2021年江苏高考数学真题及答案

合集下载

2021年江苏省高考数学真题及参考答案

2021年江苏省高考数学真题及参考答案

2021年江苏省高考数学真题及参考答案一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}42<<x x A -=,{}5432,,,=B ,则B A ⋂=()A.{}2 B.{}3,2 C.{}4,3 D.{}4,3,22.已知i z -=2,则()=+i z z ()A.i26- B.i24- C.i26+ D.i24+3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22 C.4D.244.下列区间中,函数()⎪⎭⎫⎝⎛-=6sin 7πx x f 单调递增的区间是()A.⎪⎭⎫ ⎝⎛20π, B.⎪⎭⎫⎝⎛ππ,2 C.⎪⎭⎫ ⎝⎛23ππ, D.⎪⎭⎫⎝⎛ππ223,5.已知1F ,2F 是椭圆149:22=+y x C 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.66.若2tan -=θ,则()=++θθθθcos sin 2sin 1sin ()A.56-B.52-C.52 D.567.若过点()b a ,可以左曲线xe y =的两条切线,则()A.ae b< B.be a< C.bea <<0 D.aeb <<08.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部答对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据n x x x 21,,由这组数据得到新样本数据n y y y 21,,其中()n i c x y i i ,2,1=+=,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点()ααsin ,cos 1P ,()ββsin ,cos 2-P ,()()()βαβα++sin ,cos 3P ,()0,1A ,则()==C.213OP OP OP OA ⋅=⋅ D.321OP OP OP OA ⋅=⋅11.已知点P 在圆()()165522=-+-y x 上,点()04,A ,()20,B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,23=PB D.当PBA ∠最大时,23=PB 12.在正三棱柱111C B A ABC -中,11==AA AB ,点P 满足1BB BC PB μλ+=,其中[]1,0∈λ,[]1,0∈μ,则()A.当1=λ时,P AB 1∆的周长为定值B.当1=μ时,三棱锥BC A P 1-的体积为定值C.当21=λ时,有且仅有一个点P ,使得BP P A ⊥1D.当21=μ时,有且仅有一个点P ,使得B A 1⊥平面PAB 1三、填空题:本题共4小题,每小题5分,共20分。

2021年一般高等学校招生全国统一考试数学试题(江苏卷,含答案)(1)

2021年一般高等学校招生全国统一考试数学试题(江苏卷,含答案)(1)

2021年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl, 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合{2134}A =--,,,,{123}B =-,,,那么A B = .【答案】{13}-,2.已知复数2(52)z i =-(i 为虚数单位),那么z 的实部为 .【答案】213.右图是一个算法流程图,那么输出的n 的值是 . 【答案】54.从1236,,,这4个数中一次随机地取2个数,那么所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,那么ϕ的值是 . 【答案】6π6.设抽测的树木的底部周长均在区间[80130],上,其频率散布 直方图如下图,那么在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,假设21a =,8642a a a =+, 则6a 的值是 .【答案】48.设甲、乙两个圆柱的底面积别离为12S S ,,体积别离为12V V ,,假设它们的侧面积相等,且1294S S =,那么12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 .25510.已知函数2()1f x x mx =+-,假设对任意[1]x m m ∈+,,都有()0f x <成立,那么实数m 的取值范围是 . 【答案】20⎛⎫ ⎪⎝⎭ 11.在平面直角坐标系xOy 中,假设曲线2by ax x =+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,那么a b +的值是 . 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,那么AB AD ⋅的值是 . 【答案】2213.已知()f x 是概念在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.假设函数()y f x a =-在区间[34]-,上有10个零点(互不相同),那么实数a 的取值范围是 . 【答案】()102, 14.假设ABC ∆的内角知足sin 22sin A B C =,那么cos C 的最小值是 . 624-二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内作答, 解答时应写出文字说明、证明进程或演算步骤.15.(本小题总分值14 分)已知()2απ∈π,,5sin α=.(1)求()sin 4απ+的值; (2)求()cos 26α5π-的值.【答案】本小题要紧考查三角函数的大体关系式、两角和与差及二倍角的公式,考查运算求解能 力. 总分值14分.(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=()210sin sin cos cos sin sin )444210αααααπππ+=++=; (2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-= 16.(本小题总分值14 分)如图,在三棱锥P ABC -中,D E F ,,别离为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题要紧考查直线与直线、直线与平面和平面与平面的位置关系, 考查空间想象能力和推理论证能力.总分值14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥PA ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题总分值14 分)如图,在平面直角坐标系xOy 中,12F F ,别离是椭圆22221(0)y x a b a b +=>>的左、右核心,极点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC .(1)假设点C 的坐标为()4133,,且22BF =(2)假设1FCAB ⊥,求椭圆离心率e 的值. 【答案】本小题要紧考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 总分值14分.(1)∵()4133C ,,∴22161999a b +=∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y +=(2)设核心12(0)(0)()F c F c C x y -,,,,, ∵A C ,关于x 轴对称,∴()A x y -, ∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c ⋅=-+-,即20xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --,∵C 在椭圆上,∴()()222222222221a c bcbc b c a b --+=,化简得225c a =,∴55c a= 55 18.(本小题总分值16分)如图,为爱惜河上古桥OA ,计划建一座新桥BC ,同时设立一个圆形爱惜区.计划要求:新桥BC 与河岸AB 垂直;爱惜区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两头O 和A 到该圆上任意一点的距离均很多于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形爱惜区的面积最大?解:本小题要紧考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查成立数学模型及运用数学知识解决实际问题的能力.总分值16分. 解法一:如图,以O 为坐标原点,OC 所在直线为x 轴,成立平面直角坐标系xOy. 由条件知A(0, 60),C(170, 0),直线BC 的斜率k BC=-tan ∠BCO=-43. 又因为AB ⊥BC ,因此直线AB 的斜率k AB=34. 设点B 的坐标为(a,b),那么k BC=04,1703b a -=-- k AB=603,04b a -=- 解得a=80,b=120. 因此22(17080)(0120)150-+-=.因此新桥BC 的长是150 m.(2)设爱惜区的边界圆M 的半径为r m,OM=d m,(0≤d ≤60).由条件知,直线BC的方程为4(170)3y x=--,即436800x y+-=由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即|3680|680355d d r--==.因为O和A到圆M上任意一点的距离均很多于80 m,因此80(60)80r dr d-⎧⎨--⎩≥≥即68038056803(60)805dddd-⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d≤≤故当d=10时,68035dr-=最大,即圆面积最大.因此当OM = 10 m时,圆形爱惜区的面积最大.解法二:(1)如图,延长OA, CB交于点F.因为tan∠BCO=43.因此sin∠FCO=45,cos∠FCO=35.因为OA=60,OC=170,因此OF=OC tan∠FCO=680 3.CF=850cos3OCFCO=∠,从而5003AF OF OA=-=.因为OA⊥OC,因此cos∠AFB=sin∠FCO==4 5,又因为AB⊥BC,因此BF=AF cos∠AFB==4003,从而BC=CF-BF=150.因此新桥BC的长是150 m.(2)设爱惜区的边界圆M与BC的切点为D,连接MD,那么MD⊥BC,且MD是圆M的半径,并设MD=r m,OM=d m(0≤d≤60).因为OA⊥OC,因此sin∠CFO =cos∠FCO,故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--因此68035d r -=.因为O 和A 到圆M 上任意一点的距离均很多于80 m,因此80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d=10时,68035dr -=最大,即圆面积最大.因此当OM = 10 m 时,圆形爱惜区的面积最大.19.(本小题总分值16分)已知函数()e e x xf x -=+其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数;(2)假设关于x 的不等式()e 1xmf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围; (3)已知正数a 知足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题要紧考查初等函数的大体性质、导数的应用等基础知识,考查综合运用数学思想 方式分析与解决问题的能力.总分值16分.(1)x ∀∈R ,()e e ()x xf x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤ ∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立 令e (1)xt t =>,那么211t m t t --+≤对任意(1)t ∈+∞,恒成立 ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立∴13m -≤ (3)'()e e x xf x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增令3()(3)h x a x x =-+,'()3(1)h x ax x =-- ∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减 ∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2e a >+ ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,那么()e 1e 111'()1e 2e a m a a a a ---=-=>+, 当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 最多有两个零点,而(1)(e)0m m ==∴当e a >时,()0m a <,e 11e a a --<;当()11e e2e a +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=.20.(本小题总分值16分)设数列{}n a 的前n 项和为n S .假设对任意的正整数n ,总存在正整数m ,使得n m S a =,那么称{}n a 是“H 数列”.(1)假设数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.假设{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立.【答案】本小题要紧考查数列的概念、等差数列等基础知识,考查探讨能力及推理论证能力, 总分值16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列”(2)1(1)(1)22n n n n n S na d n d --=+=+对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-取2n =得1(1)d m d +=-,12m d =+ ∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+ 则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,那么(3)22n n m -=+当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,那么(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列”因此命题得证. 数学Ⅱ(附加题)21.【选做题】此题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.假设多做,那么按作答的前两小题评分.解答时应写出文字说明、证明进程或演算步骤. A.【选修4-1:几何证明选讲】(本小题总分值10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点证明:∠OCB=∠D.本小题要紧考查圆的大体性质,考查推理论证能力.总分值10分. 证明:因为B, C 是圆O 上的两点,因此OB=OC. 故∠OCB=∠B.又因为C, D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 因此∠B=∠D. 因此∠OCB=∠D.B.【选修4-2:矩阵与变换】(本小题总分值10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,假设A α=B α,求x y ,的值. 【答案】本小题要紧考查矩阵的乘法等基础知识,考查运算求解能力.总分值10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,C.【选修4-4:坐标系与参数方程】(本小题总分值10分) 在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=⎪⎨⎪=⎩,(t 为参数),直线l 与抛物线24y x=交于A B ,两点,求线段AB 的长. 【答案】本小题要紧考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.总分值10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=∴交点(12)A ,,(96)B -,,故||AB =D.【选修4-5:不等式选讲】(本小题总分值10分) 已知x>0, y>0,证明:(1+x+y2)( 1+x2+y)≥9xy.本小题要紧考查算术一几何平均不等式.考查推理论证能力.总分值10分.证明:因为x>0, y>0, 因此1+x+y2≥0>,1+x2+y ≥0>,因此(1+x+y2)( 1+x2+y)≥=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明进程或演算步骤. 22.(本小题总分值10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机掏出2个球,求掏出的2个球颜色相同的概率P ;(2)从盒中一次随机掏出4个球,其中红球、黄球、绿球的个数别离记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率散布和数学期望()E X . 22.【必做题】本小题要紧考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.总分值10分.(1)一次取2个球共有29C 36=种可能情形,2个球颜色相同共有222432C C C 10++=种可能情形∴掏出的2个球颜色相同的概率1053618P == (2)X 的所有可能取值为432,,,那么 ∴X 的概率散布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯= 23.(本小题总分值10分)已知函数0sin ()(0)x f x x x =>,记()n f x 为1()n f x -的导数,n *∈N . (1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n nnf f -πππ+成立.23.【必做题】此题要紧考查简单的复合函数的导数,考查探讨能力及运用数学归纳法的推理论证能力.总分值10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭ 于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭因此12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=-(2)证明:由已知,得0()sin ,xf x x =等式两边别离对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n=1时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++ (1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,因此1(1)()()k k k f x f x +++(1)sin[]2k x π+=+.因此当n=k+1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).因此1()()444n n nf f πππ-+(n ∈*N ).。

