偏振光的观察与研究

合集下载

物理实验光的偏振实验报告

物理实验光的偏振实验报告

物理实验光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振特性的理解。

2、掌握偏振片的起偏和检偏原理,学会用马吕斯定律测量偏振光的强度。

3、了解 1/4 波片的作用,测量线偏振光通过 1/4 波片后的偏振态变化。

二、实验原理1、光的偏振态光是一种电磁波,其电场矢量的振动方向与传播方向垂直。

根据电场矢量的振动特点,光可以分为自然光、线偏振光、部分偏振光和圆偏振光、椭圆偏振光。

自然光:在垂直于光传播方向的平面内,电场矢量的振动方向是随机的,各方向的振幅相等。

线偏振光:电场矢量在垂直于光传播方向的平面内只沿一个固定方向振动。

部分偏振光:在垂直于光传播方向的平面内,电场矢量的振动方向是随机的,但各方向的振幅不相等。

圆偏振光和椭圆偏振光:电场矢量的端点在垂直于光传播方向的平面内的轨迹是圆或椭圆。

2、偏振片偏振片是一种只允许某一特定方向的光振动通过的光学器件。

当自然光通过偏振片时,只有与偏振片透振方向平行的光振动能够通过,从而得到线偏振光。

这个过程称为起偏。

当线偏振光通过另一个偏振片时,可以通过旋转第二个偏振片来改变通过的光强,这个过程称为检偏。

3、马吕斯定律当一束强度为 I₀的线偏振光通过检偏器后,其强度 I 为:I =I₀cos²θ,其中θ 为线偏振光的振动方向与检偏器透振方向之间的夹角。

4、 1/4 波片1/4 波片是一种能使线偏振光变成圆偏振光或椭圆偏振光的光学元件。

当线偏振光垂直入射到 1/4 波片上时,若线偏振光的振动方向与波片的光轴成 45°角,则出射光为圆偏振光;若线偏振光的振动方向与波片的光轴不成 45°角,则出射光为椭圆偏振光。

三、实验仪器1、半导体激光器2、起偏器和检偏器3、 1/4 波片4、光功率计四、实验步骤1、调整实验仪器打开半导体激光器,调整其位置,使激光束水平通过实验平台。

依次将起偏器、检偏器和 1/4 波片安装在光具座上,使它们的中心与激光束在同一直线上。

偏振光的研究_实验报告

偏振光的研究_实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振性质的认识。

2. 学习并掌握偏振光的产生、传播、检测和调控方法。

3. 理解马吕斯定律及其在实际应用中的意义。

4. 掌握使用偏振片、波片等光学元件进行偏振光实验的基本技能。

二、实验原理1. 光的偏振性质:光是一种电磁波,具有横波性质。

在光的传播过程中,光矢量的振动方向相对于传播方向可以保持不变(线偏振光)、绕传播方向旋转(圆偏振光)或呈现椭圆轨迹(椭圆偏振光)。

2. 偏振光的产生:自然光通过偏振片后,可以产生线偏振光。

当自然光入射到某些光学各向异性介质(如偏振片、波片等)时,由于不同方向的光矢量分量在介质中的折射率不同,从而导致光矢量振动方向发生偏转,形成偏振光。

3. 马吕斯定律:当一束完全线偏振光通过一个偏振片时,透射光的光强与入射光的光强和偏振片透振方向与入射光光矢量振动方向的夹角θ之间的关系为:\( I = I_0 \cdot \cos^2\theta \),其中\( I \)为透射光的光强,\( I_0 \)为入射光的光强。

三、实验仪器与设备1. 自然光源(如激光器)2. 偏振片(两块)3. 波片(1/4波片、1/2波片)4. 光具座5. 光屏6. 光电探测器7. 数据采集与分析软件四、实验步骤1. 观察线偏振光:将自然光源发出的光通过偏振片,观察光屏上的光斑。

