第2章算法效率分析基础
算法设计与分析基础

2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的
算法-第2章-算法效率分析基础

The Big-O and Related Notations
2.2.7 基本的效率类型
1 log n n n log n n2 n3 2n n! constant logarithmic linear n log n quadratic cubic exponential factorial
思考
2.2.2 符号О
定义1 我们把函数t(n)属于O(g(n)) ,记作t(n) ∈ O(g(n)) ; 它的成立条件是:对于所有足够大的n, t(n) 的上界由g(n) 的常数倍数所确定,也就是说,存在大于0的常数c和非负 的整数n0,使得: 对于所有的n≥ n0来说, t(n) ≤c g(n)
cg(n)
2.2 渐进符号和基本效率类型
2.2.1 非正式的介绍
O(g(n)) 是增长次数小于等于g(n) (以及其常数倍,n趋 向于无穷大)的函数集合。 n∈O(n2),100n+5∈O(n2), n(n-1) /2 ∈O(n2),n3∈/ O(n2), Ω(g(n)),代表增长次数大于等于g(n)(以及其常数倍,n趋 向于无穷大)的函数集合。 n3∈ Ω(n2), n(n-1) /2 ∈ Ω(n2),但是100n+5 ∈/ Ω(n2) Θ(g(n))是增长次数等于g(n) )(以及其常数倍,n趋向于无 穷大)的函数集合。因此,每一个二次方程an2+bn+c在 a>0的情况下都包含在Θ(n2)中,除了无数类似于n2+sin n和n2+log n的函数(你能解释原因吗?)。
t(n) cg(n)
n0之前的情 况无关重要
n n0 符号Ω:t(n)∈Ω(g(n))
2.2.4 符号Θ
定义 3 我们把函数t(n)属于Θ(g(n)) ,记作t(n) ∈Θ(g(n)) ; 它的成立条件是:对于所有足够大的n, t(n) 的上界和下 界都由g(n)的常数倍数所确定,也就是说,存在大于0的 常数c1,c2和和非负的整数n0,使得: 对于所有的n≥ n0来说, c2g(n) ≤t(n) ≤ c1g(n)
第2章 算法分析基础(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)

3
Page 11
2.1.2 算法的渐近分析
常见的时间复杂度:
Ο(1)<(log2n)<(n)<(nlog2n)<(n2)<(n3)<…<(2n)<(n!)
多项式时间,易解问题
算
法
指数时间,难解问题
设 计 与
分
析
(
第
时间复杂度是在不同数量级的层面上比较算法
版 )
清
华
大
学
时间复杂度是一种估算技术(信封背面的技术)
Page 7
2.1.2 算法的渐近分析
3
每条语句执行次数之和 = 算法的执行时间 = 每条语句执行时间之和
基本语句的执行次数 for (i = 1; i <= n; i++)
单位时间
算
法
设
计
与
执行次数 × 执行一次的时间
分 析 (
第
for (j = 1; j <= n; j++)
版 )
x++;
指令系统、编译的代码质量
算法设计:面对一个问题,如何设计一个有效的算法
算
法
设
检
指
验
导
评
计 与 分 析 ( 第 版
改
估
) 清
进
华 大
学
出
版
算法分析:对已设计的算法,如何评价或判断其优劣
社
3
Page 3
2.1.1 输入规模与基本语句
如何度量算法的效率呢?
事后统计:将算法实现,测算其时间和空间开销
缺点:(1)编写程序实现算法将花费较多的时间和精力 (2)所得实验结果依赖于计算机的软硬件等环境因素
第2章 算法分析基础ppt课件

最新课件
7
1)事前分析
• 目的:试图得出关于算法执行特性的一种形式描 述,以“理论上”衡量算法 “好坏”。
• 如何给出反映算法执行特性的描述?
最直接方法:统计算法中各种运算的执行情况:
算法的数量级从本质上反映了一个算法的执行特性。 例:求解同一问题的三个算法分别具有n, n2 , n3数量级。 若n=10,则可能的执行时间将分别是10,100,1000 个 单位时间——与环境因素无关。
最新课件
10
• 计算时间/频率计数的表示函数 通过事前分析给出算法计算时间(频率计数)
的一个函数表示形式,一般记为与输入规模n有关 的函数形式:f(n)
则记作 f(N)=(g,(N))
含义:
• 算法在最好和最坏情况下的计算时间就一个常数因子范 围内而言是相同的。可看作:
既有f(N)=Ω(g(N)),又有f(N)=Ο(g(N))
最新课件
28
最新课件
29
算法分析方法
• 例:顺序搜索算法
template<class Type> int seqSearch(Type *a, int n, Type k) {
最新课件
13
算法的时间复杂性
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) =
p(I)T(I)
算法分析基础

