2020江苏高考数学小题强化训练50练(提升版)(含详细解答)
2020年高考数学专项突破50题(3)--数列【含答案解析】

2020年高考数学专项突破50题(3)--数列学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共40道小题,每小题2分,共80分)1.用数学归纳法证明“633123,*2n n n n N ++++⋅⋅⋅+=∈ ”,则当 1n k =+时,左端应在n k =的基础上加上( )A. ()()33312(1)k k k ++++++LB.()()()333121k k kk +++++++LC. 3(1)k + D. 63(1)(1)2k k +++2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位)。
这个问题中,甲所得为( ) A. 54钱 B.43钱 C.23钱 D.35钱 3.设等差数列{a n }的前n 项和为S n ,首项10a >,公差0d <,10210a S ⋅<,则S n 最大时,n 的值为( ) A. 11 B. 10C. 9D. 84.等比数列{a n }的前n 项和为S n ,若243,15S S ==,则56a a +=( ) A. 16 B. 17C. 48D. 495.设正项等比数列{a n }的前项和为S n ,若32=S ,154=S ,则公比q =( ) A. 2 B. 3C. 4D. 56.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.根据这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为( )A. 410190-B. 5101900-C. 510990-D.4109900- 7.已知等差数列{a n }的前n 项和为S n ,若1785S =,则7911a a a ++的值为 A. 10 B. 15C. 25D. 308.已知数列{a n }中,12a =,111n n a a +--3=,若n a 1000≤,则n 的最大取值为( )A. 4B. 5C. 6D. 79.等差数列{a n }中,若243,7a a ==,则6a =( ) A. 11 B. 7C. 3D. 210.设等差数列{a n }前n 项和为S n ,等差数列{b n }前n 项和为T n ,若2018134n n S n T n -=+,则33a b =( ) A. 528 B. 529C. 530D. 53111.设等差数列{a n }的前n 项和为S n 若39S =,627S =,则9S =( ) A. 45 B. 54C. 72D. 8112.已知等差数列{a n }的前n 项和S n 满足56S S <且678S S S =>,则下列结论错误的是( ) A. 6S 和7S 均为S n 的最大值 B. 70a = C. 公差0d < D. 95S S > 13.用数学归纳法证明:“()221*111,1n nn a a a a a n N a++-++++=≠∈-L ”,在验证1n =成立时,左边计算所得结果是( ) A. 1B. 1a +C. 21a a ++D.231a a a +++14.等比数列{a n }的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=L ( ) A. 12 B. 10 C. 8 D. 2+log 3515.在等差数列{a n }中,64=a ,3510a a a +=,则=12a ( ) A. 10 B. 12 C. 14 D. 1616.已知数列{a n }的前n 项和S 满足*1(1)26()2nn n n S a n n N --=-+∈,则100S =( ) A. 196 B. 200C. 10011942+ D. 10211982+17.若点(),n n a 都在函数324y x =-图象上,则数列{a n }的前n 项和最小时的n 等于( ) A. 7或8 B. 7C. 8D. 8或918.等差数列{a n }的前n 项和为S n ,且8,45241=+=+a a a a ,则20192019S = ( ) A. 2016 B. 2017C. 2018D. 201919.已知数列{a n }满足:112a =,*11()2n n n a a n N +=+∈,则2019a =()A. 2018112-B. 2019112-C.20183122- D.20193122- 20.已知数列{a n }満足: 11a =,132n n a a +=-,则6a =( ) A. 0 B. 1C. 2D. 621.已知数列{a n }的前n 项和为S n ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为( ) A. 1008 B. 1009C. 1010D. 101122.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11023.在等差数列{a n }中,其前132<<m 项和为S n ,且满足若3512a S +=,4724a S +=,则59a S +=( )A. 24B. 32C. 40D. 7224.若{a n }为等差数列,S n 是其前n 项和,且11223S π=,则6tan()a 的值为( )A. 3B.C.3D. 33-25.