普通高等学校招生全国统一考试数学试题江苏卷,含解析

普通高等学校招生全国统一考试数学试题江苏卷,含解析

2021年普通高等学校招生全国统一考试数学试题〔江苏卷,含解析〕一、填空题:本大题共14个小题,每题5分,共70分.1.集合 A 1,2,3,B 2,4,5,那么集合A B中元素的个数为_______.【答案】5【解析】试题分析: A B {1,2,3} {2,4,5} {12,,3,4,5},5个元素考点:集合运算一组数据4,6,5,8,7,6,那么这组数据的平均数为________.【答案】6考点:平均数3.设复数z满足z234i〔i是虚数单位〕,那么z的模为_______.【答案】5【解析】试题分析:|z2||34i|5|z|25|z|5考点:复数的模根据如下图的伪代码,可知输出的结果S为________.S←1I←1While I 10S←S+2I←I+3End WhilePrint S〔第4题图〕【答案】7【解析】试题分析:第一次循环:S 3,I 4;第二次循环:S 5,I 7;第三次循环:S 7,I 10;结束循环,输出S7.考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.【答案】5.6考点:古典概型概率6.向量a=(2,1),b=(1,2),假设ma+nb=(9,8)(m,n R),m n的值为______.【答案】3【解析】试题分析:由题意得:2m n 9,m 2n8m 2,n 5,m n 3.考点:向量相等7.不等式2x2x4的解集为________.【答案】(1,2).【解析】试题分析:由题意得:221x2,解集为(1,2). xx考点:解指数不等式与一元二次不等式8.tan2,tan 1,那么tan的值为_______. 7【答案】3【解析】12tan()tan7试题分析:tan tan( 3.)tan()tan1127考点:两角差正切公式9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

江苏省2021年高考数学真题试卷(含详细解析)

江苏省2021年高考数学真题试卷(含详细解析)

江苏省2021年高考数学真题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把题卡上对应题目的答案标号涂黑。

