高等代数
数学高等代数第五版

目 录
• 引言 • 线性方程组与矩阵 • 向量空间与线性变换 • 多项式与行列式 • 线性方程组的解法 • 线性变换的矩阵表示 • 二次型与矩阵的相似对角化 • 总结与展望
01 引言
课程简介
高等代数是数学的一个重要分支,主 要研究线性代数、多项式、群、环和 域等抽象代数结构及其性质和关系。
常用的解法包括高斯消元法、LU 分解法、迭代法等,可以根据具 体情况选择合适的解法。
线性方程组在各个领域都有广泛 的应用,如物理、工程、经济等。
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩形阵列,行和列都有 一定的数量。
矩阵的元素
矩阵中的每个元素都有其行标和列标,表示其在 矩阵中的位置。
矩阵的维度
相似变换
如果存在一个可逆矩阵P,使得$P^{-1}AP=B$,并且B的特征值和特征 向量与A相同,则称A经过相似变换得到B。
矩阵的特征多项式与特征值
特征多项式
对于一个给定的矩阵A,存在一个多项式$f(lambda)$,使得 $f(lambda)=0$是A的特征方程,这个多项式称为矩阵A的特征多项式。
高等代数作为大学数学专业的一门必 修课程,对于培养学生的逻辑思维、 抽象思维和数学素养具有重要意义。
学习高等代数的重要性
培养数学思维
高等代数作为数学专业的基础课程,通过学习代数结构和性质,可以培养学生的数学思维和逻辑推理 能力。
应用领域广泛
高等代数在科学、工程、经济、金融等领域有广泛应用,如线性方程组求解、矩阵计算、数据降维、 机器学习等领域都需要用到高等代数的知识。
深化数学理解
学习高等代数有助于学生深化对中学阶段数学知识的理解,如代数方程、平面几何、解析几何等,能 够更好地理解和应用这些知识。
高等代数教案

全套高等代数教案第一章:高等代数概述1.1 高等代数的定义与意义理解高等代数的基本概念了解高等代数在数学及其它领域中的应用1.2 基本术语和符号学习常见的代数运算符掌握基本的代数表达式1.3 基本定理和性质学习线性方程组的解的存在性定理理解线性空间的基本性质第二章:矩阵和行列式2.1 矩阵的基本概念理解矩阵的定义和矩阵元素的意义学习矩阵的运算规则2.2 行列式的定义和性质理解行列式的概念掌握行列式的计算方法2.3 矩阵和行列式的应用学习矩阵在几何中的应用了解矩阵在概率论和统计中的应用第三章:线性方程组3.1 高斯消元法学习高斯消元法的原理和步骤掌握高斯消元法的应用3.2 矩阵的秩理解矩阵秩的概念学习矩阵秩的计算方法3.3 线性方程组的解的结构理解线性方程组解的存在性定理学习线性方程组解的方法第四章:特征值和特征向量4.1 特征值和特征向量的定义理解特征值和特征向量的概念学习特征值和特征向量的计算方法4.2 矩阵的对角化理解矩阵对角化的概念掌握矩阵对角化的方法4.3 特征值和特征向量的应用学习特征值和特征向量在几何中的应用了解特征值和特征向量在物理中的应用第五章:向量空间和线性变换5.1 向量空间的基本概念理解向量空间和子空间的概念学习向量空间的基和维数5.2 线性变换的基本概念理解线性变换的定义和性质学习线性变换的矩阵表示5.3 线性变换的应用学习线性变换在几何中的应用了解线性变换在信号处理中的应用第六章:特征多项式和最小多项式6.1 特征多项式的定义和性质理解特征多项式的概念学习特征多项式的计算方法6.2 最小多项式的定义和性质理解最小多项式的概念掌握最小多项式的计算方法6.3 特征多项式和最小多项式的应用学习特征多项式和最小多项式在矩阵对角化中的应用了解特征多项式和最小多项式在多项式环中的应用第七章:二次型7.1 二次型的定义和基本性质理解二次型的概念学习二次型的标准形和规范形7.2 惯性定理和二次型的分类理解惯性定理的概念学习二次型的分类方法7.3 二次型的应用学习二次型在几何中的应用了解二次型在优化问题中的应用第八章:线性微分方程组8.1 线性微分方程组的定义和性质理解线性微分方程组的概念学习线性微分方程组的解的结构8.2 常系数线性微分方程组的解法学习常系数线性微分方程组的解法掌握常系数线性微分方程组的通解8.3 线性微分方程组的应用学习线性微分方程组在物理学中的应用了解线性微分方程组在经济学中的应用第九章:特征值问题的数值解法9.1 