腰三角形(B) 直角三角形(C) 锐角三角形(D) 钝角三角形2.以下图,∠ A、∠ 1、∠2 的大小关系是 ().(A) ∠A>∠ 1>∠ 2(B) ∠2>∠ 1>∠A(C) ∠A>∠ 2>∠ 1(D) ∠2>∠ A>∠13.下边四个图形中,能判断∠1>∠ 2 的是 ().(A)(B)(C)(D)4.将一副三角板按以下图摆放,图中∠α的度数是().A.75°B.90°C.105°D.120°5. 在活动课上,小聪将一副三角板按图中方式叠放,则∠=().(A) 30°(B) 45°(C)60°(D) 75°6.以下图,一个60°角的三角形纸片,剪去这个60°角后,获得一个四边形,则∠1+∠ 2 的度数为 ( ).(A)120 °(B)180 °(C)240 °(D)300 °7.如图,在△ ABC中,∠ C= 70o,沿图中虚线截去∠C,则∠ 1+∠ 2=( ).(A)360 o(B)250o(C)180o(D)140o8.如图,折纸活动中,小明制作了一张△ABC纸片,点D、 E 分别是边 AB、 AC上,将△ ABC沿着DE折叠, A 与 A′重合,若∠ A=75°,则∠ 1+∠2= ().(A) 150°(B)210°(C)105°(D)75°9.如图,在△ ABC 中,∠ B=67°,∠ C=33°, AD是△ ABC的角均分线,则∠ CAD 的度数为()(A)40°(B)45°(C)50°(D)55°10.已知 ABC的三个内角∠ A、∠ B、∠ C知足关系式∠B +∠C=3∠A,则此三角形( ).(A) 必定有一个内角为45(B)必定有一个内角为60(C) 必定是直角三角形(D)必定是钝角三角形11.将一副三角尺按如图方式搁置,则图中∠AOB的度数为 ().O B A(A) 75°(B) 95°(C) 105°(D)120°12.若一个正多边形的每一个内角都等于160°,则它是 ().(A) 正十六形(B)正十七形(C)正十八边形(D)正十九边形13.一个多边形的内角和比它的外角和的 2 倍还大 180°,这个多边形的边数为 ( ).(A)7(B)8(C)9(D)1014.已知:在△ ABC中,∠B 是∠A的2倍,∠C 比∠A大20°,则∠A 等于().(A)40 °(B)60°(C)80°(D)90°15.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是.16.如图,在△ ABC中, D、 E 分别是边 AB、 AC上的两点, BE、 CD订交于点 F,A ∠ A=62°,∠ ACD=40°,∠ ABE=20°,求∠ BFC的度数 .D E17.如图,已知直线DE分别交△ ABC的边 AB、AC于 D、E 两点,交F边 BC的延伸B C线于点 F,若∠B=67°,∠ ACB=74°,∠ AED=48°,求∠ BDF 的度数.第三讲:与三角形相关的角度乞降【知识重点】1.与三角形相关的四个基本图及其演变;2.星形图形的角度乞降.【新知讲解】例一、如图,直接写出∠ D 与∠ A、∠ B、∠ C之间的数目关系 .箭形:;蝶形:;四边形:.请给出“箭形”基本图结论的证明(你能想出几种不一样的方法):例二、三角形两条内、外角均分线的夹角与第三个内角之间的关系A 1.如图,△ ABC中,∠ ABC、∠ ACB的均分线交于点 I ,研究∠ I 与∠ A 的关系;I 2.如图,在△ ABC中,∠ ABC、∠ ACB的外角∠ ACD的均分线交于点A I ,研究∠ IB CI与∠ A 的关系;3.