6
程序(Program)
• 程序是算法用某种程序设计语言的具体实现。 • 程序可以不满足算法的有限性的性质。例如操作系统,是一个
在无限循环中执行的程序,因而不是一个算法。 • 操作系统的各种任务可看成是单独的问题,每一个问题由操作
系统中的一个子程序通过特定的算法来实现。该子程序得到输 出结果后便终止。
《算法设计技巧与分析》
第1章 算法分析基本概念
曹霑懋 caozhanmao@
Chapter 1 Basic Concepts in Algorithmic Analysis 内容
1.1 Introduction l.2 Historical Background 1.3 Binary Search 1.3.1 Analysis of the binary search algorithm 1.4 Merging Two Sorted Lists 1.5 Selectinn Sort 1.6 Insertion Sort 1.7 Bottom-Up Merge Sorting 1.7.1 Analysis of bottom-up merge sorting
最大搜索次数:满足Floor(n/2j-1)=1 时的j 值
– 即:1n/2j-1 <2 – 也即: 2j-1n <2j
– j-1 log n <j
j=Floor(log n)+1
2020/6/10
华南师范大学 计算
16
设随有堂序数练组习:
试搜索x=20, 以及 X =22. 1)拟用什么法?为什么? 2)试给出用你想要得算法求解的过程。
2020/6/10
华南师范大学 计算
14
1. 3 二分搜索及其时间复杂
计算机二级理论知识精华版

第一章数据结构与算法第一节算法一、算法的基本概念所谓算法是指解题方案的准确而完整的描述。
1、算法的基本特征:(1)可行性(2)确定性(3)有穷性(4)拥有足够的情报2、算法的基本要素(1)算法中对数据的运算和操作算术运算,逻辑运算,关系运算,数据传输(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。
一个算法可以用顺序、选择、循环三种基本控制结构组合而成。
2、算法设计的基本方法(1)列举法(2)归纳法(3)递推(4)递归(5)减半递推技术二、算法复杂度1、算法的时间复杂度:指执行算法所需要的计算工作量。
用算法在执行过程中所需基本运算的次数来衡量算法的工作量。
方法:平均性态,最坏情况复杂性2、算法的空间复杂度:指执行这个算法所需的内存空间。
第二节数据结构的基本概念一、什么是数据结构数据结构是指相互有关联的数据元素的集合。
如:(1)春、夏、秋、冬(2)父亲、儿子、女儿(1)数据元素有共同的特征(2)各个元素之间存在着某种关系(联系)。
用前后件关系来描述。
如:夏是秋的前件,秋是夏的后件。
父亲是儿子和女儿的前件儿子和女儿都是父亲的后件1、数据的逻辑结构数据结构是指带有结构的数据元素的集合。
一个数据结构应包含以下两方面的信息:(1)表示数据元素的信息(2)表示各数据元素之间的前后件关系,前后件关系是逻辑关系,与它们在计算机中的存储位置无关。
数据的逻辑结构反映数据元素之间的逻辑关系。
2、数据的存储结构数据的逻辑结构在计算机中的存放形式称为数据的存储结构,也称数据的物理结构。
采用不同的存储结构,数据处理的效率不同。
一般情况下,数据的逻辑结构和存储结构是不同的。
二、数据结构的图形表示每一个数据元素用中间标有元素值的方框表示,称为数据结点,简称结点。
用一条有向线段从前件结点指向后件结点。
父亲丨在数据结构中,没有前件的结点称为根结点,没有后件的结点称为终端结—午—点(也称为叶子结点)。
其他结点一儿子女儿般称为内部结点。
算法设计与分析第二版课后习题解答

算法设计与分析基础课后练习答案算法设计与分析基础课后练习答案习题1.1 4.设计一个计算的算法,n 是任意正整数。
除了赋值和比较运算,该算法只能用到基本的四则运算操作。
能用到基本的四则运算操作。
算法求//输入:一个正整数n 2 //输出:。
step1:a=1;step2:若a*a<n 转step 3,否则输出a ; step3:a=a+1转step 2; 5. a .用欧几里德算法求gcd (31415,14142)。
b. 用欧几里德算法求gcd (31415,14142),比检查min {m ,n }和gcd (m ,n )间连续整数的算法快多少倍?请估算一下。
a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1, 0) = 1. b.有a 可知计算gcd (31415,14142)欧几里德算法做了11次除法。
次除法。
连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和 2·14142之间,之间,所以欧几里德算法所以欧几里德算法比此算法快1·14142/11 ≈ 1300 与 2·14142/11 ≈ 2600 倍之间。
倍之间。
6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数对每一对正整数m,n 都成立. Hint: 根据除法的定义不难证明: l 如果d 整除u 和v, 那么d 一定能整除u ±v;l 如果d 整除u,那么d 也能够整除u 的任何整数倍ku. 对于任意一对正整数m,n,m,n,若若d 能整除m 和n,n,那么那么d 一定能整除n 和r=m mod n=m-qn n=m-qn;显然,若;显然,若d 能整除n 和r ,也一定能整除m=r+qn 和n 。
算法设计与分析课程设计