若a ,b 是方程20(0,0)x px q p q -+=<>的两个根,且a ,b ,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值为( ) A.-4 B. -3C. -2D. -126.已知S n 为等比数列{a n }的前n 项和,1a 1=,23a a 8=-,则6S (= ) A.1283B. -24C. -21D. 1127.已知△ABC 的三个内角A ,B ,C 依次成等差数列,BC 边上的中线32=AD ,2AB =,则△ABC 的面积S 为( )A. 3B.C.D. 28.已知等差数列{a n }的前n 项和为S n ,且181212a a a ++=,则13S =( ) A. 104 B. 78C. 52D. 3929.记等差数列{a n }的前n 项和为S n ,若53a =,1391S =,则11S =( ) A. 36 B. 72C. 55D. 11030.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层灯的盏数是( ) A. 24 B. 48 C. 12 D. 6031.已知数列{a n }是等差数列,数列{b n }分别满足下列各式,其中数列{b n }必为等差数列的是( ) A. ||n n b a =B. 2n n b a =C. 1n nb a =D.2nn a b =-32.已知数列{a n }是一个递增数列,满足*n a N ∈,21n a a n =+,*n N ∈,则4a =( )A. 4B. 6C. 7D. 833.11的等比中项是( ) A. 1 B. -1C. ±1D.1234.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A. 当8n =时,该命题不成立 B. 当8n =时,该命题成立 C. 当6n =时,该命题不成立 D. 当6n =时,该命题成立35.在数列{a n }中,231518n a n n =+-,则a n 的最大值为( )A. 0B. 4C.313 D.213 36.在等差数列{a n }中,已知1a 与11a 的等差中项是15,9321=++a a a ,则9a =( ) A. 24 B. 18 C. 12 D. 637.已知等差数列{a n }的公差0≠d ,前n 项和为S n ,若对所有的)(*∈N n n ,都有10S S n ≥,则( ). A. 0≥n aB. 0109<⋅a aC. 172S S <D. 019≤S38.已知等差数列{a n }和{b n }的前n 项和分别为n A 和n B ,且6302n n A n B n +=+,则使得nnb a 为整数的正整数n 的个数是( ) A. 2 B. 3C. 4D. 539.设数列{a n }满足31=a ,且对任意整数n ,总有1(1)(1)2n n n a a a +--=成立,则数列{a n }的前2018项的和为( ) A. 588 B. 589C. 2018D. 201940.数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A. 1盏B. 2盏C. 3盏D. 4盏第II 卷(非选择题)请点击修改第II 卷的文字说明二、(本题共10道小题,每小题7分,共70分)41.已知数列{ a n }的首项1133,()521n n n a a a n N a *+==∈+. (1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)记12111...n nS a a a =+++,若<100n S ,求最大正整数n . 42.已知在等比数列{a n }中,23411,92187a a a ==. (1)求数列{a n }的通项公式;(2)设n n b na =,求数列{b n }的前n 项和T n . 43.若{c n }是递增数列,数列{a n }满足:对任意*n N ∈,存在*m N ∈,使得10m nm n a c a c +--…,则称{a n }是{c n }的“分隔数列”.(1)设2,1n n c n a n ==+,证明:数列{a n }是{c n }的分隔数列;(2)设4,n n c n S =-是{c n }的前n 项和,32n n d c -=,判断数列{S n }是否是数列{d n }的分隔数列,并说明理由;(3)设1,n n n c aq T -=是{c n }的前n 项和,若数列{T n }是{c n }的分隔数列,求实数a ,q 的取值范围. 44..在等比数列{a n }与等差数列{b n }中,11a =,12b =-,223a b +=-,334a b +=-. (1)求数列{a n }与数列{b n }的通项公式; (2)若n n n c a b =+,求数列{c n }的前n 项和S n . 45.已知数列{a n }各项均为正数,满足2333(1)122n n a n +⎛⎫+++= ⎪⎝⎭L .(1)求1a ,2a ,3a 的值;(2)猜想数列{a n }的通项公式,并用数学归纳法证明你的结论. 46.已知数列{a n }满足: 12n n n a a ++=,且111,23nn n a b a ==-⨯.(1)求证:数列{b n }是等比数列;(2)设S n 是数列{a n }的前n 项和,若10n n n a a tS +->对任意*n N ∈都成立.