如需改动,用皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单选题1.已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .12.若数组()2,1,3a =-和11,,2b x ⎛⎫=- ⎪⎝⎭满足2a b =-,则实数x 等于( )A .-3B .-2C .32- D .12-3.若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4B .2C .-2D .-44.逻辑表达式A B +等于( ) A .A B +B .A B ⋅C .A B ⋅D .A B ⋅5.已知()12nx -的展开式中2x 的系数为40,则n 等于( ) A .5B .6C .7D .86.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )A B C .2D 7.若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( )AB .2:1C .D .1:28.下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有( )A .14条B .12条C .9条D .7条9.若函数()()4sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,则它的一条对称轴是( )A .12x π=- B .0x = C .6x π=D .23x π=10.已知奇函数()f x 是定义在R 上的单调函数,若正实数a ,b 满足()()240f a f b +-=则121a b++的最小值是( ) A .23B .43C .2D .4二、填空题11.下图是一个程序框图,执行该程序框图,则输出的n 值是___________.12.已知等比数列{}n a 的公比为q ,且116a ,24a ,3a 成等差数列,则q 的值是___________.13.已知5cos 213πθ⎛⎫+= ⎪⎝⎭,且,22ππθ⎛⎫∈- ⎪⎝⎭,则()tan 9θπ-的值是_________.14.以抛物线214y x =的焦点为圆心,且与直线x ⎧=⎪⎨⎪(t 为参数)相切的圆的标准方程是____________.15.已知函数()()2212,642,40x x f x x x +-≤<-⎧⎪=⎨+-≤≤⎪⎩,若其图像上存在互异的三个点()11,x y ,()22,x y ,()33,x y ,使得312123y y yk x x x ===,则实数k 的取值范围是__________.三、解答题16.已知函数()()23log 2x f x a x a =-+的定义域是R .(1)求实数a 的取值范围;(2)解关于x 的不等式241421xx aa -->. 17.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上. (1) 求实数a 的值; (2) 求()()48f f -+的值; (3) 求函数()f x 的解析式.18.已知关于x 的二次函数()24f x ax bx a =-+.(1)若{}1,1,2,3a ∈-,{}0,1,2b ∈,求事件(){A f x =在[)1,+∞上是增函数}的概率; (2)若[]1,2a ∈,[]0,2b ∈,求事件B =“方程()0f x =没有实数根”的概率.19.已知向量()223sin ,cos a x x =-,()cos ,6b x =,设函数()f x a b =⋅.(1)求函数()f x 的最大值;(2)在锐角ABC 中,三个角A ,B ,C 所对的边分别为a ,b,c ,若()0,f B b ==3sin 2sin 0A C -=,求ABC 的面积.20.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,21.已知数列{}n a 满足12a =,且()*1321n n a a n n N +=+-∈.(1)求证:数列{}n a n +为等比数列; (2)求数列{}n a 的通项公式; (3)求数列{}n a 的前n 项和n S .22.某广告公司接到幸福社区制作疫情防控宣传标牌的任务,要制作文字标牌4个,绘画标牌5个,该公司现有两种规格的原料,甲种规格原料每张3m 2,可做文字标牌1个和绘画标牌2个;乙种规格原料每张2m 2,可做文字标牌2个和绘画标牌1个.问两种规格的原料各用多少张时,才能使总的用料面积最小?并求最小用料面积.23.已知椭圆()2222:10x y C a b a b +=>>(1)证明:3a b ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.参考答案1.B 【分析】根据集合N 和并集,分别讨论a 的值,再验证即可. 【详解】 因为{}1,2,3MN =,若110a a -=⇒=,经验证不满足题意;若121a a -=⇒=-,经验证满足题意. 所以1a =-. 故选:B. 2.C 【分析】数组的基本运算,由数组相等转化为对应项相等. 【详解】因为()2,1,3a =-,11,,2b x ⎛⎫=- ⎪⎝⎭,所以()22,1,2b x -=--.由2a b =-,得23x -=,32x =-.故选:C. 3.C 【分析】利用复数的运算性质,化简得出12z i =-. 【详解】若复数z 满足()1i 3i z +=-,则()()()()3i 1i 3i 12i 1i 1i 1i z ---===-++-, 所以z 的虚部等于2-. 故选:C. 4.D 【分析】从集合角度去理解逻辑表达式 【详解】如图,A B +类似于()C A B U ,则A B +类似于()()U U U C C A B A C B ⋃=⋂故选:D. 5.A 【分析】写出x 2项,进一步即可解出. 【详解】()()222221n C x n n x -=-,所以()21405n n n -=⇒=.故选:A. 6.D 【分析】写出渐近线,再利用斜率相等,进而得到离心率 【详解】双曲线的渐近线为by x a =±,易知b y x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D. 7.C 【分析】根据题意作图,由轴截面得出母线与底面圆半径的等量关系,再套公式求解. 【详解】 根据题意作图,设圆锥的底面圆半径为r ,高为h ,母线长为l . 若圆锥的轴截面为等腰直角三角形,则有2cos45r l ︒=,l =.该圆锥的底面积与侧面积比值为22r rl ππ故选:C. 8.B 【分析】根据分步乘法计算原理即可求解. 【详解】由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有32212⨯⨯=条路径. 故选:B 9.A 【分析】 由2T πω=,可得2ω=,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈,从而可得到本题答案. 【详解】 由题,得222T ππωπ===,所以()4sin 23f x x π⎛⎫=- ⎪⎝⎭,令2()32x k k Z πππ-=+∈,得51()122x k k Z ππ=+∈, 所以()f x 的对称轴为51()122x k k Z ππ=+∈, 当1k =-时,12x π=-,所以函数()f x 的一条对称轴为12x π=-.故选:A10.B 【分析】由奇函数()f x 是定义在R 上的单调函数,()()240f a f b +-=,可得24a b +=,即2(1)6a b ++=,所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭,化简后利用基本不等式可求得结果 【详解】解:因为()()240f a f b +-=,所以(2)(4)f a f b =--, 因为奇函数()f x 是定义在R 上的单调函数, 所以(2)(4)(4)f a f b f b =--=-, 所以24a b =-,即24a b +=, 所以226a b ++=,即2(1)6a b ++=, 所以12112[2(1)]161a b a b a b ⎛⎫+=+++ ⎪++⎝⎭14(1)2261b a a b +⎡⎤=+++⎢⎥+⎣⎦14(1)461b a a b +⎡⎤=++⎢⎥+⎣⎦1144(44)663⎡⎤≥=+=⎢⎥⎣⎦, 当且仅当4(1)1b a a b+=+,即1,32a b ==时取等号,所以121a b ++的最小值是43. 故选:B 11.2 【分析】程序框图中的循环结构,一般需重复计算,根据判断框中的条件,确定何时终止循环,输出结果. 【详解】初始值:0S =,1n =当1n =时,33111014228S S n ⎛⎫⎛⎫=+-=+-=< ⎪ ⎪⎝⎭⎝⎭,进入循环;当13122n =+=时,3311319428228S S n ⎛⎫⎛⎫=+-=+-=< ⎪ ⎪⎝⎭⎝⎭,进入循环;当31222n =+=时,331919242822S S n ⎛⎫⎛⎫=+-=+-=> ⎪ ⎪⎝⎭⎝⎭,终止循环,输出n 的值为2.故答案为:2. 12.4 【分析】根据三数成等差数列列等式,再将2a ,3a 用含1a 和q 的式子表示,代入等式求解. 【详解】因为{}n a 为等比数列,且公比为q , 所以21a a q =⋅,231a a q =⋅且10a ≠,0q ≠. 因为116a ,24a ,3a 成等差数列, 所以1321624a a a +=⨯,有21111624a a q a q +⋅=⨯⋅,28160q q -+=, 解得4q =. 故答案为:4. 13.512-【分析】先用诱导公式化简,再通过同角三角函数的基本关系求得. 【详解】55cos sin 21313πθθ⎛⎫+=⇒=- ⎪⎝⎭,因为,22ππθ⎛⎫∈- ⎪⎝⎭,所以,02πθ⎛⎫∈- ⎪⎝⎭,所以12cos 13θ=,所以sin θ5tan θcos θ12,所以()5tan 9tan 12θπθ-==-.