算法设计与分析 课程设计一、课程目标知识目标:1. 让学生掌握基本的算法设计原理,包括贪心算法、分治算法、动态规划等,并能够运用这些原理解决实际问题。
2. 使学生了解不同算法的时间复杂度和空间复杂度分析方法,能够评估算法的效率。
3. 引导学生理解算法的优缺点,并能针对具体问题选择合适的算法进行解决。
技能目标:1. 培养学生运用所学算法原理设计解决实际问题的算法,提高编程实现能力。
2. 培养学生通过分析算法的时间复杂度和空间复杂度,对算法进行优化和改进的能力。
3. 提高学生运用算法思维解决问题的能力,培养逻辑思维和创新能力。
情感态度价值观目标:1. 激发学生对算法学习的兴趣,培养主动探索、积极思考的学习态度。
2. 培养学生团队协作精神,学会与他人分享算法设计心得,共同解决问题。
3. 使学生认识到算法在现实生活中的重要性,提高对计算机科学的认识和兴趣。
课程性质:本课程为计算机科学领域的一门核心课程,旨在培养学生的算法设计与分析能力。
学生特点:学生已经具备一定的编程基础和逻辑思维能力,但对复杂算法的设计与分析仍需加强。
教学要求:结合实际案例,注重理论与实践相结合,引导学生通过自主探究、团队合作等方式,达到课程目标。
在教学过程中,注重分解目标,将目标具体化为可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. 算法基本原理:- 贪心算法:介绍贪心算法原理及其应用场景,结合实际案例进行分析。
- 分治算法:阐述分治算法的设计思想及其应用,举例说明。
- 动态规划:讲解动态规划的基本概念、原理和应用,分析典型问题。
2. 算法分析:- 时间复杂度分析:介绍大O表示法,分析常见算法的时间复杂度。
- 空间复杂度分析:阐述空间复杂度的概念,分析常见算法的空间复杂度。
3. 算法优化与改进:- 针对典型问题,分析现有算法的优缺点,探讨优化方向。
- 引导学生通过算法分析,提出改进方案,并进行实现。
4. 教学大纲安排:- 第一章:算法基本原理(贪心算法、分治算法、动态规划)- 第二章:算法分析(时间复杂度、空间复杂度)- 第三章:算法优化与改进5. 教材章节和内容列举:- 教材第3章:贪心算法及其应用- 教材第4章:分治算法及其应用- 教材第5章:动态规划及其应用- 教材第6章:算法分析(时间复杂度、空间复杂度)- 教材第7章:算法优化与改进教学内容确保科学性和系统性,结合实际案例进行讲解,使学生能够逐步掌握算法设计与分析的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在某个特定计算机上的某个算法程序的运行时间 • T(n)≈copC(n)
基本操作的 执行时间
基本操作次数
11
• 对下面的三个时间效率函数表达式,
哪一个效率高?
• C1(n)=n
• C2(n)=n3
• C3(n)= 10n
• n=1
•
11
• n=2
•
28
结论: 1 随n的递增,不同函数增幅 不同 2 某些函数在大规模时增幅显
t(n) g(n)
c
表明t (n)的增长次数比g (n)小 表明t (n)的增长次数和g (n)相同 表明t (n)的增长次数比g (n)大
25
2.2.7基本的效率类型
O(1)< O(logn)< O(n)< O(nlogn)< O(n2)< O(n3) <
O(2n)< O(n!)< O(nn)
常见的指数阶
1 log n
n n log n
n2 n3 2n n!
constant logarithmic
linear n log n quadratic cubic exponential factorial
26
关于渐进时间效率:
当比较两个算法的效率时,若两个算法是同阶的,必 须进一步考察阶的常数因子才能辨别优劣。
10 著,函数可以表示增幅的特点
3 我们希望选择大规模时,时 间效率增幅小的算法
100
• n=3
•
3 27 1000
• n=非常大
12
• 2.1.3增长次数(增长幅度)
• 特别考虑大规模的输入要强调执行次数 的增长次数呢?这是因为小规模输入在运 行时间上差别不足以将高效的算法和低效 的算法法区分开来。
较大的增长次数的部分所决定的,即它的效率较差
的部分.
24
2.2.6 利用极限比较增长次数
虽然符号O, Ω和Θ的正式定义对于证明它们的抽
象性质是不可缺少的,但我们很少直接用它们来比
较两个特定函数的增长次数。有一种较为简便的比