如图,在△ ABC中,∠ ABC的外角∠ CBD、∠ ACB的外角B∠ BCE的平C分线交D于A点 I ,研究∠ I 与∠ A的关系 .B C例三、“箭形”、“蝶形”、“四边形”两条内、外角均分线的夹角与D另两个内角之EI间的关系发散研究一:如图,∠ ABD、∠ ACD的均分线交于点I ,研究∠ I 与∠A、∠D之A A I A间的数目关系 .DII发散研究二:如图,∠ ABD的均分线与∠ ACD的邻补角∠ ACE的均分线所在的直D B A CB B ACD I线交于点 I ,研究∠ IC与∠ A、∠ D 之间的数目关系 .A I DEB发散研究三:如图,∠ ABD的邻补角∠ DBE均分线与∠ ACD的邻补角∠ DCF的平B DC B CC E A AA I E分线交于点 I ,研究∠ I D与∠ A、∠ D 之间的数目关系 .DD B例四、如图,在△ ABC中, BP、 BQ三均分∠ ABC, CP、 CQ三均分∠ ACB.CB BPC 的度数为DB(1)若∠A=60°,直接写出:∠E,∠ BQC的度数CC F为;EE FI FI I(2)连结 PQ并延伸交 BC于点 D,若∠ BQD=63°,∠ CQD=80°,求△ ABC三个内角的度数 .A例五、如图, BD、 CE交于点 M, OB均分∠ ABD,OC均分∠ ACE, OD均分∠ADB,OE均分∠ AEC,PQB D C求证:∠ BOE=∠ COD;A【题型训练】A O1.如图,求∠ A+∠ B+∠ C+∠ D+∠ E 的度数和 .E 2.如图,求∠ A+∠ B+∠ C+∠ D+∠ E+∠ F 的度数和 .D MB3.如图,已知∠ 1=60°,求∠ A+∠B+∠C+∠D+∠E+∠ F 的度数和 .发散研究:①如图,∠ A+∠ B+∠C+∠D+∠E= B ;E②如图,∠ A+∠ B+∠C+∠D+∠ E+∠F+∠ G=;③如图,∠ A+∠ B+∠C+∠D+∠ E+∠F=.④如图,∠ A+∠ B+∠C+∠ D+∠ E+∠F=.⑤如图,∠ A+∠ B+∠C+∠ D+∠ E+∠F+∠ G=;⑥如图,∠ A+∠ B+∠C+∠ D+∠ E+∠F+∠ G=;⑦如图, BC⊥EF,求∠ A+∠ B+∠ C+∠D+∠ E+∠ F 的度数 .第三讲作业DC C1.如图, B 岛在 A 岛的南偏西30°, A 岛在 C 岛的北偏西35°, B 岛在 C 岛的北偏西 78°,则从 B 岛看 A、 C两岛的视角∠ ABC的度数为 ().(A)65 °(B)72°(C)75°(D)78°2.如图, D、 E 分别是AB、AC上一点, BE、 CD订交于点F,∠ ACD=30°,∠ABE=20°,∠ BDC+∠ BEC=170°则∠ A 等于 ().(A)50 °(B)85°(C)70°(D)60°3.一副三角板,以下图叠放在一同,则图中∠的度数是().(A)75 °(B)60 °(C)65 °A(D)55 °DE4.如图,在△ ABC中,∠ BAC=36°,∠FC=72°, BD均分∠ ABC交 AC于点 D,AFB C∥BC,交 BD的延伸线于点 F,AE均分∠ CAF交 DF于 E 点. 我们定义:在一个三角形中,有一个角是 36°,其余两个角均为 72°的三角形和有一个角是108°,其余两个角均为36°的三角形均被称作“黄金三角形”,则这个图中黄金三角形共有 ().(A)8 个(B)7个(C)6个(D)5个5.如图,∠ A=35°,∠ B=∠ C=90°,则∠ D的度数是 ().(A)35 °(B)45°(C)55°(D)65°6.如图,已知∠ A+∠ BCD=140°,BO均分∠ ABC,DO均分∠ ADC,则∠ BOD=().(A)40 °(B)60°(C)70°(D)80°7.如图,一个直角三角形纸片,剪去直角后,获得了一个四边形,则∠1+∠2=.8.如图,在△ ABC中,∠ A=80°,点 D 为边 BC延伸线上的一点,∠ ACD=150°,则∠B=.9.将一副直角三角板如上图搁置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠ 1 的度数为.10.一副三角板叠在一同如图搁置,最小锐角的极点 D 恰巧放在等腰直角三角板的斜 AB 上,BC 与 DE 交于点 M .若∠ ADF=100°, ∠ BMD.11.