试求t 的取值范围. 47.已知数列{a n }的前n 项和为S n ,点(,)n n a S 在直线22y x =-上. (1)求数列{a n }的通项公式; (2)设()23log 2n n nS b a -+=,求数列{b n }的前n 项和T n .48.等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足55a =,410S =,0n b >,24b a =,416b a =.(1)求数列{a n }和{b n }的通项公式;(2)令()()1211na n n n cb b +=--,求数列{c n }的前n 项和T n .49.已知数列{a n }满足11a =,11+=+n nn a a a (n N *∈). (1)求2a ,3a ,4a 的值; (2)证明:数列{1na }是等差数列,并求数列{a n }的通项公式. 50.定义12...nnp p p +++为n 个正数12,,...,n p p p 的“均倒数”.已知正项数列{a n }的前n 项的“均倒数”为1n. (1)求数列{a n }的通项公式. (2)设数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的前n 项和为T n ,若4n T <244m m --对一切*n N ∈恒成立,求实数m 的取值范围.(3)令9()10nn nb a=⋅,问:是否存在正整数k使得k nb b≥对一切*n N∈恒成立,如存在,求出k值;如不存在,说明理由.试卷答案1.A 【分析】写成n k =的式子和1n k =+的式子,两式相减可得. 【详解】当n k =时,左端式子为3123k +++⋅⋅⋅+,当1n k =+时,左端式子为3333(1)(12312())k k k k ++++++++⋅⋅⋅+++L , 两式比较可知增加的式子为()()33312(1)k k k ++++++L .故选A.【点睛】本题主要考查数学归纳法,从n k =到1n k =+过渡时,注意三个地方,一是起始项,二是终止项,三是每一项之间的步长规律,侧重考查逻辑推理的核心素养. 2.B设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B. 3.B 【分析】由等差数列前n 项和公式得出21S 1121a =,结合数列{}n a 为递减数列确定10110,0a a ><,从而得到n S 最大时,n 的值为10.【详解】由题意可得()2111112120212110212S a d a d a ´=+=+= 10210a S ⋅<Q 10110a a ∴⋅<等差数列{}n a 的首项10a >,公差0d < 则数列{}n a 为递减数列10110,0a a ∴><即当10n =时,n S 最大 故选B 。
【精选】2020版江苏高考数学名师大讲坛一轮复习教程:随堂巩固训练50含解析

随堂巩固训练(50)1. 抛物线y =12x 2的焦点坐标为 ⎝⎛⎭⎫0,12 . 解析:将抛物线y =12x 2化为x 2=2y ,所以p =1,p 2=12,则焦点坐标为⎝⎛⎭⎫0,12. 2. 在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为2. 解析:设椭圆方程为x 2a 2+y 2b 2=1(a>b>0),则有2b 2a =2且a 2c -c =1,解得e =22.3. 两条对称轴与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于94的椭圆的方程是 x 225+y 29=1或y 225+x 29=1 .解析:因为e =0.8,所以c a =45.又焦点到相应准线的距离为a 2c -c =94,所以⎝⎛⎭⎫54c 2c -c =94,解得c =4,则a =54c =5,b 2=a 2-c 2=25-16=9,所以所求椭圆方程为x 225+y 29=1或y 225+x 29=1.4. 已知双曲线C :x 216-y 2b 2=1(b>0)的渐近线方程为3x±4y =0,则双曲线C 的准线方程为 x =±165.解析:由题意可知b 4=34,解得b =3,则c 2=a 2+b 2=25,c =5,故双曲线C 的准线方程为x =±165.5. 已知椭圆x 25+y 24=1的中心为A ,右准线为l ,则以A 为顶点,l 为准线的抛物线方程为 y 2=-20x .解析:椭圆的中心为原点,右准线方程为x =5,从而p2=5,p =10.由题意可知,抛物线开口向左,故抛物线的标准方程为y 2=-20x.6. 已知F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为43. 解析:设点A(x A ,y A ),由题意得x A +p2=5,所以x A =4,所以y A =4,即点A(4,4),所以直线AF 的斜率为4-04-1=43.7. 若双曲线x 2m -y 2=1上的点到左准线的距离是到左焦点距离的13,则m = 18.解析:由题意可得e =m +1m ,由双曲线的第二定义知,e =m +1m =3,解得m =18. 8. 若双曲线mx 2-2my 2=4的一条准线是y =1,则实数m = -23.解析:由题意得双曲线的实轴在y 轴上,则m<0,所以-2m-6m =1,解得m =-23.9. 