对模拟量的处理方法
模拟量信号干扰分析及11种解决秘诀

模拟量信号干扰分析及11种解决秘诀关键词:PLC 模拟量 信号干扰1、概述随着科学技术的发展,PLC 在工业控制中的应用越来越广泛。
PLC 控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。
自动化系统中所使用的各种类型PLC ,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。
要提高PLC 控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。
2、电磁干扰源及对系统的干扰影响PLC 控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。
其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。
共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。
共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。
共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。
差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
3、PLC 控制系统中电磁干扰的主要来源有哪些呢?(1) 来自空间的辐射干扰:空间的辐射电磁场(EMI )主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。
pcl模拟量的处理流程及注意事项

pcl模拟量的处理流程及注意事项下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!PCL模拟量处理流程与注意事项解析PCL(Programmable Logic Controller)是一种数字运算操作的电子系统,广泛应用于工业控制中。
PLC模拟量输入模块数值偶尔波动很大的处理方法

模拟量模块通过压力传感器(4-20ma)检测压力,待机时,所有电机均未启动,监控可以看到AIW6数值为6461,很稳定,但系统还是经常提示超压,于是我加了一条程序,用AIW6的值跟6400作比较,当AIW6的值小于6400时,将WIW6的即时值传送到某个存储器VW200,发现VW200的值有时5960,有时6210,总之就是远远小于6400,在计算中AIW6—6400有时候就会得到负数,最终计算出来的压力就会大过设定报警压力值,所以才会报警,知道问题所在了,但却百思不得其解,设备待机状态所有动力部份都不启动,应该不会有什么干扰,接线也正常,监控也正常,只有通过程序才能捕捉到它的瞬时值会偶尔小于6400。
把数据处理成工程量的实数表示,应该不会有太多跳动了。
零点显示5900~6460都不算什么,可以通过校准修正。
问题解决了,确实是数据类型的问题,在计算试中,用(AIWx–6400)的结果放到AC0后直接乘以总量程,再除以(3200—6400),那么当AIWX偶尔小于6400的时候,结果为负数,直接乘以总量程得出的结果就会非常大,所以超压,后来,我把(AIWx–6400)的结果进行整数到双整数的转化后,即使它的结果为负数,乘以总量程得出的结果也不会很大。
ITD指令用于16位数据格式向32位数据格式的转变,掩盖了一些技术细节。
ITD并不改变变量的值,初学者容易把它给忽略。
S7200的符号数(可正可负)是用2进制补码方式表示,最高位是符号位,当数位长度发生变化时,符号位必须予以正确处理,否则会造成数值转换错误。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
PLC对模拟量信号是怎么进行处理的

PLC对模拟量信号是怎么进行处理的模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。
系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。
PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。
从而实现系统的监控及控制。
从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。
但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,相比于电压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。
这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。
1PLC对模拟量信号的转换西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围台达DVP系列模拟量模块对模拟量信号的转换范围从以上可以看到:1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648);2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384);3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转换范围均为-27,648 到 27,648);故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。
2PLC数据转换处理过程1、模拟量信号与PLC转换数据之间的转换从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。
抗干扰处理方法

PLC抗干扰处理办法一、模拟量抗干扰处理办法1.1 、模拟量类型:1.1.1 模拟量输入类型(可根据客户需求定制)1.1.2 模拟量输出类型1.2 模拟量输入抗干扰处理办法特点:1. 测温范围广:2. K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000C,短期1200 C。
3. E 型:在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用4. J型:既可用于氧化性气氛(使用温度上限750C),也可用于还原性气氛(使用温度上限950C),并且耐H2及CO气体腐蚀,多用于炼油及化工;5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400C,短期1600 C。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;1 .热电偶不能和强电放在一个线槽内2. 使用隔离型热电偶(信号线与屏蔽线分开的热电偶)处理方法:1. 检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;1. 冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)2. 将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开3. 加104 瓷片电容、磁环做防干扰处理4. 开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线5. 集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
6. 信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
7. 交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设8. 采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLG9. 采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。
1.2.2 PT100特点:1. 测温范围:-99.9~499.9 C,线距越长线损越大1. 三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端2. 线距1.5m 左右,若测温距离长需使用特殊的延长线(线损小)3. 滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V 的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。
S7-1200PLC模拟量数据采集及调试