故答案为:512-. 14.()2211x y +-= 【分析】将抛物线方程化为标准方程,直线参数方程化为普通方程,结合点到直线的距离公式求得圆的半径,进而得答案. 【详解】解:将抛物线方程化为标准方程得24y x =,所以焦点坐标为0,1,10y --=,所以点0,110y --=的距离为1d =,所以所求圆的方程为()2211x y +-=. 故答案为:()2211x y +-= 15.1,0【分析】先画出函数()f x 的图象,转化为函数y kx =与函数()f x 的图象有三个不同的交点,再画函数y kx =的图象,观察交点的个数,从而求得k 的取值范围.【详解】解:画出函数()f x 的图象如下图,由题意得函数图象上存在互异的三个点,且312123y y y k x x x ===, 则可看做函数y kx =与函数()f x 的图象有三个不同的交点, 由图知,当1k =-或0k =时,有且仅有两个交点,要使两个图象有三个不同的交点,则k 的取值范围为(1,0)-. 故答案为:(1,0)-. 16.(1)()0,1;(2)()2,6-. 【分析】(1)本题可根据对数函数的性质得出220x ax a -+>恒成立,然后通过∆<0即可得出结果; (2)本题首先可根据()0,1a ∈得出24142x x --<-,然后通过计算即可得出结果. 【详解】(1)因为函数()()23log 2x f x a x a =-+的定义域是R ,所以220x ax a -+>恒成立,则2440a a ∆=-<,解得01a <<,a 的取值范围为()0,1.(2)241421xx aa-->,即24142x x a a --->, 因为()0,1a ∈,所以24142x x --<-,即24120x x --<,解得26x -<<, 故不等式241421x x aa -->的解集为()2,6-. 17.(1) 12a =;(2) 29-;(3) 1212log ()20()log 20x x x f x x xx -+<⎧⎪=⎨->⎪⎩.【分析】(1) 求出直线所过定点,由定点在函数图象上,求出a 的值; (2) 利用偶函数的性质,求(8)f ,进而可求出(4)(8)f f -+的值; (3) 利用偶函数的性质求出0x >时,()f x 的表达式. 【详解】(1) 由直线l 过定点可得:(2)5m x y +=--,由2050x y +=⎧⎨--=⎩,解得25x y =-⎧⎨=-⎩,所以直线l 过定点()2,5A --.又因为0x <时,()log ()2a f x x x =-+, 所以(2)log 245a f -=-=-, 有log 21a =-,12a =. (2) 12(4)log 4810f -=-=-, 因为()f x 为偶函数,所以12(8)(8)log 81619f f =-=-=-, 所以(4)(8)29f f -+=-.(3) 由(1)知,当0x <时,12()log ()2f x x x =-+.当0x >时,0x -<,1122()log 2()log 2f x x x x x-=+⋅-=-,又()f x 为偶函数,所以12()()log 2f x f x x x =-=-,综上可知,1212log ()20()log 20x xx f x x x x -+<⎧⎪=⎨->⎪⎩.18.(1)512;(2)38.【分析】(1)根据题意有:0a >,且对称轴21bx a=,求出基本事件总数,再求出满足事件A 的事件数,然后利用古典概型概率公式求解;(2)方程240ax bx a -+=无实根,则[1a ∈,2],[0b ∈,2],且20a b ->,画出图形,由测度比是面积比得答案. 【详解】(1)根据题意有:0a >,且对称轴21bx a=. 基本事件总数为114312C C ⋅=,满足事件A 的事件数为(1,0),(2,0),(2,1),(3,0),(3,1)共有5个,P ∴(A )512=; (2)方程240ax bx a -+=无实根,则22(4)40a b a ≠⎧⎨--<⎩, ∴2240a a b ≠⎧⎨->⎩, 又[1a ∈,2],[0b ∈,2],20a b ∴->, 如图,∴11(1)1322()28P B +⨯==.19.(1)max ()3f x =;(2【分析】(1)结合平面向量的数量积运算、二倍角公式和辅助角公式,可得2()233f x x π⎛⎫=++ ⎪⎝⎭,进而可得()f x 的最大值;(2)由锐角ABC ,推出22333B πππ-<-<,再结合f (B )0=,求得3B π=,由正弦定理知32a c =,再利用余弦定理求出2a =,3c =,最后由三角形面积公式得解. 【详解】(1)因为()223sin ,cos a x x =-,()cos ,6b x =,所以函数()f x a b =⋅2cos 6cos 23cos 23x x x x x =-+=++2233x π⎛⎫=++ ⎪⎝⎭∴当2sin 213x π⎛⎫+= ⎪⎝⎭时,max ()3f x =(2)∵ABC 为锐角三角形,02B π∴<<.25233B πππ∴<+< 又()0f B =2si n 23B π⎛⎫∴+= ⎪⎝⎭24233B ππ∴+= 3B π∴= 3sin 2sin 032A C a c -=∴=2221cos 22a cb B ac +-==即222971432a a a +-= 2,3a c ∴==1232ABCS∴=⨯⨯=20.(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元. 【分析】(1)列出式子,通过基本不等式即可求得;(2)将式子化简后,通过二次函数的角度求得最大值. 【详解】 (1)2000245y x x x=+-,[60,110]x ∈2416≥= 当且仅当20005x x=时,即100x =取“=”,符合题意;∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =. 答:年产量为110吨时,最大利润为860万元. 21.(1)见解析;(2)3nn a n =-;(3)12332n n n +--- 【分析】 (1)计算得到113n n a n a n+++=+,得到答案.(2)1333n n n a n -+=⨯=,得到数列通项公式.(3)根据分组求和法计算得到答案. 【详解】(1)由1321n n a a n +=+-,得()113n n a n a n +++=+,∴113n n a n a n+++=+,又113a +=,∴{}n a n +是首项为3,公比为3的等比数列.(2)1333n nn a n -+=⨯=,∴3n n a n =-.(3)()1233312nn S n =+++-+++()1133132n n n ++-=--()11213333222n n n n n n +++----=-=. 【点睛】本题考查了等比数列的证明,分组求和法,意在考查学生对于数列公式方法的综合应用. 22.甲2块,乙1块,8 m 2. 【分析】设需要甲种原料x 张,乙种原料y 张,则所用原料的总面积32z x y =+,由题意列出关于x ,y 的不等式组,作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】设需要甲种原料x 张,乙种原料y 张, 则25240,0,x y x y x y x y N+⎧⎪+⎪⎨⎪⎪∈⎩,所用原料的总面积32z x y =+. 由约束条件作出可行域如图,联立2425x y x y +=⎧⎨+=⎩,解得2x =,1y =,即(2,1)A ,由32z x y =+,得322z y x =-+,由图可知,当直线322zy x =-+过A 时,z 取得最小值为32218⨯+⨯=.故需要甲种原料2张,乙种原料1张,才能使总的用料面积最小,为8 m 2. 23.(1)证明见解析;(2)0y -=;②2213x y +=.【分析】 (1)由ba=可证得结论成立; (2)①设点()11,P x y 、()22,Q x y ,利用点差法可求得直线l 的斜率,利用点斜式可得出所求直线的方程;②将直线l 的方程与椭圆C 的方程联立,列出韦达定理,由OP OQ ⊥可得出0OP OQ ⋅=,利用平面向量数量积的坐标运算可得出关于2b 的等式,可求出2b 的值,即可得出椭圆C 的方程. 【详解】(1)c e a====b a ∴=,因此,3a b ;(2)①由(1)知,椭圆C 的方程为222213x y bb+=,即22233x y b +=,当9,10⎛ ⎝⎭在椭圆C 的内部时,22293310b⎛⎛⎫+⋅< ⎪ ⎝⎭⎝⎭,可得b >设点()11,P x y 、()22,Q x y ,则121292102x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y y x x +=+ 由已知可得22211222223333x y b x y b ⎧+=⎨+=⎩,两式作差得()()()()1212121230x x xx y y y y+-++-=, 所以()12121212133y y x x x x y y -+⎛=-=-⨯= -+⎝ 所以,直线l 方程为910yx ⎛⎫-=- ⎪ ⎭⎝⎭,即y =所以,直线l0y -;②联立)222331x y by x ⎧+=⎪⎨=-⎪⎩,消去y 可得221018930x x b -+-=.()222184093120360b b ∆=--=->,由韦达定理可得1295x x +=,2129310b x x -=,又OP OQ ⊥,而()11,OP x y =,()22,OQ x y =,))()12121212121211433OP OQ x x y y x x x x x x x x ∴⋅=+=--=-++()22293271566055b b --+-===,解得21b =合乎题意,故2233a b ==, 因此,椭圆C 的方程为2213x y +=.。