平面内有一长度为4的线段AB ,动点P 满足PA +PB =6,则PA 的取值范围是 [1,5] .解析:由题意得,动点P 在以A ,B 为焦点,长轴长为6的椭圆上,所以a =3,c =2,所以PA 的最小值为a -c =1,最大值为a +c =5,所以PA 的取值范围是[1,5].10. 已知椭圆C :x 22+y 2=1的右焦点为F ,右准线为l ,点A 在直线l 上,线段AF 与椭圆C 交于点B.若|FA →|=3|FB →|,求|AF →|的值.解析:由题设知F(1,0),直线l 的方程为x =2,离心率e =22. 设点B 到直线l 的距离为d ,则FB =22d ,所以AF =322d. 由三角形相似得d 1=23,即d =23,所以|AF →|= 2.11. 已知P 是椭圆x 2a 2+y 2b 2=1(a>b>0)上的点,点P 与两焦点F 1,F 2的连线互相垂直,且点P 到两准线的距离分别为d 1=6,d 2=12,求椭圆的方程.解析:由圆锥曲线的定义知PF 1=ed 1,PF 2=ed 2.因为PF 21+PF 22=F 1F 22,所以e 2d 21+e 2d 22=(2c)2,所以c 2a2(62+122)=4c 2,即a 2=45.又PF 1+PF 2=2a ,所以PF 21+PF 22+2PF 1·PF 2=4a 2, 即4c 2+2e 2d 1d 2=4a 2,即4c 2+144c 2a2=4a 2=4×45,解得c 2=45281=25,b 2=a 2-c 2=20,所以椭圆方程为x 245+y 220=1.12. 已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心离为12,右焦点为F ,且椭圆E 上的点到点F距离的最小值为2.(1) 求椭圆E 的方程;(2) 设椭圆E 的左、右顶点分别为A ,B ,过点A 的直线l 与直线x =8交于点N ,当过A ,F ,N 三点的圆半径最小时,求这个圆的方程.解析:(1) 由题意知c a =12,a -c =2,所以a =4,c =2,所以b 2=a 2-c 2=12,所以椭圆E 的方程为x 216+y 212=1.(2) 设点N(8,t),圆的方程为x 2+y 2+Dx +Ey +F =0. 因为圆过点A(-4,0),F(2,0),N(8,t),所以联立方程组⎩⎪⎨⎪⎧(-4)2-4D +F =0,22+2D +F =0,82+t 2+8D +tE +F =0,解得⎩⎪⎨⎪⎧D =2,E =-72+t 2t,F =-8,所以圆的方程为x 2+y 2+2x -(t +72t )y -8=0,即(x +1)2+[y -12(t +72t )]2=9+14⎝⎛⎭⎫t +72t 2.因为⎝⎛⎭⎫t +72t 2≥(272)2,当且仅当t =72t ,即t =±62时取等号,圆的半径最小, 故所求圆的方程为x 2+y 2+2x±122y -8=0.。
2020版高考数学二轮复习第一部分小题强化练小题强化练(四)(含解析)(最新整理)

(京津鲁琼专用)2020版高考数学二轮复习第一部分小题强化练小题强化练(四)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((京津鲁琼专用)2020版高考数学二轮复习第一部分小题强化练小题强化练(四)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(京津鲁琼专用)2020版高考数学二轮复习第一部分小题强化练小题强化练(四)(含解析)的全部内容。
小题强化练(四)一、选择题1.设集合A={y|y=log2x,0〈x≤4},B={x|e x〉1},则A∩B=()A.(0,2)B.(0,2]C.(-∞,2)D.R2.若i为虚数单位,复数z满足z(1+i)=|1-i|+i,则z的虚部为()A。
错误!B。
错误!-1C.错误!iD.错误!3.设随机变量X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是( )注:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ〈X≤μ+2σ)=0。
954 5.A.6 038 B.6 587C.7 028 D.7 5394.《九章算术》中的“竹九节"问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为()A。
133升B。
错误!升C.199升D。
2512升5.某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A前往小区H,则他经过市中心O的概率为( )A.13B。
(整理版)高考数学小题狂做冲刺训练(详细解析)

高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。
在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。
江苏省2020高考数学 填空题“提升练习”(6)