S7-1200PLC模拟量数据采集及调试作为一名自动化工程师,在工控维修或者工控调试中,经常会碰到模拟量信号采集与处理问题。
那什么是模拟量?又该如何采集并处理,结合最近处理一个案例,跟大家分享一下。
模拟量是指一些连续变化的物理量,如电压、电流、压力、速度、流量等信号量。
模拟信号是幅度随时间连续变化的信号,通常电压信号为0~10V,电流信号为4~20mA,可以用PLC的模拟量模块进行数据采集,其经过抽样和量化后可以转换为数字量。
本次分享的是,利用西门子PLC采集压力传感器信号,从安装到调试的全过程。
硬件清单如下:1.西门子PLC一块CPU1214C DC/DC/DC 如下图:2.模拟量输入模块是SM1231 4AIX16 BIT(模拟量4通道):模拟量输入模块是SM1231 4AIX16 BIT 四线制度压力传感器3.四线制度压力传感器1个,DC24V 4-20MA:压力传感器数据采集,大致需要经过以下5个步骤:(1)压力传感器正确安装,并正常接线:四线压力传感器,24V供电(2线)+2信号线(2线),如下图所示:四线压力传感器接线PLC模块接线传感器插头(2)模拟量通道配置:定义模拟量0通道,IW112采集数据,模拟量配置如下:模拟量0通道配置(3)PLC程序编写:PLC模拟量功能块,西门子博途有现场的功能块,NORM_X和SCALE_X 直接调用就行,如下图,需要注意数据类型.PLC程序(4)现场调试:现场监控PLC程序如调试中,出现了以下情况,压力变送器IW112,采集的数据,超范围太多,需要检查一下压力传感器是否有断线?我这个就是断线,采集的数据不对,如下图:检查线路后,发现有虚接,重新接线后,信号采集正常:如下图:。
模拟量采集滤波方法

模拟量采集滤波方法全文共四篇示例,供读者参考第一篇示例:模拟量采集是一种常见的工程实践,用于测量和监控物理量。
由于环境和设备的干扰,模拟信号在传输和采集过程中常常受到噪声的影响,为了获得准确、稳定的采集数据,必须采取一定的滤波方法。
本文将介绍几种常见的模拟量采集滤波方法,希望能为工程师们在实际应用中提供一些参考。
一、低通滤波器低通滤波器是最常用的一种滤波器,它能够滤除高频信号,保留低频信号。
在模拟量采集中,常常使用低通滤波器来滤除噪声信号,保留真实信号。
低通滤波器可以采用各种结构,如RC低通滤波器、巴特沃斯低通滤波器、切比雪夫低通滤波器等。
其实现原理是通过设置截止频率,将高于该频率的信号滤掉,只保留低于该频率的信号。
选择合适的截止频率很关键,一方面要确保噪声尽可能被滤掉,另一方面要确保信号的有效成分不被破坏。
二、中值滤波器中值滤波器是一种非线性滤波器,它采用信号窗口中所有数据的中值来取代当前数据点的数值。
中值滤波器对随机噪声的抑制效果比较好,而且能够保持信号的边缘信息,适用于各种实时信号的滤波处理。
中值滤波器的实现比较简单,只需要将信号数据按大小进行排序,然后取中间值即可。
不过需要注意的是,中值滤波器的延时较大,不适用于对信号的实时性要求较高的场合。
三、滑动平均滤波器滑动平均滤波器是一种简单有效的滤波方法,它通过对一定时间内的数据进行平均处理来降低噪声干扰。
滑动平均滤波器主要分为简单滑动平均和加权滑动平均两种。
简单滑动平均是将一定时间窗口内的信号数据进行累加求和,然后除以窗口长度得到平均值。
加权滑动平均则是对信号数据进行加权处理,根据信号的重要程度不同,给予不同的权重。
滑动平均滤波器的优点是实现简单、操作方便,而且对周期性的噪声有较好的去除效果。
不过需要注意的是,滑动平均滤波器对信号的实时性要求较高,滞后性比较明显。
四、卡尔曼滤波器卡尔曼滤波器是一种递推滤波器,主要用于动态系统的估计和控制。
它结合了系统模型和观测数据,通过对系统状态的估计来去除噪声干扰。
模拟量模块的使用及信号的采集与处理