江苏省新2021年高考数学试卷和答案解析(新课标Ⅰ)

江苏省新2021年高考数学试卷和答案解析(新课标Ⅰ)

2021年江苏省新高考数学试卷(新课标Ⅰ)1.设集合,,则()A. B.C. D.2.已知,则()A. B.C. D.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.4.下列区间中,函数单调递增的区间是()A. B.C. D.5.已知,是椭圆的两个焦点,点M 在C 上,则的最大值为()A.13B.12C.9D.66.若,则()A. B.C.D.7.若过点可以作曲线的两条切线,则()A. B. C. D.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O 为坐标原点,点,,,,则()A. B.C.D.11.已知点P 在圆上,点,,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当最小时,D.当最大时,12.在正三棱柱中,,点P 满足,其中,,则()A.当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点P,使得D.当时,有且仅有一个点P,使得平面13.已知函数是偶函数,则__________.14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且若,则C的准线方程为______.15.函数的最小值为__________.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推.则对折4次共可以得到不同规格图形的种数为__________;如果对折n次,那么__________17.已知数列满足,记,写出,,并求数列的通项公式;求的前20项和.18.某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为,能正确回答B类问题的概率为,且能正确回答问题的概率与回答次序无关.若小明先回答A类问题,记X为小明的累计得分,求X的分布列;为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记的内角A,B,C的对边分别为a,b,已知,点D在边AC上,证明:;若,求20.如图,在三棱锥中,平面平面BCD,,O为BD的中点.证明:;若是边长为1的等边三角形,点E在棱AD上,,且二面角的大小为,求三棱锥的体积.21.在平面直角坐标系xOy中,已知点,,点M满足记M的轨迹为求C的方程;设点T在直线上,过T的两条直线分别交C于A,B两点和P,Q两点,且,求直线AB的斜率与直线PQ的斜率之和.22.已知函数讨论的单调性;设a,b为两个不相等的正数,且,证明:答案和解析1.【答案】B 【解析】【分析】本题考查集合的交集运算,属于简单题.直接利用交集运算可得答案.【解答】解:,,故选:2.【答案】C 【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把代入,再由复数代数形式的乘除运算化简得答案.【解答】解:,故选:3.【答案】B 【解析】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为故选:设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力,属于基础题.4.【答案】A 【解析】【分析】本题考查正弦型函数单调性,是简单题.本题需要借助正弦函数单调增区间的相关知识点求解.【解答】解:令,则,当时,,,故选:5.【答案】C【解析】【分析】利用椭圆的定义,结合基本不等式,转化求解即可.本题考查椭圆的简单性质的应用,基本不等式的应用.【解答】解:,是椭圆C:的两个焦点,点M在C上,,所以,当且仅当时,取等号,所以的最大值为故选:6.【答案】C【解析】【分析】本题主要考查同角三角函数基本关系,三角函数式的求值等知识,属于基础题.由题意化简所给的三角函数式,然后利用齐次式的特征将其“弦化切”即可求得三角函数式的值.【解答】解:由题意可得:故选7.【答案】D【解析】解:函数是增函数,恒成立,函数的图象如图,,即取得坐标在x轴上方,如果在x轴下方,连线的斜率小于0,不成立.点在x轴或下方时,只有一条切线.如果在曲线上,只有一条切线;在曲线上侧,没有切线;由图象可知在图象的下方,并且在x轴上方时,有两条切线,可知故选:画出函数的图象,判断与函数的图象的位置关系,即可得到选项.本题考查曲线与方程的应用,函数的单调性以及切线的关系,考查数形结合思想,是中档题.8.【答案】B 【解析】【分析】本题考查相互独立事件的应用,要求能够列举出所有事件和发生事件的个数,属于中档题.分别列出甲、乙、丙、丁可能的情况,然后根据独立事件的定义判断即可.【解答】解:由题意可知,两次取出的球的数字之和是8的所有可能为:,,,,,两次取出的球的数字之和是7的所有可能为,,,,,,甲,乙,丙,丁,A:甲丙甲丙,B:甲丁甲丁,C:乙丙乙丙,D:丙丁丙丁,故选:9.【答案】CD 【解析】【分析】本题考查平均数、中位数、标准差、极差,是基础题.利用平均数、中位数、标准差、极差的定义直接判断即可.【解答】解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,设原样本数据的样本方差和标准差分别为,,新数据的样本方差和标准差分别为,,因为…,,,,即,两组样本数据的样本标准差相同,故C正确;对于D,…,,c为非零常数,原数据组的样本极差为,新数据组的样本极差为,两组样本数据的样本极差相同,故D正确.故选:10.【答案】AC【解析】【分析】本题考查平面向量数量积的性质及运算,考查同角三角函数基本关系式及两角和的三角函数,是中档题.由已知点的坐标分别求得对应向量的坐标,然后逐一验证四个选项得答案.【解答】解:,,,,,,,,,,则,,则,故A正确;,,不能恒成立,故B错误;,,,故C正确;,,不能恒成立,故D错误.故选:11.【答案】ACD【解析】【分析】求出过AB的直线方程,再求出圆心到直线AB的距离,得到圆上的点P到直线AB的距离范围,判断A与B;画出图形,由图可知,当过B的直线与圆相切时,满足最小或最大,求出圆心与B点间的距离,再由勾股定理求得判断C与本题考查直线与圆的位置关系,考查转化思想与数形结合思想,是中档题.【解答】解:,,过A、B的直线方程为,即,圆的圆心坐标为,圆心到直线的距离,点P到直线AB的距离的范围为,,,,点P到直线AB的距离小于10,但不一定大于2,故A正确,B错误;如图,当过B的直线与圆相切时,满足最小或最大点位于时最小,位于时最大,此时,,故CD正确.故选:12.【答案】BD【解析】【分析】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于拔高题.