特征值问题的数值解法概述了解特征值问题的数值解法的概念学习特征值问题的数值解法的方法9.2 幂法和反幂法学习幂法和反幂法的原理和步骤掌握幂法和反幂法的应用9.3 稀疏矩阵和迭代法理解稀疏矩阵的概念学习迭代法的原理和步骤第十章:高等代数的进一步研究10.1 向量丛和纤维丛理解向量丛和纤维丛的概念学习向量丛和纤维丛的分类方法10.2 群表示论的基本概念理解群表示论的概念学习群表示论的基本性质10.3 高等代数的其它研究领域了解高等代数在数学物理方程中的应用学习高等代数在和机器学习中的应用重点和难点解析重点环节一:矩阵的秩秩的概念是高等代数中的重要概念,理解秩的计算方法和秩的性质对于后续学习线性变换、矩阵对角化等高级内容至关重要。
高等代数知识点总结笔记

高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。
高等代数知识点总结

分块三角矩阵的行列式
Cauchy-Binet 公式
Vandermonde 行列式
定义
性质
*
*
分块三角形行列式
Laplace定理 (按第i1,...,ik行展开)
Cauchy-Binet公式 设U是m×n矩阵, V是n×m矩阵, m≥n, 则
*
*
融资项目商业计划书
单击此处添加副标题
重要结论: 带余除法定理 对于任意多项式f(x)和非零多项式g(x),有唯一的q(x)和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x). 最大公因式的存在和表示定理 任意两个不全为0的多项式都有最大公因式,且对于任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x) 互素 f(x)和g(x)互素有u(x)和v(x)使得 f(x)u(x)+g(x)v(x)=1.
向量组等价:
S和T等价,即S,T可以互相表示 S,T的极大无关组等价 S,T的秩数相等,且其中之一可由另一表示
对于向量组S,T,下列条件等价
线性相关与线性表示: 1,...,r线性相关当且仅当其中之一可由其余的线性表示 若,1,...,r线性相关,而1,...,r线性无关,则可由1,...,r线性表示,且表法唯一
A,B等价有可逆矩阵P,Q使得A=PBQ 每个秩数为r的矩阵都等价于
矩阵等价
*
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价 A是可逆矩阵 |A|0 秩A=n 有B使得AB=I或BA=I A是有限个初等矩阵之积 A(行或列)等价于I A的列(行)向量组线性无关 方程组Ax=0没有非零解 对任意b,Ax=b总有解 对某个b,Ax=b有唯一解 A是可消去的(即由AB=AC或BA=CA恒可得B=C) 对于m×r矩阵G,下列条件等价 G是列满秩矩阵, G有一个r阶的非零子式 秩G=列数 G有左逆,即有K使得KG=I 有矩阵H使得(G, H)可逆 G行等价于 G的列向量组线性无关 方程组Gx=0没有非零解 对任意b,若Gx=b有解则唯一 对某个b,Gx=b有唯一解 G是左可消去的(即由GB=GC恒可得B=C)
高等代数知识点总结

高等代数知识点高等代数是数学的一个分支学科,它研究代数结构与代数运算的一般理论。
在学习高等代数的过程中,我们会接触到一些重要的概念和知识点。
本文将对一些常见的高等代数知识点进行。
1. 线性代数线性代数是高等代数的一个重要分支,它研究向量空间、线性变换和线性方程组等内容。
1.1 向量空间向量空间是线性代数中最基本的概念之一,它是一个满足一定条件的集合。
向量空间具有以下特性:•闭合性:向量空间中的任意两个向量的线性组合仍然属于该向量空间。
•加法结合律:向量的加法满足结合律。
•加法交换律:向量的加法满足交换律。
•零向量存在性:向量空间中存在一个零向量,它和任意向量的加法得到的结果是原向量本身。
•加法逆元存在性:向量空间中的任意向量都有一个加法逆元。
1.2 线性变换线性变换是指保持向量空间中的线性运算不变的变换。
线性变换具有以下性质:•保持零向量不变:线性变换将零向量映射为零向量。
•保持向量加法:线性变换将向量加法映射为映射后的向量的加法。
•保持标量乘法:线性变换将标量乘法映射为映射后的向量的标量乘法。
1.3 线性方程组线性方程组是一组线性方程的集合。