然后逐渐旋转偏振片,观察光斑的变化,验证马吕斯定律。

2. 观察圆偏振光:将1/4波片放置在偏振片和光屏之间,使1/4波片的光轴与偏振片的透振方向夹角为45°。

观察光屏上的光斑,验证圆偏振光的产生。

3. 观察椭圆偏振光:将1/4波片的光轴与偏振片的透振方向夹角调整为22.5°,观察光屏上的光斑,验证椭圆偏振光的产生。

4. 测量偏振片透振方向:利用光电探测器测量偏振片的透振方向,并与理论计算值进行比较。

5. 分析实验数据:使用数据采集与分析软件对实验数据进行处理,分析偏振光的特性,验证实验原理。

光偏振实验的实验报告

光偏振实验的实验报告

一、实验目的1. 观察光的偏振现象,加深对偏振光的理解。

2. 掌握偏振片和波片的工作原理。

3. 验证马吕斯定律,了解偏振光在不同角度下的光强变化。

4. 学习使用偏振光相关仪器,如偏振片、波片和分光计等。

二、实验原理光是一种电磁波,具有横波性质。

在光的传播过程中,光矢量的振动方向可以发生改变,形成偏振光。

偏振光是指光矢量的振动方向在某一特定平面内振动的光。

本实验中,我们使用偏振片和波片来观察和验证偏振光的相关现象。

偏振片可以使自然光变为线偏振光,而波片可以改变光的偏振态。

根据马吕斯定律,当线偏振光通过偏振片或波片时,其光强与偏振片或波片的透振方向与入射线偏振光的光矢量振动方向的夹角有关。

三、实验仪器与用具1. 偏振片2. 波片3. 分光计4. 激光器5. 光屏6. 透明玻璃板7. 导线8. 电线夹四、实验步骤1. 将激光器发出的光通过偏振片,使光成为线偏振光。

2. 将线偏振光照射到透明玻璃板上,观察光屏上的光斑。

3. 将透明玻璃板旋转,观察光屏上的光斑变化,验证光的偏振现象。

4. 在光屏上放置一个波片,调整波片的透振方向,观察光屏上的光斑变化。

5. 使用分光计测量偏振片和波片的透振方向,记录数据。

6. 根据马吕斯定律,计算不同角度下的光强,并与实验结果进行比较。

五、实验结果与分析1. 当透明玻璃板旋转时,光屏上的光斑会发生明暗交替变化,验证了光的偏振现象。

2. 当波片的透振方向与偏振片的透振方向平行时,光屏上的光斑最亮;当两者垂直时,光屏上的光斑最暗。

这符合马吕斯定律。

3. 通过分光计测量偏振片和波片的透振方向,计算不同角度下的光强,并与理论值进行比较,结果基本吻合。

六、实验结论1. 光具有偏振现象,偏振光的光矢量振动方向在某一特定平面内振动。

2. 偏振片和波片可以改变光的偏振态。

3. 马吕斯定律适用于偏振光的传播和检测。

七、实验讨论1. 本实验中,我们使用了激光器作为光源,激光器发出的光具有高度的单色性和相干性,有利于观察光的偏振现象。

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告一、实验目的1。

观察光的偏振现象,加深偏振的基本概念.2. 了解偏振光的产生和检验方法。

3。

观测椭圆偏振光和圆偏振光。

二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2 和λ/4 波长),光屏。

1.光源:双击实验桌上光源小图标弹出光源的调节窗体.单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。

光源默认发出是自然光.2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。

初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。

最大旋转范围为360°,最小刻度为1°。

可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。

3.波晶片:分为λ/2 和λ/4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。

初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准.最大旋转范围为360°,最小刻度为1°。

三、实验原理1。

偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光.反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直。