如 ,在△ ABC 中,∠ B=47°,三角形的外角∠DAC 和∠ ACF 的均分 交于点 E , ∠ AEC=______.12.如 ,∠ ACD 是△ ABC 的外角,∠ ABC 的均分 与∠ ACD 的均分 交于点A 1,∠A 1BC 的均分 与∠A CD 的均分 交于点 A ,⋯,这样下去, ∠A BC 的均分 与∠An ﹣ 1CD 的均分 交于点 A n .12n ﹣1∠A=θ. ∠A =; A n =.113.已知:如1 ,在△ ABC 中,∠ ABC 、∠ ACB 的角均分 交于点O ,BOC901 A21 1 A ;如 2,在△中,∠、∠的两条三均分角 分1802ABCABCACB2交于点、 ,2 1,1 2;⋯⋯;O 1 BO 1 C180A BO 2 C180AO 23 333根 据以 上理解 ,当 n 等 分角,内 部有 n1 个交 点 ,你 以猜 想BO n 1 C =().AAAO 2On-121O(A)180AO 1O 2n nO 1(B)12BC BCBC180A 图1图2图3n n(C)n1 An 180n11(D)1180n 1 Ann14.在△ ABC 中,∠ C=∠ABC=2∠ A , BD 是 AC 上的高, BE 均分∠ ABC ,求∠ DBE 度数 .第 四 讲专题一:三角形题型训练(一)【知识重点 】平行 、三角形内角和的 合运用【新知讲解】例一、如图,在四边形 ABCD中,∠A=∠ C=90°,BE、DF分别均分∠ ABC、∠ ADC,D 请你判断 BE、 DF的地点关系并证明你的结论.EF例二、如图,在四边形ABCD中,∠ A=∠ C=90°,∠ ABC 的外角均分线与∠ADCAB C的均分线交于点E,请你判断 BE、 DE的地点关系并证明你的结论D.例三、如图,在四边形ABCD中,∠ A=∠ C=90°, BE、DF E分别均分∠ ABC、∠ADCAD 的外角,请你判断BE、 DF的地点关系并证明你的M结论B .CN例四、如图,∠ A=∠ C=90°,∠ ABC的均分线与∠ ADC的均分线交于点E,请你BCD F判断 BE、 DE的地点关系并证明你的结论.ME例五、如图,∠ A=∠C=90°, BE均分∠ ABC,DF均分∠ ADC的的外角,请M你判断BC BE、 DE的地点关系并证明你的结论.DEFA例六、如图,∠ A=∠ C=90°,∠ ABC的外角均分线与B∠ADC的外角均分线交于点CNE EE,请你判断BE、 DE的地点关系并证明你的结论.AD例七、如图,△ ABC中, P 为 BC边上任一点, PD∥ AB, PE∥AC.MC (1)若∠ A=60°,求∠ DPE的度数;BA(2)若 EM均分∠ BEP, DN均分∠ CDP,试判断 EM与 DN之间的地点关系,A写出你的结论并证明.DE例八、如图,△ ABC中,D、E、F 分别在三边上,∠ BDE=∠ BED,∠ CDF=∠ CFD.B P CNM(1)若∠ A=70°,求∠ EDF的度数;A (2) EM均分∠ BED,FN均分∠ CFD,若 EM∥FN,求∠ A 的度数 .EFA例九、如图,△ ABC中,D、E、F 分别在三边上,∠ DBE=∠ DEB,∠ DCF=∠ DFC.B M D N E C(1)若∠ A=70°,求∠ EDF的度数;F (2) EM均分∠ BED,FN均分∠ CFD,若 EM∥FN,求∠ A 的度数 .B MD N C【题型训练】1.如图 1、图 2 是由 10 把相同的折扇构成的“蝶恋花”和“梅花”,图中的折扇完整翻开且无重叠,则“梅花”图案中五角星的 5 个锐角的度数均为( ).(A) 36°(B) 42°(C) 45°(D)48°2.如图,在△ ABC中,∠ B=∠C,D 是 BC上一点, DE⊥BC交 AC于点 E,DF⊥ AB,垂足为 F,若∠ AED=160°,则∠ EDF等于 ().