求解线性方程组的关键是确定进行何种变换操作,使得方程组的解能够被简化。
常见的线性方程组解法包括高斯消元法、矩阵消元法等。
2. 群论群论是代数学中研究群的一个分支学科,它研究群的性质和结构。
2.1 群的定义群是一个集合和一个二元运算构成的代数结构。
群具有以下性质:•闭合性:群中的任意两个元素的运算结果仍然属于该群。
•结合律:群中的运算满足结合律。
•存在单位元:群中存在一个元素,使得该元素与群中的任意元素进行运算得到的结果等于该元素本身。
•存在逆元:群中的任意元素都存在一个逆元,使得该元素与其逆元进行运算得到的结果等于单位元。
2.2 群的性质群具有一些重要的性质,例如:•闭包性:群的闭包性指的是群中的任意两个元素的运算结果仍然属于该群。
•唯一性:群的单位元和每个元素的逆元都是唯一的。
高等代数1

高等代数高等代数是现代数学中的一门重要学科,它研究的是代数结构的基础和性质。
代数结构是指由一组元素及其相关运算组成的数学系统,如群、环、域等。
高等代数是对线性代数和抽象代数等基础知识的延伸和深化,对于理解现代数学中许多分支都至关重要。
一、线性代数高等代数中最基础的部分是线性代数。
线性代数是代数学中的一个分支,主要研究向量、矩阵以及线性方程组的性质和运算。
线性代数是微积分和微分方程等数学领域必不可少的基础知识,它的应用范围也很广泛,包括了图像处理、信号处理、机器学习等领域。
1. 向量空间向量空间是线性代数中最重要的概念之一,它是由一组向量以及其对应的加法和数乘运算组成的数学结构。
向量可以是实数向量或复数向量,它们具有加法、数乘、向量求和、向量求差等运算。
2. 线性变换线性变换是一种从一个向量空间到另一个向量空间的映射,它具有线性性质。
线性变换的本质是将一个向量空间中的向量映射到另一个向量空间中的向量,它可以用矩阵表示,从而得到更方便的运算方式。
3. 矩阵及其运算矩阵是线性代数中常见的数学工具,它具有加法、数乘、矩阵乘法等运算,可以用于解决线性方程组、对称矩阵的特征值和特征向量等问题。
二、抽象代数抽象代数是研究代数结构的基本性质和理论结构的一门学科,它通过对代数结构的抽象和推广,研究了许多重要的代数性质。
抽象代数包括了群论、环论、域论等领域。
1. 群论群是一种有限或无限的、具有代数结构的量,它由一组元素以及合成运算组成。
群具有封闭、结合、单位元和逆元等运算性质,在数学研究中被广泛应用。
群论的应用领域包括了几何学、物理学、密码学等领域。
2. 环论环是一种数学结构,它由一个集合以及两个二元运算(加法和乘法)组成。
环论是研究环以及环上的运算和性质的数学分支,它的应用包括了计算机科学、代数几何学等领域。
3. 域论域是一种具有加法、乘法、加法逆元和乘法逆元等运算的数学结构,它是一个基本的代数结构。
域论是研究域以及域上的运算和性质的数学分支,它在现代数学和理论物理学中都有广泛的应用。
高等代数知识点总结

高等代数知识点总结高等代数是一门研究抽象代数结构的数学学科。
它是线性代数的拓展,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式等知识点。
以下是高等代数的主要知识点的总结。
1.向量空间:向量空间是高等代数的核心概念之一、它是一组满足特定性质的向量的集合。
向量空间具有几何和代数两种性质,包括加法、数乘、零向量、负向量等。
2.线性变换:线性变换是一种保持向量空间线性组合关系的变换。
它可以通过矩阵来表示,矩阵的乘法与线性变换的复合运算等价。
线性变换的性质包括保持加法和数乘、保持零向量、保持线性组合等。
3.矩阵理论:矩阵是高等代数中常用的工具,用于表示线性变换、求解线性方程组等。
矩阵具有加法、数乘、乘法等运算规则,还可以求逆矩阵、转置矩阵等。
矩阵的秩、特征值与特征向量等性质也是矩阵理论的重要内容。
4.线性方程组:线性方程组是高等代数中的基本问题之一、它是一组包含线性方程的方程组,可以用矩阵形式表示。
线性方程组的求解可以通过消元法、高斯消元法、矩阵求逆等方法来实现。
5.特征值与特征向量:特征值与特征向量是线性变换的重要性质。
特征值是线性变换在一些向量上的纵向缩放比例,特征向量是特征值对应的非零向量。
特征值与特征向量在很多应用中起到重要作用,如矩阵对角化、求解微分方程等。