模拟量模块的使用及信号的采集与处理一、实验目的1、熟悉可编程序控制器的工作原理、主要参数、硬件结构、模块特性、安装配置及指令系统、程序设计、调试方法。
2、熟悉S7-300模拟量模块的工作原理,掌握硬件安装接线的方法及软件的设置及编程。
3、掌握模拟量模/数、数/模转换的原理,输入输出编程方法及STEP7开发环境的使用。
二、实验要求1、器材需求:装有Step-7的计算机,S7-300 PLC(包括电源模块、CPU模块、通信模块和至少一个模拟量模块),数字万用表、PLC实验台及实验用导线若干。
2、以尽可能直观的方式验证模拟量输入、输出模块的结果及精度。
三、实验原理通过PLC模拟量模块采集0-10V模拟电压再输出的方式,验证其模拟量模块的转换速度及精度。
模拟量输出框图:图3-1 模拟量输出框图四、实验步骤1、接线本实验除了PLC的电源模块、CPU模块和通信模块,输入/输出模块只用到模拟量模块SM334。
模拟量I/O模块SM334有两种规格,一种是有4模入/2模出的模拟量模块,其输入、输出精度为8位,另一种也是有4模入/2模出的模拟量模块,其输入、输出精度为12位。
SM334模块输入测量范围为0~10 V或0~20 mA,输出范围为0~10 V或0~20 mA。
它的I/O测量范围的选择是通过恰当的接线而不是通过组态软件编程设定的。
与其它模拟量模块不同,SM334没有负的测量范围,且精度比较低。
本实验的I/O模块选用SM334AI4/AO2x12bit模拟量模块,输入信号为实验台提供的0-10V连续可调直流电源,SM334 AI4/AO2x12bit模块的原理图如下:图3-1 SM334 AI4/AO2x12bit示意图接线方法:将模块的电位参考端和每个通道的电位参考端接地(或电源负极),将所选输入通道的输入端接到实验台0-10V直流电源的正极,并用数字万用表测量输入的模拟电压值和SM334 AI4/AO2x12bit模块模出口的电压值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对模拟量的处理方法
1. 模拟量的处理
对于采集到的重量信号,采用算术平均值滤波法(多次采样,求和求平均值)减小各种干扰因素引起的误差。
2. 量程转换
由于各个通道的模拟量量程不同,所以要进行量程转换,以便正确显示重量值,量程转换公式:
()000
10
1S M M M M S S Y out +---=
Y —转换后的结果
1M --变送器输出为满量程时模/数转换器的转换值 0M --变送器输出为零点时模/数转换器的转换值 out M --某一次采样时模/数转换器的转换值
1S --测量参数的上限 0S --测量参数的下限
如:假定某一通道测量的模拟量参数是液位,下限是mm S 2000=,上限是mm S 12001=,模拟量信号是1V ~5V ,8位模/数转换器。
当液位是1200mm 时,变送器输出为满量程5V ,模拟量信号的A/D 转换值2551=M ;当液位是200mm 时,变送器输出为是1V (零点),模拟量信号的A/D 转换值510=M 。
假定液位是800mm 时,模拟信号的输出是x
V
x V
V mm mm mm mm 1152008002001200--=
-- V x 4.3=,
这时A/D 转换器的转换值
out
M V
V 4.32555= out M =173,代入公式
()00010
1S M M M M S S Y out +---=
()7982005117351
2552001200=+---=
为了提高精度和减少运算时间,将)(-IN V 接1.00V 参考电压,这时00=M ,当模拟信号输出是1V ,A/D 转换输出结果是0,假设当液位是800mm 时,模拟信号的输出是3.4V ,这时out M =153,代入公式
()00010
1S M M M M S S Y out +---=
()80020001730
2552001200=+---=
3. 数制转换
以上计算的操作数均为浮点数,因此PLC 编程时,在计算前应将所有整数均转换成浮点数,运算结果再取整,在模拟屏上显示的参数应为十进制浮点数(实数)。
数制转换和四则运算等处理都可作成子程序。
在控制部分把量程转换结果同设定数值相比较,结果控制输出。
4. 本课题具体处理
本课题线路一次侧的电流范围可以任选,区别仅在于一次侧电流范围不同时选配不同变比的电流互感器。
二次侧的电流范围总是0~5A 。
通过表头电路(变送器),接入模拟量输入模块的是0V ~1V 的标准模拟量信号,且是单极性电压信号,12位A/D 转换器转换数据的格式是:
12位A/D 转换值
0 0 0
当线路电流(二次侧)是5A 时,变送器输出为满量程1V ,模拟量输入模块的A/D 转换值是
320001=M ,当线路电流是0时,变送器输出为0V ,模拟量输入模块的A/D 转换值是00=M ,假定当电流是3A 时,模拟信号的输出是
x
1
35= V x 6.0=,这时模/数转换器的转换值out M V
V
M out 6.0132000= 19200=out M , 代入公式计算转换后的结果:
()00010
1S M M M M S S Y out +---=
()30192000
3200005=---=
对于不同的场合,电流范围不同时,可在模拟显示屏上设置一个变量,通过屏面输入不同的电流互感器变比,用以控制不同的对象。
模拟量模块的接线:
DIP开关的设置:
EM235配置单极性模拟量
满量程输入分辨率SW1 SW2 SW3 SW4 SW5 SW6
ON OFF OFF ON OFF ON 0~50mV 12.5μV OFF ON OFF ON OFF ON 0~100mV 25μV ON OFF OFF OFF ON ON 0~500mV 125μV OFF ON OFF OFF ON ON 0~1V 250μV ON OFF OFF OFF OFF ON 0~5V 1.25mV ON OFF OFF OFF OFF ON 0~20mA 5μA OFF ON OFF OFF OFF ON 0~10V 2.5mV 双极性模拟量
满量程输入分辨率SW1 SW2 SW3 SW4 SW5 SW6
ON OFF OFF ON OFF OFF ±250mV 12.5μV OFF ON OFF ON OFF OFF ±50mV 25μV OFF OFF ON ON OFF OFF ±100mV 50μV ON OFF OFF OFF ON OFF ±250mV 125μV OFF ON OFF OFF ON OFF ±500mV 250μV OFF OFF ON OFF ON OFF ±1V 500μA ON OFF OFF OFF OFF OFF ±2.5V 1.25mV OFF ON OFF OFF OFF OFF ±5V 2.5mV OFF OFF ON OFF OFF OFF ±10V 5mV。