2. 改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理

偏振光的观察与研究实验原理
偏振光是光学中的一个重要概念,它涉及到光的振动方向和传播方向的不对称性。

以下是偏振光的观察与研究实验原理:
1. 偏振光的定义:偏振光是指光的振动方向相对于传播方向具有不对称性。

只有横波才能产生偏振现象,而光波是一种电磁波,因此具有偏振性质。

2. 偏振光的分类:根据振动方向与传播方向的关系,偏振光可以分为自然光、线偏振光、局部偏振光、圆偏振光和椭圆偏振光五种。

3. 产生偏振光的方法:
利用光的反射和折射:当光在界面上反射或折射时,光的振动方向会发生变化。

通过调整入射角,可以在特定条件下获得线偏振光。

当入射角为布雷斯特角时,反射光成为完全线偏振光。

利用光学棱镜:尼科尔棱镜和格兰棱镜等光学棱镜可以将自然光转化为线偏振光。

利用偏振片:偏振片可以由自然光得到线偏振光,通过改变偏振片的放置角度,可以得到不同偏振态的光。

4. 改变光的偏振态的元件:波晶片。

平而偏振光垂直入射晶片,如果光轴平行于晶片表而,会产生双折射现象。

利用此特性,可以通过改变波晶片的放置角度来改变出射光的偏振态。

在实验中,通常会使用各种设备来观察和研究偏振光,例如偏振分束器、检偏器等。

通过调整这些设备的参数和角度,可以观察到不同偏振态的光的特性,进一步了解光的偏振性质。

总之,偏振光的观察与研究实验主要涉及光的反射、折
射、通过光学棱镜和偏振片产生偏振光的方法,以及利用波晶片改变光的偏振态的原理。

通过这些实验,可以深入了解光的偏振性质及其在光学中的应用。

偏振光原理实验实验报告(3篇)

偏振光原理实验实验报告(3篇)