2020江苏高考数学填空题 “提升练习”(6)1.已知实数x 、y 满足205040x y x y y -≤⎧⎪+-≥⎨⎪-≤⎩,若不等式222()()a x y x y +≥+恒成立,则实数a 的最小值是__________.2.在区间]1,[+t t 上满足不等式1|13|3≥+-x x 的解有且只有一个,则实数t 的取值范围为__________.3. 定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列叫做等差向量列,这个常向量叫做等差向量列的公差.已知向量列{}n a u u r是以1(1,3)a =u r 为首项,公差(1,0)d =u r 的等差向量列.若向量n a u u r与非零向量1(,)()n n n b x x n N *+=∈u u r 垂直,则101xx =__________.4. 三位同学合作学习,对问题“已知不等式222xy ax y ≤+对于[][]1,2,2,3x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析”;乙说:“不等式两边同除以x 2,再作分析”; 丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自已的其它解法,可求出实数a 的取值范围是__________.5.若当1[,2]2x ∈时,函数2()f x x px q =++与函数212)(xx x g +=在同一点处取得相同的最小值,则函数)(x f 在1[,2]2上的最大值是__________.6.函数()()sin f x x x x R ωω=+∈,又()2f α=-,()0f β=,且αβ-的最小值等于π2,则正数ω的值为__________. 7.ABC ∆外接圆的半径为1,圆心为O ,且2=++,||||=,则CA CB ⋅=u u u r u u u r__________.8.设函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是__________.9.设曲线()x e ax y1-=在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点()20,y x B 处的切线为2l .若存在⎥⎦⎤⎢⎣⎡∈23,00x ,使得21l l ⊥,则实数a 的取值范围为__________.10. 数列{}n a 满足(]10,1a a =∈,且11,12,1n n n n nn a a a a a a +-⎧>⎪=⎨⎪≤⎩.若对于任意的n N *∈,总有3n n a a +=成立,则a 的值为__________.11.在平面直角坐标系中,点集(){}22,|1A x y xy =+≤,(){},|11,11B x y x y =--≤≤≤≤,则点集{}12121122(,),,(,),(,)Q x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为__________.12.已知数列{}n a 满足221221,2,(1cos )sin 22n n n n a a a a ππ+===++,则该数列的前20项的和为__________.13.设R x ∈,||)21()(x x f =,若不等式k x f x f ≤+)2()(对于任意的R x ∈恒成立,则实数k 的取值范围是__________. 14.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题: ①函数)(x f y =的定义域是R ,值域是[0,21]; ②函数)(x f y =的图像关于直线2kx =(k ∈Z)对称; ③函数)(x f y =是周期函数,最小正周期是1;④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数。
(江苏专用)2020版高考数学三轮复习小题专题练(二)三角函数、平面向量文苏教版

小题专题练(二) 三角函数、平面向量(建议用时:50分钟)1.(2019·宿迁模拟)在平面直角坐标系中,已知向量AB →=(2,1),向量AC →=(3,5),则向量BC →的坐标为________.2.若sin α=-513,且α为第四象限角,则tan α的值等于________.3.在△ABC 中,a =3,b =6,∠A =2π3,则∠B =________.4.已知sin 2α=35⎝ ⎛⎭⎪⎫π4<α<π2,tan(α-β)=12,tan ()α+β=________.5.函数y =32sin 2x +cos 2x 的最小正周期为________. 6.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________. 7.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.8.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B-A )=2sin 2A ,则A =____________.9.已知函数f (x )=3cos 2x -sin 2x ,则下列结论中正确的序号是________. ①函数f (x )的图象关于直线x =11π12对称;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎣⎢⎡⎦⎥⎤π12,5π12上是增函数; ④将y =2sin 2x 的图象向右平移π6个单位长度可以得到函数f (x )的图象.10.