(A)50 °(B)60°(C)70°(D)80°3.如图,△ ABC中,∠B=∠C,∠ BAD=32°,∠ ADE=∠ AED,则∠ CDE=.4.已知△ ABC中,∠ ACB—∠ B=90°,∠ BAC 的均分线交BC于 E,∠ BAC的外角的均分线交BC的延伸线于 F,则△ AEF 的形状是.5.如图, AB∥ CD,∠ A=∠ C, AE⊥ DE,∠ D=130°,则∠ B 的度数为.6.如图:点D、 E、 F 为△ ABC三边上的点,则∠1 +∠2 +∠3+∠4 +∠5 +∠6 =.7.若一束光芒经过三块平面镜反射,反射的路线以下图,图中的字母表示相应的度数,若 c 60,∠ P=110°,则 d e 的值为,x的值.8.如图,在平行四边形ABCD中,∠ BAD的均分线交边BC于点 M,连结 MD,且MD恰巧均分∠AMC,若∠MDC=45°,则∠BAD=,∠ABC=.第四讲作业1. 如图,已知△ ABC的三个极点分别在直线a、b 上,且 a∥ b,若∠ 1=120°,∠ 2=80°,则∠ 3 的度数是 ().(A)40 °(B)60°(C)80°(D)120 °2.如图, BD∥ EF,AE与 BD交于点 C,若∠ ABC=30°,∠ BAC=75°,则∠ CEF的大小为 ().(A)60°(B)75°(C)90 °(D)105 °3.如图,已知 D、E 在△ ABC的边上, DE∥BC,∠B=60°,∠ AED=40°,则∠ A 的度数为 ().(A)100 °(B)90°(C)80 °(D)70 °4.已知,直线 l 1∥l2,将一块含 30°角的直角三角板以下图搁置,∠1=25°,则∠2等于 ( ).(A) 30°(B)35°(C)40°(D)45°5.如图,将三角尺的直角极点放在直线 a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为 ().(A) 50°(B)60°(C)70°(D)80°6.小明同学把一个含有45°角的直角三角板在以下图的两条平行线m, n 上,测得=120°,则的度数是().(A)45 °(B)55 °(C)65 °(D)75 °7.如图,在 Rt △ABC 中,∠ C=90°. D 为边 CA 延伸线上的一点, DE‖ AB,∠ADE=42°,则∠ B 的大小为 ( ).(A) 42 °(B) 45°(C) 48°(D)58°8.如图, B 处在 A 处的南偏西45°方向, C处在 A 处的南偏东15°方向, C 处在 B 处的北偏东80°方向,则∠ ACB 等于()(A)65 °(B)72°(C)75°(D)78°9.如图,已知AC∥ ED,∠ C=26°,∠ CBE=37°,则∠ BED的度数是 ().(A)63 °(B)83°(C)73°(D)53°10.如图,已知a∥b,小亮把三角板的直角极点放在直线 b 上.若∠ 1=40°,则∠2的度数为.11.如图,已知DE∥ BC,CD是∠ ACB的均分线,∠ B=70°,∠ A=60° .(1)求∠ EDC的度数;(2)求∠ BDC度数 .12.如图,∠ DAB+∠ D=180°, AC均分∠ DAB,且∠ CAD=25°,∠ B=95° .(1)求∠ DCA的度数;(2)求∠ FEA的度数 .13.如图, B 处在 A 处的南偏西 57°的方向, C 处在 A 处的南偏东15°方向, CA 处在B 处的北偏东82°方向,求∠C 的度数 . 北第五讲专题一:三角形题型训练(二)南C知识点:三角形三边的关系定理:两边之和大于第三边;两边之差小于第三边B三角形的内角和定理:三角形的内角和等于180°典型例题:1、已知ABC的周长为 10,且三边长为整数,求三边的长。
初一数学思维培训班讲义(八)
初一数学思维培训班讲义(八)周佩如主要内容:1、简单证明。
2、多边形的内角和与外角和。
3、用正多边形铺地。
目标:1、学会初步说理,训练说理能力。