第1篇一、实验目的1. 深入理解光的偏振现象,巩固相关理论知识。

2. 掌握直线偏振光、圆偏振光和椭圆偏振光的产生方法。

3. 学会使用偏振片、波片等实验仪器,进行光的偏振状态分析。

二、实验原理1. 偏振光的产生:自然光经过起偏器后,其振动方向变得有规律,成为偏振光。

2. 偏振光的检验:通过观察光的偏振现象,判断光的偏振状态。

3. 偏振光的分解:利用波片可以将偏振光分解为两个相互垂直的偏振光。

三、实验仪器1. 激光器:提供稳定的单色光。

2. 偏振片:用于产生和检验偏振光。

3. 波片:用于分解偏振光。

4. 光具座:用于固定实验仪器。

5. 光屏:用于观察光斑。

6. 秒表:用于测量时间。

四、实验步骤1. 将激光器发出的光束调整至水平传播。

2. 将偏振片固定在光具座上,使光束通过偏振片。

3. 观察光屏上的光斑,记录光斑形状和亮度。

4. 将波片固定在光具座上,使光束通过波片。

5. 调整波片的角度,观察光屏上的光斑变化,记录光斑形状和亮度。

6. 重复步骤4和5,分别使用两个偏振片和两个波片进行实验。

五、实验数据及处理1. 观察到,当光束通过偏振片后,光屏上的光斑形状变为明暗相间的条纹,说明光束被分解为两个相互垂直的偏振光。

2. 调整波片角度,当波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。

3. 通过实验,验证了直线偏振光、圆偏振光和椭圆偏振光的产生方法。

六、实验结果与分析1. 通过实验,我们深入理解了光的偏振现象,掌握了直线偏振光、圆偏振光和椭圆偏振光的产生方法。

2. 实验过程中,我们发现波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。

这验证了偏振光的分解原理。

3. 实验过程中,我们使用偏振片和波片等实验仪器,成功进行了光的偏振状态分析。

七、实验总结本次实验通过观察光的偏振现象,加深了对光的偏振理论知识的理解。

光的偏振研究实验报告

光的偏振研究实验报告

一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。

2. 掌握产生和检验偏振光的方法和原理。

3. 学习使用偏振片、波片等光学元件,了解其工作原理。

4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。

二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。

自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。

偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。

2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。

3. 利用反射、折射等光学现象使自然光部分偏振。

检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。

2. 利用光电池、光电倍增管等光电探测器检测偏振光。

马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。

三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。

2. 将线偏振光通过1/4波片,观察光强变化,记录数据。

3. 将1/4波片旋转一定角度,观察光强变化,记录数据。

4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。

5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。

6. 根据记录的数据,验证马吕斯定律。

五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。

2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告

偏振光的观察与研究研究λ/4波片对偏振光的影响考题内容:研究λ/4波片对偏振光的影响:1、按光路图使偏振片A和B 的偏振轴正交(消光)。

然后插入一片λ/4波片C(实际实验中要使光线尽量穿过元件的中心)。

2、以光线为轴先转动C使消光,然后使B转过360°观察现象。

3、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次的实验结果记录在表中。

一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、圆偏光和椭圆偏振光的产生1、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次转动的实验结果记录在表中(请选择相应的答案,偏振片A的透振方向为0°)2、答案选项: A:光强发生变化,但不消光 B:光强发生变化,且消光 C:光强没有发生变化 D:某位置有光,其他位置消光 E:椭圆偏振光 F:圆偏振光 G:线偏振光 H:部分偏振光研究λ/2波片对偏振光的影响总分: 50本题得分:50考题内容:研究λ/2波片对偏振光的影响1:使偏振片A和B的偏振轴正交(消光),并在A和B之间插入一个λ/2波片C。

2:以光线为轴将λ/2波片转动任意角度,破坏消光现象,再将B转动360°,观察消光现象。

改变C(λ/2波片)的慢(或快)轴与激光振动方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并将记录填入下表:一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、改变λ/2波片的慢(或快)轴与偏振片A的方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并记录数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
PB09214023葛志浩 PB09214047 卢焘 2011-11-22
实验题目: 偏振光的观察与研究
实验目的 : 1.观察光的偏振现象,加深偏振的基本概念。

2.了解偏振光的分类以及产生和检验方法,掌握马吕斯定律。

3.观测布儒斯特角及测定玻璃折射率。

4.观测椭圆偏振光和圆偏振光。

实验仪器: 激光器,起偏器,检偏器,硅光电池, 1/4 波片,光电流放大器,分束板。

实验原理: 一,偏振光的基本概念和分类
光的偏振是指光的振动方向不变, 或光矢量末端在垂直于传播方向的平面上的轨迹呈椭 圆或圆的现象。

光有五种偏振态:自然光(非偏振光) ,线偏振光,部分偏振光,圆偏振光, 椭圆偏振光 二,产生偏振光的方法:
1 ,利用光在界面反射和透射时光的偏振现象。

反射光中的垂直于入射面的光振动 (称 s 分量)多于平行于入射面的光振动 (称 p 分量); 而透射光则正好相反。

在改变入射角的时候, 出现了一个特殊的现象, 即入射角为一特定值 (称为布雷斯特角) 时,反射光成为完全线偏振光 (s 分量) 。

折射光为部分偏振光, 而且此 时的反射光线和折射光线垂直, 这种现象称之为布儒斯特定律。

该方法是可以获得线偏振光 的方法之一。

通过测量介质的布雷斯特角可以得到介质的折射率。

2 ,利用光学棱镜,如尼科尔棱镜,格兰棱镜等。

3 ,利用偏振片。

三,改变光的偏振态的元件——波晶片。

平面偏振光垂直入射晶片,如果光轴平行于晶片表面,会产生比较特殊的双折射现象, 这时非常光 e 和寻常光 o 的传播方向是一致的, 但速度不同, 因而从晶片出射时会产生相位 差。

线偏振光垂直入射 1/4 波片,其振动方向与波片光轴成角 ,则出射光的偏振态与 的 关系如下:
1, 0或 时,出射光为线偏振光;
2
2,
时,出射光为圆偏振光;
4
3, 为其它值时,出射光为椭圆偏振光。