(2019·淮安模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2 018)的值为________.11.(2019·辽宁师大附中模拟) 已知a ,b 是单位向量,且a·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是________.12.甲船从位于海岛B 正南10海里的A 处,以4海里/小时的速度向海岛B 行驶,同时乙船从海岛B 以6海里/小时的速度向北偏东60°方向行驶,当两船相距最近时,两船行驶的时间为________小时.13.已知角φ的终边经过点P (1,-1),点A (x 1,y 1)、B (x 2,y 2)是函数f (x )=sin(ωx +φ)(ω>0)图象上的任意两点.若|f (x 1)-f (x 2)|=2时,|x 1-x 2|的最小值为π3,则f ⎝ ⎛⎭⎪⎫π2=________.14.如图,圆O 是边长为2的正方形ABCD 的内切圆,若P ,Q 是圆O 上两个动点,则AP →·CQ →的取值范围是________.小题专题练(二)1.解析:BC →=AC →-AB →=(1,4). 答案:(1,4)2.解析:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512.答案:-5123.解析:在△ABC 中,根据正弦定理a sin A =b sin B ,有3sin2π3=6sin B ,可得sin B =22.因为∠A 为钝角,所以∠B =π4. 答案:π44.解析:因为π4<α<π2,所以π2<2a <π,可得cos 2α=-45,则tan 2α=-34,tan(α+β)=tan[2α-(α-β)]=tan 2α-tan (α-β)1+tan 2αtan (α-β)=-2.答案:-25.解析:因为y =32sin 2x +1+cos 2x 2=sin ⎝⎛⎭⎪⎫2x +π6+12,所以该函数的最小正周期T =2π2=π . 答案:π6.解析:因为m +n =(2λ+3,3),m -n =(-1,-1),又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0.答案:07.解析:由AP →⊥BC →,知AP →·BC →=0,即AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)AB →·AC →-λAB →2+AC →2=(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-λ×9+4=0,解得λ=712. 答案:7128.解析:在△ABC 中,由sin C +sin(B -A )=2sin 2A 可得sin(A +B )+sin(B -A )=2sin 2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,所以cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A ,①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,所以a =233,b =433,所以b 2=a 2+c 2,所以B =π2,所以A =π6. 综上可得,A =π2或π6.答案:π2或π69.解析:f (x )=3cos 2x -sin 2x =-2sin ⎝⎛⎭⎪⎫2x -π3. 令2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,当k =1时,函数f (x )的图象的对称轴方程为x =11π12,所以①正确;令2x -π3=k π,k ∈Z ,得x =k π2+π6,k ∈Z ,所以当k =1时,函数f (x )的图象的对称中心是⎝⎛⎭⎪⎫2π3,0,所以②正确;由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,所以当k =0时,函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12,所以③错误;将函数y =2sin 2x 的图象向右平移π6个单位长度可以得到函数y =2sin ⎝⎛⎭⎪⎫2x -π3的图象,所以④错误.所以正确的序号是①②.答案:①②10.解析:由题图知A =5,T =12,从而ω=π6,φ=π6,解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫π6x +π6,故f (2 018)=f (2)=5.答案:511.解析:由a ,b 是单位向量,且a·b =0,可设a =(1,0),b =(0,1),c =(x ,y ). 因为向量c 满足|c -a -b |=1,所以(x -1)2+(y -1)2=1,即(x -1)2+(y -1)2=1.该方程表示圆心为(1,1),半径为1的圆,所以2-1≤|c |=x 2+y 2≤2+1,所以|c |的取值范围是[2-1,2+1].答案:[2-1,2+1]12.解析:如图,设经过x 小时后,甲船行驶到D 处,乙船行驶到C 处时两船相距最近,则AD =4x ,BC =6x ,则BD =10-4x ,由余弦定理知,CD 2=(10-4x )2+(6x )2-2×(10-4x )×6x cos 120°=28x 2-20x +100=28⎝ ⎛⎭⎪⎫x -5142+6757,若甲行驶2.5小时,则甲船到达海岛B ,因而若x <2.5,则当x =514时距离最小,且最小距离为6757=15217,若x ≥2.5,则BC ≥6×2.5=15>15217,因而当两船相距最近时,两船行驶514小时.