判断当时,点P在线段上,分别计算点P为两个特殊点时的周长,即可判断选项A;当时,点P在线段上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当时,取线段BC,的中点分别为M,,连结,则点P在线段上,分别取点P在,M处,得到均满足,即可判断选项C;当时,取的中点,的中点D,则点P在线的上,证明当点P在点处时,平面,利用过定点A与定直线垂直的平面有且只有一个,即可判断选项【解答】解:对于A,当时,,即,所以,故点P在线段上,此时的周长为,当点P为的中点时,的周长为,当点P在点处时,的周长为,故周长不为定值,故选项A错误;对于B,当时,,即,所以,故点P在线段上,因为平面,所以直线上的点到平面的距离相等,又的面积为定值,所以三棱锥的体积为定值,故选项B正确;对于C,当时,取线段BC,的中点分别为M,,连结,因为,即,所以,则点P在线段上,当点P在处时,,,又,所以平面,又平面,所以,即,同理,当点P在M处,,故选项C错误;对于D,当时,取的中点,的中点D,因为,即,所以,则点P在线的上,当点P在点处时,取AC的中点E,连结,BE,因为平面,又平面,所以,在正方形中,,又,BE,平面,故平面,又平面,所以,在正方体形中,,又,,平面,所以平面,因为过定点A与定直线垂直的平面有且只有一个,故有且仅有一个点P,使得平面,故选项D正确.故答案选:13.【答案】1【解析】【分析】本题考查函数的奇偶性,考查计算能力,属于基础题.根据题意,可得也为R上的奇函数,即可得解.【解答】解:函数是偶函数,为R上的奇函数,故也为R上的奇函数,所以时,,所以,经检验,满足题意,故答案为:14.【答案】【解析】解:由题意,不妨设P在第一象限,则,,所以,所以PQ的方程为:,时,,,所以,解得,所以抛物线的准线方程为:故答案为:求出点P的坐标,推出PQ方程,然后求解Q的坐标,利用,求解p,然后求解准线方程.本题考查抛物线的简单性质的应用及求抛物线的标准方程,考查转化思想以及计算能力,是中档题.15.【答案】1【解析】【分析】本题考查利用导数求最值的应用,考查运算求解能力,是中档题.求出函数定义域,对x分段去绝对值,当时,直接利用单调性求最值;当时,利用导数求最值,进一步得到的最小值.【解答】解:函数的定义域为,当时,,此时函数在上为减函数,所以;当时,,则,当时,,单调递减,当时,,单调递增,当时取得最小值,为,,函数的最小值为故答案为:16.【答案】5【解析】【分析】本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.依题意,对折4次共可以得到5种不同规格图形;对折k次共有种规格,且每个面积为,则,,然后再转化求解即可.【解答】解:易知有,,共5种规格;由题可知,对折k次共有种规格,且每个面积为,故,则,记,则,,,故答案为:5;17.【答案】解:因为,,所以,,,所以,,,所以数列是以为首项,以3为公差的等差数列,所以由可得,,则,,当时,也适合上式,所以,,所以数列的奇数项和偶数项分别为等差数列,则的前20项和为……【解析】本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.由数列的通项公式可求得,,从而可得求得,,由可得数列是等差数列,从而可求得数列的通项公式;由数列的通项公式可得数列的奇数项和偶数项分别为等差数列,求解即可.18.【答案】解:由已知可得,X 的所有可能取值为0,20,100,则,,所以X 的分布列为:X 020100P 由可知小明先回答A 类问题累计得分的期望为,若小明先回答B 类问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100,,,,则Y的期望为,因为,所以为使累计得分的期望最大,小明应选择先回答B类问题.【解析】本题主要考查离散型随机变量分布列及数学期望,考查运算求解能力,属于中档题.由已知可得,X的所有可能取值为0,20,100,分别求出对应的概率即可求解分布列;由可得,若小明先回答B类问题,记Y为小明的累计得分,Y的所有可能取值为0,80,100,分别求出对应的概率,从而可得,比较与的大小,即可得出结论.19.【答案】解:证明:由正弦定理知,,,,,,即,;由知,,,,在中,由余弦定理知,,在中,由余弦定理知,,,,即,得,,,或,在中,由余弦定理知,,当时,舍;当时,;综上所述,【解析】本题主要考查正弦定理和余弦定理,难度不大.利用正弦定理求解;要能找到隐含条件:和互补,从而列出等式关系求解.20.【答案】解:证明:因为,O为BD的中点,所以,又平面平面BCD,平面平面,平面ABD,所以平面BCD,又平面BCD,所以;方法一:取OD的中点F,因为为正三角形,所以,过O作与BC交于点M,则,所以OM,OD,OA两两垂直,以点O为坐标原点,分别以OM,OD,OA所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,则,,,设,则,因为平面BCD,故平面BCD的一个法向量为,设平面BCE的法向量为,又,所以由,得,令,则,,故,因为二面角的大小为,所以,解得,所以,又,所以,故方法二:过E作,交BD于点F,过F作于点G,连结EG,由题意可知,,又平面BCD所以平面BCD,又平面BCD,所以,又,,FG、平面EFG,所以平面EFG,又平面EFG,所以,则为二面角的平面角,即,又,所以,则,故,所以,因为,则,所以,则,所以,则,所以【解析】本题考查了面面垂直和线面垂直的性质,在求解有关空间角问题的时候,一般要建立合适的空间直角坐标系,将空间角问题转化为空间向量问题,属于中档题.利用等腰三角形中线就是高,得到,然后利用面面垂直的性质,得到平面BCD,再利用线面垂直的性质,即可证明;方法一:建立合适的空间直角坐标系,设,利用待定系数法求出平面的法向量,由向量的夹角公式求出t的值,然后利用锥体的体积公式求解即可.方法二:过E作,交BD于点F,过F作于点G,连结EG,求出,,然后利用锥体的体积公式求解即可.21.【答案】解:由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为,根据题意,解得,的方程为;设,设直线AB的方程为,,,由,得,整理得,,,,设,同理可得,由,得,,,,,【解析】的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程;设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得,同理求得,再根据,即可得出答案.本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.22.【答案】解:由函数的解析式可得,,,单调递增,,,单调递减,则在单调递增,在单调递减.证明:由,得,即,由在单调递增,在单调递减,所以,且,令,,则,为的两根,其中不妨令,,则,先证,即证,即证,令,则在单调递减,所以,故函数在单调递增,,,得证.同理,要证,即证,根据中单调性,即证,令,,则,令,,,单调递增,,,单调递减,又,,且,故,,,恒成立,得证,则【解析】本题主要考查利用导数研究函数的单调性,利用导数研究极值点偏移问题,等价转化的数学思想,同构的数学思想等知识,属于难题.首先求得导函数的解析式,然后结合导函数的符号即可确定函数的单调性,利用同构关系将原问题转化为极值点偏移的问题,构造对称差函数分别证明左右两侧的不等式即可.。