较方法,它是基于对所计论的两个函数的比率求极
限。有3种极限情况会发生:
0
n
lim
2.1.2 运行时间的度量单位
可以采用秒,分,小时吗?
可以统计算法每一步的操作次数吗?
一般的做法:
把基本操作(最重要的操作)次数作为算法运 行时间的度量单位。
思考下面算法的重要操作:
排序
矩阵乘法
10
• 建立一个算法时间效率的分析框架 • 对于输入规模为n的算法 • 统计基本操作执行次数C(n),来对其效率进行度
13
•
图1-2 各种函数的曲线
14
2.1.4 算法的最优、最差和平均效率
一个算法的最差效率是指当输入规模为n时,算 法的最坏情况下的效率。这时,相对于其他规 模为n的输入,该算法的运行时间最长。
为什么要考虑最坏效率?
提供了对任何规模为n的实例,算法运行的上界
Cworst(n)
15
一个算法的最优效率是指当输入规模为n时,
• 算法的时间效率和空间效率都用输入规模的函数进 行度量。
• 我们用算法基本操作的执行次数来度量算时间效率。 通过计算算法消耗的额外存储单元的数量来度量空 间效率。
• 在输入规模相同的情况下,有些算法的效率会的显 著差异。对于这样的算法,我们需要区分最差效率, 平均效率和最优效率。
• 本框架主要关心,当算法的输入规模趋向于无限大
的时候,其运行时间(消耗的额外空间)函数的增 长次数。
18
2.2 渐进符号和基本效率类型 复杂度函数的阶
19
20
例题
21
22
注意
• 上面3个符号 O,θ,Ω 称为渐进符号
• 在问题的求解规模充分大的时候才成立。 – 如,N3<2N ,只有在N>c的时候才成立, 其中c是方程N3=2N 的解。当N < c时, 前者反而有效。
第2章 算法效率分析基础
一个问题往往有多个算法,应当分析算 法的品性
–怎样评价一个算法?
–涉及的概念:问题的规模(大小)、基本
操作、计算复杂度、复杂度的量级、上下界 – 掌握循坏算法与递归算法的复杂度分析方法
1
•正确性 •工作量 •空间用量 •简单性 •最优型
2
3
在表A中查找关键字x
顺序查找:
算法在最优情况下的效率。这时,与其它
规模为n的输入相比,该算法运行得最快。
然而,无论是最差效率分析还是最优效 率分析都不能提供一种必要的信息:在 “典型”或者“随机”输入的情况下, 一 个算法会具有什么样的行为。这正是平均 效率试图提供给我们信息。
16
算法计算复杂度的定义
17
2.1.5 分析框架概要
什么是最坏情况 什么是最好情况
else return -1;
4
5
6
7
ห้องสมุดไป่ตู้
2.1 分析框架
如何评价时间效率?
2.1.1 输入规模的度量
一个事实:问题规模越大,算法运行时间越长。 将算法输入规模n为时间效率的参数。 选择哪个(些)参数作为输入规模?
8
• 一个算法好不好体现在运行该算法所需要的计算机资源 的多少上
–所需资源越少,该算法越好;
• 计算机最重要的资源是
–时间和空间
• 算法分析对算法利用这两种资源的效率做研究 • 时间效率:指出正在讨论的算法运行得有多快; • 空间效率:关心算法需要的额外空间。
• 研究实验告诉我们,对于大多数问题来说,我们在速度 上能够取得的进展要远大于在空间上的进展,
• 所以我们把主要精力集中在时间效率上。9
• SequentialSearch(A[0..n-1], x)
//输入:数组A[0..n-1],和查找关键字x //输出:返回第一个匹配x 的元素下标 //如果没有匹配的,返回-1
• i=0;
什么是基本运算
• while i<n and A[i]≠ x do i=i+1;
• If i<n then return i
27
2.3非递归算法的复杂度分析
如何用前面介绍的知识分析一个算法的效率
28
算法分析例题
29
例1 考虑从n个元素的列表中查找元素最大值的问 题. 假设列表是用数组实现的。
MaxElement(A[0..n-1])
//求给定数组中最大元素的值 //输入:实数数组A[0..n-1] //输出:A中最大元素的值
23
2.2.5渐进符号的有用特性
定理 如果t1(n) ∈O(g1(n)) 并且t2(n) ∈O(g2(n)), 则
t1(n)+ t2(n)∈O(max{g1(n), g2(n)}) (对于Ω和Θ符号, 类似的断言也为真)
对于两个连续执行部分组成的算法,应该如何应用
这个特性呢?它意味着该算法的整体效率是由具有