利用偏振片可以由自然光得到线偏振光,利用 1/4 波
片可以由线偏振光得到圆偏振光和椭圆偏振光。

四,马吕斯定律: I I 0cos 2
( 2)
实验内容及步骤: 一,调节仪器和观察消光现象。

得分:
1)
tg
n 2 n 1
如图(一)所示放置好实验仪器,旋转P2,观察出射光强的变化。

,验证马吕斯定律。

如图(二)所示放置好实验仪器,将P1度盘读数调为0,旋转P2,记录P2 度盘读数和D1,D2 光电流读数I1,I2 。

三,根据布雷斯特定律测定介质的折射率。

如图(三)所示放置好实验仪器,调节P1 使D2 读数最小,再调节样品角度使D2 最小。

四,产生和检验圆偏振光和椭圆偏振光。

如图(四)所示放置好实验仪器,使 P1 和 1/4 波片光轴夹角
旋转 P2,观察 D 读数变化。

判断 1/4 波片后出射光的偏振态。

实验记录及数据处理: 一,观察消光现象。

当 P1, P2光轴方向夹角为 0时,出射光强最大,当夹角由 0 变化至 时,光强逐渐减 2
小,在夹角达到 时出现消光现象。

2
,验证马吕斯定律。

利用 Origin 做出 I 2 -cos 2 曲线如下图所示:
I 1
, I 1,I 2 测量值以及相应的
分别为 0, , , , ,
6432
cos 2 和 I 2
的计算值如下表所示
I 1
u A
6
仪 u B
C
取置信概率 U
0.6 6 0.05
6 P=0.95

0.24
0.020
(t p u A )2 (k p u B )2

(2.57 0.24 )2 (1.96 0.020 )2 0.6
0.010
I2
与 cos 2 成正比,即验证了马吕斯定律。

I
1
三,根据布雷斯特定律测定介质的折射率。

57.5 55.9 56.0 56.8 56.1 56.0
56.4 0.984
6
(57.5 - 56.4 )2 (55.9 - 56.4 )2 (56.0 - 56.4 )2 (56.8 - 56.4 )2 (56.1 - 56.4 )2 5
56.0 -56.4 )2 0.6
由上图可知在误差允许的范围内
故 0.984 0.010
p 0.95
玻璃折射率 n tg 故有
n tg tg0.984 1.505 ,
对 n tg 两边取微分,
得 dn
d
2
cos
写成不确定度符号,

U n
U
0.010
0.03 。

2
cos
cos 20.984
从而
n 1.51 0.03
p
0.95
四,产生和检验圆偏振光和椭圆偏振光。

实验总结: 本次实验的误差主要是由仪器的精度误差和估读误差造成的,在误差允许的范 围内,并不影响对马吕斯定律的验证以及对偏振光各种性质的观察和研究。

通过这次实验, 我们加深了对偏振光的各种概念, 性质的理解, 掌握了利用布雷斯特定律测量介质折射率的 方法。

此外,通过这次实验,我们熟悉了自主设计一个实验的方法和流程, 提高了我们的自 主创新能力和实验的技巧。

本次实验最大的遗憾就是我们原计划是在设计完实验步骤后, 先 用仿真实验做一遍检验方案是否可行, 然后再用真实实验再做一遍, 以便二者互补。

只可惜 由于实验室仪器不够, 真实实验无法进行。

虽然仿真实验对于观察实验现象, 检验物理性质, 验证实验定律这些目的都能达到但是毕竟不是真正动手做实验, 对于真实实验操作过程中的 一些困难, 技巧我们无法完全掌握, 不利于我们动手能力的提高, 因此,今后如果有机会的 话我们希望能做一遍偏振光的观察和研究的真实实验。

实验后的一些思考:
1,如何辨别自然光和圆偏振光?
如图(五)所示,让待测光先后通过 1/4 波片和偏振片 P ,转动偏振片 P 的光轴角度,如果 光屏上的光强不变, 则待测光为自然光, 若光屏上的光强变化,并且出现消光现象,则待测 光为圆偏振光。

2,如果将实验内容(四)中的 1/4 波片改为 1/2 波片,实验现象如何?
取何值,转动 P 都会出现光强变化且每 出现消光的现象,因为
2
本次实验的任务分工: 一,实验前两人分别搜集关于偏振光实验的资料, 各自写一份实验设计方案, 然后一起 将两份方案整合成为一份实验方案。

二,实验时,葛志浩负责实验操作,卢焘负责数据记录。

三,实验后卢焘负责数据处理, 两人共同对本次实验作出总结, 并提出一些问题进行讨 论。

四,最后,卢焘负责将所有材料整理为一份完整的实验报告。

在这种情况下,无论
出射光始终为线偏振光。

相关文档
最新文档