(2021)高考数学真题试卷(江苏卷)带答案解析

(2021)高考数学真题试卷(江苏卷)带答案解析

2021年高考数学真题试卷(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。

2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.【答案】2【考点】复数代数形式的乘除运算【解析】【解答】设z=(a+2i)×(1+i),∵复数z的实部为0,又∵z=(a−2)+(a+2)i,∴a−2=0,∴a=2【分析】利用复数的乘法运算法则求出复数z,从而求出复数z的实部和虚部,再结合复数z的实部为0的已知条件求出a的值。

3.下图是一个算法流程图,则输出的S的值是________.【答案】5【考点】程序框图【解析】【解答】第一步:x=1,S=0,S=S+x2=0+12=12,1≥4不成立;第二步:x=x+1=1+1=2,S=S+x2=12+22=32,2≥4不成立;第三步:x=x+1=2+1=3,S=S+x2=32+32=62=3,3≥4不成立;第四步:x=x+1=3+1=4,S=S+x2=3+42=5,4≥4成立;∴输出的S=5【分析】根据题中的已知条件结合程序框图的顺序结构、条件结构和循环结构求出输出的S的值。

4.函数y=√7+6x−x2的定义域是________.【答案】[−1,7]【考点】函数的定义域及其求法【解析】【解答】∵函数y=√7+6x−x2,∴要使函数有意义,则7+6x−x2≥0,∴x2−6x−7≤0,∴(x+1)(x−7)≤0,∴−1≤x≤7,∴函数的定义域为[-1,7]【分析】利用根式函数求定义域的方法结合一元二次不等式求解集的方法求出函数的定义域。

2021年高考数学真题试卷(江苏卷)带答案解析

2021年高考数学真题试卷(江苏卷)带答案解析

2021年高考数学真题试卷(江苏卷)一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。

1.已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=________.2.复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是________.3.在平面直角坐标系xOy中,双曲线x27−y23=1的焦距是________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________5.函数y= √3−2x−x2的定义域是________.6.如图是一个算法的流程图,则输出的a的值是________.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.8.已知{a n}是等差数列,S n是其前n项和.若a1+a22= - 3,S5=10,则a9的值是________.9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点个数是________.10.如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90° ,则该椭圆的离心率是________.11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上, f(x)={x +a,−1≤x <0|25−x|,0≤x <1 其中a ∈R 若f(−52)=f(92) ,则f (5a )的值是________.12.已知实数x , y 满足 {x −2y +4≥02x +y −2≥03x −y −3≤0 ,则x 2+y 2的取值范围是________.13.如图,在△ABC 中,D 是BC 的中点,E , F 是AD 上的两个三等分点, BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =4, BF ⃗⃗⃗⃗⃗ ⋅CF ⃗⃗⃗⃗⃗ =﹣1,则 BE⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ 的值是________.14.在锐角三角形ABC 中,若sinA=2sinBsinC ,则tanAtanBtanC 的最小值是________.二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.在△ABC 中,AC =6, cosB =45 , C =π4(1)求AB 的长;(2)求cos (A ﹣ π6)的值.16.如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC=OA,求直线l 的方程;(3)设点T (t,0)满足:存在圆M 上的两点P 和Q,使得 TA ⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ ,求实数t 的取值范围。

2021年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2021年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2021年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上1.已知集合{}=1,2A ,{}2,3B a a =+ ,若A B ={1}则实数a 的值为________.【答案】1【解析】1a =或者231a +=(取不到1),所以1a =.【点评】今年的第一题属基础题,但难度较之前有提高,考察学生利用集合运算求参数的能力.2.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________. 【答案】10【解析】13z i =-+,()221310z =-+=.【点评】第二题考察复数计算和模的计算,难度属于基础题,与往年难度基本持平. 3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 【答案】18【解析】总产量为1000件,所以应从丙种型号的产品中抽取30060181000⨯=件. 【点评】本题考察分层抽样,难度基础. 4.右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 . 【答案】2- 【解析】经判断1116<,()2212log 2log 24216y x =+=+=+-=-. 【点评】本题考查判断型的流程图和对数计算,属于基础题. 5.若tan 1-=46πα⎛⎫⎪⎝⎭,则tan α= . 【答案】75 【解析】tan 11tan 41tan 6πααα-⎛⎫-== ⎪+⎝⎭,解得7tan 5α=.【点评】本题考察恒等变换,属于基础题.6.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下面及母线均相切。