2、能运用多边形的内角和与外角和公式解决一些计算问题。
3、理解正多边形能够铺满地面的道理。
知识点:1、三角形的内角和是 。
三角形的外角和是 。
2、多边形(n 边形)的内角和是 。
多边形的外角和是 。
3、用正多边形铺地的条件是:当围绕 点拼在一起的几个多边形的 角加在一起恰好组成 时,就能拼成一个平面图形。
4、用正多边形铺地的图形只有 、 、 三种。
5、正n 边形的每个内角都 ,每个内角度数为 。
例1、 如图,ooD A O ED BC 20,27,=∠=∠⊥于求:B ∠与ACB ∠分析:B ∠是ABC ∆的内角,在ABC ∆中,B ∠与ACB ∠都是所要求的角.而ACB ∠又是COD ∆的外角,根据“三角形的一个外角等于和它不相邻的两个内角的和”可求ACB ∠,从而根据三角形内角和定理可求B ∠ 。
本题也可从B ∠ 是BEO ∆的一个内角,而BEO ∠是AED ∆的外角入手解得。
解:ED BO ⊥90=∠∴DOC ACB ∠ 是COD ∆的外角1102090=+=∠+∠=∠∴D COD ACB在ABC ∆中,4311027180180=--=∠-∠-=∠ACB A B .注意:求三角形的角与角的数量关系时,一般可以把所求角看作某一三角形的一个内角进行分析,如果图中出现了外角,或所求角本身是另一个三角形的外角时,通常还要考虑三角形外角性质,这些结合起来,就容易使问题得到解决。
例2、 如图,BE 平分ABD ∠交CD 于F ,CE 平分ACD ∠交AB 于G ,AB 、CD 交于O 点,且46,48=∠=∠D A ,求E ∠的度数。
分析:由于所求E ∠与已知D A ∠∠,均不在同一个三角形中,但E A ∠∠,分别在AGC ∆与EGB ∆ 中,此两三角形有一组角是对顶角,则 (1),21∠+∠=∠+∠E A ,同理(2)34∠+∠=∠+∠E D ,而由角平分线定义可知42,31∠=∠∠=∠故(1)+(2)得:)3()2()4()1(∠+∠+∠+∠=∠+∠+∠+∠E E D A所以:E D A ∠=∠+∠2 )(21D AE ∠+∠=∠∴ 解:15∠+∠=∠A 25∠+∠=∠E 31∠+∠=∠+∠∴E A (1)同理34∠+∠=∠+∠E D (2)(1)+(2)得 32241∠+∠+∠=∠+∠+∠+∠E D AACD CE ABD BE ∠∠平分平分,,31,42∠=∠∠=∠∴E D A ∠=∠+∠∴247)4648(21)(21=+=∠+∠=∠∴D A E注意:上述说理解题的分析方式叫做恒等变形方法,根据图形写出几个包括求解一方的等式,然后依据等式性质进行恒等变换,从而求得题解。
(word完整版)初一数学培训班讲义
初一数学基础知识讲义第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A)A .-3aB . 2c -aC .2a -2bD . b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学思维培训班讲义(八)
周佩如
主要内容:1、简单证明。
2、多边形的内角和与外角和。
3、用正多边形铺地。
目标:1、学会初步说理,训练说理能力。
2、能运用多边形的内角和与外角和公式解决一些计算问题。
3、理解正多边形能够铺满地面的道理。
知识点:1、三角形的内角和是 。
三角形的外角和是 。
2、多边形(n 边形)的内角和是 。
多边形的外角和是 。
3、用正多边形铺地的条件是:当围绕 点拼在一起的几个多边形的 角加在一起恰好组
成 时,就能拼成一个平面图形。
4、用正多边形铺地的图形只有 、 、 三种。
5、正n 边形的每个内角都 ,每个内角度数为 。
例1、 如图,o o D A O ED BC 20,27,=∠=∠⊥于
求:B ∠与ACB ∠
分析:B ∠是ABC ∆的内角,在ABC ∆中,
B ∠与ACB ∠都是所要求的角.