答案:51413.解析:结合三角函数图象,可知函数的最小正周期为2π3,则ω=3,因为角φ的终边经过点P (1,-1),所以不妨取φ=-π4,则f (x )=sin ⎝⎛⎭⎪⎫3x -π4,f ⎝ ⎛⎭⎪⎫π2=sin 5π4=-22. 答案:-2214.解析:以O 为坐标原点建立如图所示的平面直角坐标系,则P ,Q 在以O 为圆心的单位圆上,设P (cos α,sin α),Q (cos β,sin β), 又A (-1,-1),C (1,1)所以AP →=(cos α+1,sin α+1),CQ →= (cos β-1,sin β-1)所以AP →·CQ →=(cos α+1)·(cos β-1)+(sin α+1)·(sin β-1)=cos αcos β+cos β-cos α-1+sin αsin β+sin β-sin α-1=(cos αcos β+sin αsin β)+(sin β+cos β)-(sin α+cos α)-2=cos(α-β)+2sin ⎝ ⎛⎭⎪⎫β+π4-2sin ⎝⎛⎭⎪⎫α+π4-2,当cos(α-β)=-1且sin ⎝ ⎛⎭⎪⎫β+π4=-1且sin ⎝⎛⎭⎪⎫α+π4=1时,则AP →·CQ →有最小值,此时α-β=(2k +1)π且β=54π+2k π且α=π4+2k π,(k ∈Z ),所以AP →·CQ →能取到最小值-3-22,AP →·CQ →夹角范围是[90°,180],故AP →·CQ →有最大值0, 所以AP →·CQ →的取值范围是[-3-22,0]. 答案:[-3-22,0]。
2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。
2019江苏高考数学小题强化训练50练(提升版)(含详细解答)

高考数学小题强化训练50篇(提升版)8个填空题+4个解答题(含详细参考答案)班级 __________ 姓名 __________ 分数 __________小题强化训练一一、填空题:本大题共8小题,每题5分,共40分.1.给出以下结论:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 则其中错误的是________.(填序号)2.已知函数f (x )=⎩⎨⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________. 3.连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4.设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题) 6.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7.已知a >0,b >0,则a 2a +b +2b 2b +a的最大值为________. 8.已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1;(2)MN ∥平面ABC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:本大题共 8 小题,每题 5 分,共 40 分. 1.已知复数 z 满足(z-2)i=1+i(i 为虚数单位),则复数 z 的共轭复数 z 在复平面内对应的点位 于第________象限. 2.设集合 A={x|y=ln(x2-3x)},B={y|y=2x,x∈R},则 A∪B=____________. 3.若 θ∈(0,π4),且 sin2θ=14,则 sin(θ-π4)=________. 4.已知一个正方体的外接球体积为 V1,其内切球体积为 V2,则VV12的值为________. 5.记等差数列{an}的前 n 项和为 Sn.已知 a1=3,且数列{ Sn}也为等差数列,则 a11=________. 6.在▱ABCD 中,∠BAD=60°,E 是 CD 上一点,且A→E=12A→B+B→C,|A→B|=λ|A→D|.若A→C·E→B=12A→D 2,则 λ=________. 7.设函数 f(x)=lnx+mx ,m∈R,若对任意 x2>x1>0,f(x2)-f(x1)<x2-x1 恒成立,则实数 m 的 取值范围是__________. 8.已知实数 x,y 满足 x2+y2=1,则(x-1y)2+(x+1 y)2的最小值为________. 二、解答题:本大题共 4 小题,共 60 分.解答时应写出必要的文字说明、证明过程或演算步 骤. 9.(本小题满分 14 分) 在平面四边形 ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求 cos∠ADB 的值; (2)若 DC=2 2,求 BC 的值.
1
2
10.(本小题满分 14 分) 已知向量 m=(cosα,-1),n=(2,sinα),其中 α∈(0,π2),且 m⊥n. (1)求 cos2α 的值; (2)若 sin(α-β)= 1100,且 β∈(0,π2),求角 β 的值.