6.行列式:行列式是矩阵的一个标量量。
行列式的值代表矩阵所对应的线性变换对单位面积进行的放缩倍数。
行列式具有反对称性、线性性、乘法性等性质,可以用于求解矩阵的逆、计算特征值等。
7.正交性与正交变换:正交性是高等代数中的一个重要概念。
向量空间中的两个向量称为正交,如果它们的内积为零。
正交性和正交变换在几何、物理、信号处理等领域有广泛应用。
8.对称性与对称变换:对称性是高等代数中的一个重要概念。
对称性指的是其中一变换下,物体经过变换后保持不变。
对称性与对称变换在几何、物理、化学等领域有广泛应用。
总结起来,高等代数是一门研究抽象代数结构的学科,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式、正交性与正交变换、对称性与对称变换等知识点。
高等代数知识点总结

高等代数知识点总结高等代数是数学中非常重要的一个分支,它涉及到了许多抽象的概念和理论。
在学习高等代数的过程中,我们需要掌握一些基本的知识点,这些知识点对于我们理解和运用高等代数都具有重要的意义。
本文将对高等代数中的一些重要知识点进行总结,希望能够帮助大家更好地理解和掌握这一领域的知识。
首先,我们需要了解高等代数中的一些基本概念。
代数结构是高等代数中的一个重要概念,它包括群、环、域等。
群是一个集合,配上一个二元运算,满足封闭性、结合律、单位元和逆元的性质。
环是一个集合,配上两个二元运算,满足加法封闭性、乘法封闭性、分配律和单位元的性质。
域是一个集合,配上两个二元运算,满足加法和乘法构成交换群的性质。
了解这些代数结构的定义和性质对于我们理解高等代数中的各种代数系统具有重要的意义。
其次,我们需要掌握高等代数中的线性代数知识。
线性代数是高等代数中的一个重要分支,它涉及到向量空间、线性变换、特征值和特征向量等概念。
向量空间是线性代数中的一个重要概念,它包括了一组满足一些性质的向量,例如加法封闭性、数乘封闭性和满足向量空间公理的性质。
线性变换是一个向量空间到自身的映射,它保持了向量空间的线性结构。
特征值和特征向量是线性代数中非常重要的概念,它们在矩阵对角化、矩阵相似等问题中起着重要的作用。
另外,我们还需要了解高等代数中的一些重要定理和结论。
比如,矩阵的特征值和特征向量定理、矩阵的对角化定理、矩阵的相似对角化定理等。
这些定理和结论对于我们理解矩阵的性质和运用矩阵进行计算都具有重要的意义。
最后,我们需要掌握高等代数中的一些重要技巧和方法。
比如,矩阵的运算技巧、线性方程组的解法、矩阵的特征值和特征向量的计算方法等。
这些技巧和方法对于我们解决实际问题和进行高等代数的计算都具有重要的意义。
总之,高等代数是数学中非常重要的一个分支,它涉及到了许多抽象的概念和理论。
在学习高等代数的过程中,我们需要掌握一些基本的知识点,包括代数结构、线性代数、重要定理和结论,以及一些重要的技巧和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:3、一个数环是否一定包含0元? 4、除了零环外,是否还有只含有限个元素的
1
数环?
例2:证明 Z i a bi a,b Z,i2 1 是一个数环。
多 问题:5、除了定义之外,判断单的方法?
式
高
定理1.1.1:设S是一个非空数集,S是数环的充
形式表达式。
1
后来又把多项式定义为R上的函数:
式
F1 F2 或 F2 F1 )。
高 等 代 数
§1.2 一元多项式的定义和运算
1
多 项 式
高
一、多项式的概念
等
中学多项式的定义:n个单项式(不含加法或减
代 法运算的整式)的代数和叫多项式。
数
例: 4a+3b,3x2 2x 1, 3 y 1 .
25
在多项式中,每个单项式叫做多项式的项。这是
数
是不是数环?若是,给出证明,
若不是举出反例。
若 S1和 S2 是数域情况又如何?
1 S1 US2不是数域,反例:S1 a b 2 a,bQ , S2 a b 3 a,bQ
两个数域的并,不一定是数域,能不能找出两
多 个数域的并是一个数域的充要条件并证明之。
项 ( F1, F2 是数域,则F1 U F2 是数域的充要条件是
本章的重点和难点
重点:一元多项式的因式分解理论.
项
难点:最大公因式的概念,多项式的整除,互素和不可约多
式
项式等概念之间的联系与区别.