而ACB ∠又是COD ∆的外角,根据“三角形的一个外角等于和它不相邻的两个内角的和”可求ACB ∠,从而根据三角形内角和定理可求B ∠ 。
本题也可从B ∠ 是BEO ∆的一个内角,而BEO ∠是AED ∆的外角入手解得。
解:ED BO ⊥ 90=∠∴DOC ACB ∠ 是COD ∆的外角
1102090=+=∠+∠=∠∴D COD ACB
在ABC ∆中, 4311027180180=--=∠-∠-=∠ACB A B .
注意:求三角形的角与角的数量关系时,一般可以把所求角看作某一三角形的一个内角进行分析,如果
图中出现了外角,或所求角本身是另一个三角形的外角时,通常还要考虑三角形外角性质,这些结合起来,就容易使问题得到解决。
例2、 如图,BE 平分ABD ∠交CD 于F ,CE 平分ACD ∠交AB 于G ,AB 、CD 交于O 点,且 46,48=∠=∠D A ,求E ∠的度数。
分析:由于所求E ∠与已知D A ∠∠,均不在同一个
三角形中,但E A ∠∠,分别在AGC ∆与EGB ∆
中,此两三角形有一组角是对顶角,则
(1),21∠+∠=∠+∠E A ,同理
(2)34∠+∠=∠+∠E D ,而由角平分线
定义可知42,31∠=∠∠=∠故(1)+(2)得:
)3()2()4()1(∠+∠+∠+∠=∠+∠+∠+∠E E D A 所以:E D A ∠=∠+∠2 )(2
1D A E ∠+∠=
∠∴ 解:15∠+∠=∠A 25∠+∠=∠E 31∠+∠=∠+∠∴E A (1) 同理 34∠+∠=∠+∠E D (2)
(1)+(2)得 32241∠+∠+∠=∠+∠+∠+∠E D A
ACD CE ABD BE ∠∠平分平分,
,31,42∠=∠∠=∠∴
E D A ∠=∠+∠∴2
47)4648(2
1)(21=+=∠+∠=∠∴D A E 注意:上述说理解题的分析方式叫做恒等变形方法,根据图形写出几个包括求解一方的等式,然后依据
等式性质进行恒等变换,从而求得题解。
例3、 已知ABC ∆,求C B A ∠+∠+∠的度数.
分析:由实践可知这三个角拼起来可得一个平角。
要从理论上推导这个结论,可以延长一边BC
得一个平角BCD ∠,然后以CA 为边,在
ABC ∆的外部画A ACE ∠=∠,再证明B ECD ∠=∠即可。
解:作BC 的延长线CD ,在 ABC ∆的外部,以CA 为一边,CE 为另一边画A ∠=∠1, 依据内错角
相等,两直线平行,所以得CE ∥AB ,再根据两直线平行,同位角相等,所以2∠=∠B 18021=∠+∠+∠ACB 180=∠+∠+∠∴ACB B A
说明:为了解题需要,在原来的图形上添画的线叫辅助线(一般画成虚线)。
例4、 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。
分析:由多边形的内角和、外角和公式可依题意列出有关等式,即可解之.