11.(本小题满分 16 分) 设椭圆 C:x22+y2=1 的右焦点为 F,过点 F 的直线 l 与 C 交于 A,B 两点,点 M 的坐标为(2, 0). (1)当 l 与 x 轴垂直时,求直线 AM 的方程; (2)设 O 为坐标原点,求证:∠OMA=∠OMB.
则 f(f(3 3))=________.
16-log3x,x>0,
3.连续抛掷两枚骰子分别得到的点数是 a,b,则函数 f(x)=ax2-bx 在 x=1 处取得最值的概
率是________.
4.设 Sn 为正项等比数列{an}的前 n 项和.若 a4·a8=2a10,则 S3 的最小值为________.
12.(本小题满分 16 分) 已知等差数列{an}的前 n 项和为 Sn,且满足 S4=24,S7=63. (1)求数列{an}的通项公式; (2)若 bn=2an+(-1)n·an,求数列{bn}的前 n 项和 Tn.
3
班级 __________ 姓名 __________ 分数 __________
4
10.(本小题满分 14 分) 如图,在三棱锥 ABCD 中,AB⊥AD,BC⊥BD,平面 ABD⊥平面 BCD,点 E,F(点 E 与点 A, D 不重合)分别在棱 AD,BD 上,且 EF⊥AD.求证: (1)EF∥平面 ABC; (2)AD⊥AC.
11.(本小题满分 16 分) 如图所示的某种容器的体积为 90πcm3,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的 底面圆半径都为 rcm.圆锥的高为 h1cm,母线与底面所成的角为 45°;圆柱的高为 h2cm.已知圆 柱底面造价为 2a 元/cm2,圆柱侧面造价为 a 元/cm2,圆锥侧面造价为 2a 元/cm2. (1)将圆柱的高 h2 表示为底面圆半径 r 的函数,并求出定义域; (2)当容器造价最低时,圆柱的底面圆半径 r 为多少?
12.(本小题满分 16 分) 已知等比数列{an}的前 n 项和为 Sn,且 2n+1,Sn,a 成等差数列(n∈N*). (1)求 a 的值及数列{an}的通项公式; (2)若 bn=(2n-1)an,求数列{bn}的前 n 项和 Tn.
②“x=4”是“x2-3x-4=0”的充分条件;
③命题“若 m“若 m2+n2=0,则 m=0 且 n=0”的否命题是“若 m2+n2≠0,则 m≠0 或 n≠0”.
则其中错误的是________.(填序号)
sin 52πx,x≤0,
2.已知函数 f(x)=
5.在平面直角坐标系 xOy 中,圆 C 的方程为 x2+y2-4x=0,若直线 y=k(x+1)上存在一点 P,
使过点 P 所作的圆的两条切线相互垂直,则实数 k 的取值范围是____________.
(第 6 题)
6.如图,在平行四边形 ABCD 中,AC,BD 相交于点 O,E 为线段 AO 的中点.若B→E=λB→A+
μB→D(λ,μ∈R),则 λ+μ=________. 7.已知 a>0,b>0,则2aa+b+2b2+b a的最大值为________. 8.已知函数 f(x)=x2-2x+a(ex-1+e-x+1)有唯一的零点,则 a=________. 二、解答题:本大题共 4 小题,共 60 分.解答时应写出必要的文字说明、证明过程或演算步 骤. 9.(本小题满分 14 分) 如图,在三棱柱 ABCA1B1C1 中,已知 M,N 分别为线段 BB1,A1C 的中点,MN 与 AA1 所成 角的大小为 90°,且 MA1=MC.求证: (1)平面 A1MC⊥平面 A1ACC1; (2)MN∥平面 ABC.
高考数学小题强化训练 50 篇(提升版) 8 个填空题+4 个解答题 (含详细参考答案)
班级 __________ 姓名 __________ 分数 __________
小题强化训练一
一、填空题:本大题共 8 小题,每题 5 分,共 40 分.
1.给出以下结论:
①命题“若 x2-3x-4=0,则 x=4”的逆否命题为“若 x≠4,则 x2-3x-4≠0”;