高
§1.1 数环和数域
等
研究数学问题常常需要明确规定所考虑的数的
代 范围,学习数学也是如此。
数
比如,先学习自然数,然后整数,再正有理数、
有理数、实数、复数。再比如讨论多项式的因式分
解、方程的根的情况,都跟数的范围有关。
例如
1
x2 2 在有理数范围内不能分解,在实数范围内
就可以分解。
多
x2 1 0 在实数范围内没有根,在复数范围内就
项 有根。等等。
式
高 我们目前学习的解析几何,数学分析都是在实数 等 范围内来讨论问题的。但在高等代数中,通常不做 代 这样的限制。 数 在代数中,我们主要考虑一个集合中元素的加减
乘三种运算封闭,但对除法并不封闭;而有理数集
多 项
对加、减、乘、除(除数不为0)四种运算都封闭。 同样,实数集、复数集对加、减、乘、除四种运算 都封闭。
式
高 根据数对运算的封闭情况,我们把数集分为两类: 等 数环和数域。
代
一、数环
数
定义1:设S是由一些复数组成的一个非空集合,
如果对 a,b S ,总有 a b, a b, a b S
在R与C之间不可能有别的数域。
多 项
设有数域F,使 R F C ,故
式
x F, x R, x C, 设x=a+bi,且 b 0
高(若b=0,则 x aR,矛盾)。
等 Q a,b R, a,b F, bi F, bi b i F 可见F=C。
代 问题:12、设 S1 和 S2 是数环,试问 S1 I S2, S1 U S2
当 d 0 2 c Q ,也矛盾)。于是
d
多 项 式
a b 2 a b 2 c d 2 c d 2
cd cd
2 2
a1 b1
2, a1, b1 Q
高 问题:8、一个数域必包含哪两个元素?
等
9、最小的数域是什么?
代 定理1.1.2:任何数域都包含有理数域Q。 数 证明:设F是一个数域,则 a F, a 0.
于是 a a 0 F, a a 1 F.
11 2,1 2 3,1 3 4,L , N F
1
0 1 1, 0 2 2, 0 3 3,L , Z F
对 x Q, x 0, x a , a,b Z,
多
b
故 xF,Q F.
项
式 问题:10、在判断一个数集是不是数域时,实际上
高
第一章 多项式
等 代 学时:28学时
数 教学方法和手段
由于多项式与整数在许多方面有相似之处,因此在建 立多项式分解理论时要注意与整数理论作对比。
基本内容和教学目的
1
本章主要讨论一元多项式的概念和运算,建立多项式 因式分解理论,并讨论与之有密切关系的求根问题。
这是中学有关知识的加深和扩充。
多
式 且是三个最重要的数域。
高问题:6、数域与数环之间有什么关系?例2中的数
等
集是不是数域?
代
7、除了Q、R、C外,是否还有其他的数域?
数
例3:证明 Q 2 a b 2 a,b Q 是一个数域。
证明要点:先证 Q 2 有一个非零元 1 1 0 2 ,
对加、减、乘封闭。再证除法封闭:
1 设 c d 2 0 c d 2 0(否则当 d 0 c 0矛盾;
等 要条件是S中任两个数的差和积仍在S中。
代
二、数域
数
定义2:设F是一个含有不等零的数的数集,如果F
中任两个数的和、差、积、商(除数不为0)仍在F中,
则称F是一个数域。
1
定义 2:设F是一个数环,如果 ① F内含有一个非
零数; ② 对 a,b F, 且 b 0 ,则 a b F
多 项
则称F是一个数域。 例如:有理数集Q,实数集R,复数集C都是数域,
乘除运算(即代数运算)是否还在这个集合之中
(代即数运运算算是:设否A封是闭一)个非。空集合,定义在A上的一个代数运算
1 运整算数封例的闭如商:两就这是都如个不个指有果集整存A集一中合在合数定一中一中的是个,个任和整元则法两、素数称则个与差,该,元之集、它素这对合使做积证应对A某仍明。中这一是整任个运整意数运算两数集算后个封,的对元闭结但加素。果两、A仍个减在A、
高 要检验几种运算?
等
定理1.1.3:设F是一个含有非零数的数集,则F
代 是一个数域的充要条件是F中任两个数的差与商(除
数 数不为零)仍属于F。
问题:11、在Q与R之间是否还有别的数域?在R与C
之间是否有别的数域?
例:对任意素数P, QP a b p a,b Q
1 是一个数域。Q QP R
则称S是一个数环。
例如:整数集Z,有理数集Q,实数集R,复数集 1 C都是数环。
问题:1、除了Z 、Q、R、C外是否还有其他数环?
多
2、有没有最小的数环?
项
例1:设a是一个确定的整数。令 S na n Z
式
高 则S是一个数环。 等 特别,当a=2时,S是全体偶数组成的数环。
代 当a=0时,S 0,即只包含一个零组成的数