记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是 . 【答案】32【解析】设球的半径为r ,圆柱的体积23122V r r r ππ==,球的体积3243r V π=,所以1232V V =.【点评】本题考察圆柱内接球的体积计算,属于基础题.7.记函数2()6f x x x =+- 的定义域为D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 . 【答案】59【解析】函数定义域D 为260x x +-≥,解得23x -≤≤,区间长度为5,区间[]4,5-长度为9,在区间[-4,5]上随机取一个数x , x ∈D 的概率为59P =. 【点评】本题考察几何概型,难度中等.8.在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是 . 【答案】23【解析】四边形F 1 P F 2 Q 中,PQ ⊥12F F ,渐近线方程为33y x =±,右准线为232a x c ==,当32x =时,32y =±,所以3PQ =,1224F F c ==,四边形F 1 P F 2 Q 的面积为134232S =⨯⨯=.【点评】本题考察双曲线的准线和渐近线方程,以及对角线互相垂直的四边形的面积的计算,学生可能在面积时易出错.9.等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==, 则8a = . 【答案】32【解析】因为()3456123a a a a a a q ++=++,所以36338S S q S -==,所以2q =,那么3111172474S a a a a =++==,114a =,778112324a a q ==⨯=. 【点评】本题考察等比数列的基本计算,难度中等,学生要善于发现相邻的三项之间的比值为3q ,是简化计算的关键.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 【答案】 30【解析】设费用为y600436006442436004y x x x x ⨯=⨯+=+≥⨯ 当4360044x x ⨯=时等号成立,解得x =30.【点评】本题考查基本不等式取等条件,较为简单. 11.已知函数()312+x xf x x x e e =--,其中e 是自然数对数的底数,若()()2120f a f a -+≤,则实数a 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年江苏高考数学真题及答案本试卷共4页,22小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用 28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=A.{2}B.{2,3}C.{3,4,}D.{2,3,4} 2.已知z=2-i,则(=A.6-2iB.4-2iC.6+2iD.4+2i3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为A.2B.2C.4D.44.下列区间中,函数f(x)=7sin()单调递增的区间是A.(0,)B.( ,)C.(,)D.(,)5.已知F1,F2是椭圆C :的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为A.13B.12C.9D.6第 1 页共 11 页6.若tan=-2,则 =A.B.C.D.7.若过点(a,b)可以作曲线y=e x的两条切线,则A. e b<aB. e a<bC. 0<a<e bD. 0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同10.已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β)),A(1,0),则第 2 页共 11 页A.|=B.=C.=D.11.已知点P 在圆+ =16上,点A(4,0),B(0,2),则A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3D.当∠PBA最大时,|PB|=312.在正三棱柱ABC-中,AB=A,点P 满足,其中λ∈[0,1],∈[0,1],则A.当λ=1时,△P的周长为定值B. 当=1时,三棱锥P-C. 当λ=时,有且仅有一个点P ,使得D.当=时,有且仅有一个点P ,使得B⊥平面A P三.选择题:本题共4小题,每小题5分,共20分13.已知函数f(x)=是偶函数,则a=____________14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为____15. 函数f(x) =|2x-l|-2lnx的最小值为16. 某校学生在研究民间剪纸艺术时,发现此纸时经常会沿纸的某条对称轴把纸对折.规格为20dmXl2dm的长方形纸.对折1次共可以得到10dmX2dm . 20dmX6dm 两种规格的图形,它们的面积之和=240 dm2,第 3 页共 11 页对折2次共可以得5dmX12dm ,10dmX6dm,20dmX3dm三种规格的图形,它们的面积之和180dm2.以此类推.则对折4次共可以得到不同规格图形的种数为______:如果对折n 次,那么=______dm2四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。

17.(10分)已知数列{}满足=1,(1)记=,写出,,并求数列的通项公式;(2)求的前20项和18.(12 分)某学校组织"一带一路”知识竞赛,有A,B两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分。

己知小明能正确回答A类问题的概率为0.8 ,能正确回答B类问題的概率为0.6 . 且能正确回答问题的概率与回答次序无关。

(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列:(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由。

19.(12分)记△ABC的内角A,B,C的对边分别为a.,b.,c,已知=ac,点D在边AC 上,BDsin∠ABC = asinC.(1)证明:BD = b:(2)若AD = 2DC .求cos∠ABC.20.(12分)如图,在三棱锥A-BCD中.平面ABD丄平面BCD,AB=AD.O第 4 页共 11 页为BD的中点.(1)证明:OA⊥CD:(2)若△OCD是边长为1的等边三角形.点E在棱AD上. DE =2EA .且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.21.(12分)在平面直角坐标系xOy 中,己知点(-7,0),(7,0),点M满足|MF t|-|MF2|=2.记M 的轨迹为C.(1)求C的方程;(2)设点T 在直线上,过T 的两条直线分别交C于A,B 两点和P,Q两点,且|TA||TB|=|TP||TQ| ,求直线AB的斜率与直线PQ 的斜率之和22.(12分)已知函数f(x)=x(1-lnx)(1)讨论f(x)的单调性(2)设a,b为两个不相等的正数,且blna-alnb=a-b证明:新高考Ⅰ卷数学答案解析1.B2.C3.B4.A5.C6.C7.D8.B9.CD10.AC11.ACD12.BD13.a=1第 5 页共 11 页14.15.116.5;17.(1)解:由题意得b1=a2=a1+1=2,b2=a4=a3+1=5∵b1=a2=a1+1,∴a2-a1=1.b2=a4=a3+1=a2+3 ∴a4-a2=3.同理a6-a4=3……b n=a2n-a2n-2=3.叠加可知a2n-a1=1+3(n-1)∴a2n=3n-1∴b n=3n-1.验证可得b1=a2=2,符合上式.(2)解:∵a2n=a2n-1+1∴a2n-1=a2n-1=3n-2.∴设{a n}前20项和为S20∴S20=(a1+a3+…+a19)+(a2+a4+…+a20) =145+155=30018.(1)解:由题意得x=0,20,100.P(x=0)=0.2P(x=20)=0.8×0.4=0.32P(x=100)=0.48∴(2)解:小明先选择B,得分为y∴y=0,80,100P(y=0)=0.4P(y=80)=0.6×0.2=0.12P(y=100)= 0.6×0.8=0.48X 0 20 100P 0.2 0.32 0.48第 6 页共 11 页∴Ex=54.4 Ey=57.6∴小明应先选择B.19.(1)由正弦定理得,即=又由BD=asinc,得BD=asinc, 即BD=b(2)由AD=2DC,将=2,即==||2 ||2+||2+=c2+a2+c a-11ac+3=0a=c或a= c①cos ==y 0 80 100p 0.4 0.12 0.48第 7 页共 11 页②cos(x) 综上cos =20.(1)证明:由已知,中AB=AD且O为BD中点AO⊥BD又平面ABD⊥平面BCDAO⊥平面BCD且CD平面BCDAO⊥CD(2)由于为正三角形,边长为1OB=OD=OC=CDBCD=取OD中点H,连结CH,则CH⊥OD以H为原点,HC,HD,HZ为x,y,z轴建立空间直角坐标系由①可知,平面BCD 的法向量设C(),B(0,),D(0,)则DE=2EA第 8 页共 11 页且设⊥平面BEC =(x,y,z),即由于二面角E-BC-D 为==21.(1),表示双曲线的右支方程:(2)设,设直线AB的方程为,,得第 9 页共 11 页设,同理可得所以得即22.(1)f(x)=x-xlnx令f’(x)>0,则0<x<1,令f’(x)<0,则x>1∴f(x)的单调增区间为(0,1),单调减区间为(1,+∞).(2)即,即f()=f()令p=,q=,不妨设0<p<1<q,下面证明2<p+q<e.①先证p+q>2,当p≥2时结论显然成立.当q∈(1,2)时,p+q>2,,则p>2-q,∴2-q<1.只需设f(p)>f(2-q).即证当q∈(1,2)时,由f(p)>f(2-q)令g(x)=f(x)-f(2-x).g’(x)=f’(x)+f’(2-x)=-lnx-ln(2-x)=-ln[-(x-1)2+1]当x∈(1,2)时,-(x-1)2+1<1,所以g’(x)>0,∴g(x)在(1,2)上单调递增,第 10 页共 11 页∴g(q)>g(1)=0,即f(q)>f(2-q)②再设,当时,,当时,∴∵∴要证只需证即证当时,有,设,.减第 11 页共 11 页。

相关文档
最新文档