解:设多边形的边数为n ,因为它的内角和等于 180)2(⋅-n ,外角和等于
360.
故由题意得: 180)2(⋅-n = 3602⨯ 解得: 6=n
例5、 多边形的内角和除一个内角外是
2570,求这个多边形的边数,除外的这个内角度数 分析:可设除外的内角为α则α是小于 180的角,再由多边形内角和公式列出等式解之。
解:设多边形有一内角为α度,边数为n .
由题意得:α+=⨯-
2570180)2(n 18050141802570αα++=+=
n 130=∴α当时,15=n 答:此多边形为十五边形,除外的一个内角为
130
习题精练:
一、求解题.
1、 如图(1), 30,96,27=∠=∠=∠C CBE A ,求ADE ∠的度数.
2、 如图(2),已知O 是ABC ∆三条高的交点, 70=∠BAC ,求BOC ∠的度数.
3、 如图(3),已知 43,64,=∠=∠∠=∠=∠DEF FDE ACF CBE BAD 求ABC ∆各内角的度数.
4、 已知ABC ∆中,B ∠的平分线与C ∠的外角平分线交于P 点,则P ∠与A ∠关系如何?
5、 已知PB 、QD 分别是ODA OBC ∠∠,的平分线,说理:等式)21(21∠+∠=
∠BPD D
(1) (2) (3)
(4)
(5) 二、多边形的内角和与外角和
1、一个多边形的对角线的条数与边数相等,这个多边形的边数是 ( )
A. 7
B.6
C.5
D.4
2、一个凸多边形的外角和等于它的内角和的一半,那么这个多边形的边数为 ( )
A.4
B.5
C.6
D.7
3、一个正多边形的内角和是 720,这个多边形是 ( )
A.正方形
B.正五边形
C. 正六边形
D. 正八边形
4、若正n 边形的一个外角为 60,则n 的值等于 ( )
A.3
B.5
C.6
D.8
5、凸n 边形的n 个内角与某一外角的总和为
1350,则n 等于 ( )
A.6
B.7
C.8
D.9
6、已知一个多边形的外角和等于内角和,则这个多边形是 ( )
A.三角形
B.四边形
C. 正五边形
D. 六边形
7、从)3(>n n 边形的一个顶点引对角线,把n 边形分成三角形的个数是 ( )
A.1-n
B.2-n
C.3-n
D.4-n
8、若多边形的边数由3增加到n n (为正整数,且大于3),则其外角和的度数为 ( )
A.增加
B.减少
C.不变
D.不确定
9、如果把一个多边形的边数增加一倍,它的内角和是 2520,那么原来多边形的边数为( )
A.6
B.7
C.8
D.9
10、如果一个多边形中有三个内角相等,其余各角的外角都等于 30,则这个多边形的边数不可能是
( )
A.4
B.6
C.15
D.10
11、一个多边形除一个内角外,其余各内角和为 2570,其外角和的度数为 ( )
A. 90
B. 105
C. 120
D. 130
12、下列命题中,正确的有:
① 七边形有14条对角线;
② 外角和大于内角和的只有三角形;
③ 若一个多边形的内角和与外角和是4:1,则它是九边形
A.0个
B. 1个
C. 2个
D. 3个
13、若正多边形的一个外角等于 45,那么这个正多边形的内角和等于 度.
14、一个多边形的每个内角都等于 150,则它的边数等于 .
15、一个n 边形的内角和是 1080,则=n .
16、多边形边数增加1条时,其内角和增加 度.
17、已知一个多边形的内角和是外角和的2倍,此多边形的边数 .
18、在四边形ABCD 中,D C B D C B A ∠∠∠=∠∠∠=∠,,,3:2:1::,90 的度数分别为 , , .。