第3章 电阻应变式传感器

合集下载

15第3章_电气式传感(1)

15第3章_电气式传感(1)
Rx kl x s xp Rp R
x
B
C
A
x
xp
灵敏度
dR dx
kl

e0 ey
e0
x
ey
x
x pey e0
1.1 变阻器式传感器

x x pey e0 kley
e0
ey
0
x
Hale Waihona Puke xp1.1 变阻器式传感器
后接分压电路
R p Rx
e0
Rx
ey
RL
V
ey

A
dl
l
A
2
dA
l A
d
代入 R l / A
dR R

dl l

dA A

d

1.2 电阻应变式传感器
金属丝 A r 2 金属丝体积不变
dR dl l
dr r dl l
2 d

2 dr r

d

R


器(differential transformer))
2.1 自感型(self-inductance)(可变磁阻式)
原理:电磁感应
线圈
由电磁学原理可知: L W m i 其 中 : L 电 感 ; W 线 圈 匝 数 ; i 电 流 ;
m 电 流 i产 生 的 磁 通
基于金属导体的应变效应(strain effect),即
金属导体在外力作用下发生机械变形时,其电 阻值随着所受机械变形(伸长或缩短)的变化而 发生变化象。
1.2 电阻应变式传感器

电阻应变式传感器

电阻应变式传感器

当温度变化∆t时,电阻丝电阻的变化值为:
∆Rα=Rt-R0=R0α0∆t
2) 试件材料和电阻丝材料的线膨胀系数的影响 当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如 何变化,电阻丝的变形仍阻丝材料的线膨胀系数不同时,由于环境温度的 变化,电阻丝会产生附加变形,从而产生附加电阻变化。 设电阻丝和试件在温度为0℃时的长度均为l0, 它们的线膨胀 系数分别为βs和βg,若两者不粘贴,则它们的长度分别为
当电桥平衡时, Uo=0, 则有 或 R1R4 = R2R3
R1 R3 = R2 R4
电桥平衡条件:相邻两臂 电桥平衡条件 电阻的比值应相等, 或相 对两臂电阻的乘积相等。
电桥接入的是电阻应变片时,即为应变桥。当一个 桥臂、两个桥臂乃至四个桥臂接入应变片时,相应 的电桥为单臂桥、半桥和全臂桥。 2.不平衡直流电桥的工作原理及电压灵敏度
R1 Z1 = R1 + jwR1C1
R2 Z2 = R2 + jwR2C2
Z 3 = R3
输出电压
⋅ ⋅
Z 4 = R4
U ( Z1Z 4 − Z 2 Z 3 ) U0 = ( Z1 + Z 2 )( Z 3 + Z 4 )
要满足电桥平衡条件, 即U0=0, 则有 Z1 Z4 = Z2 Z3


∆R ∆ρ = (1 + 2 µ )ε + R ρ
∆ρ ∆R R = (1 + 2 µ ) + ρ
ε
ε
通常把单位应变能引起的电阻值变化称为金属电 阻丝的灵敏度系数。其物理意义是单位应变所引起的 电阻相对变化量, 其表达式为 ∆ρ ρ K 0 = 1 + 2µ + ε ∆R = k 0ε 因此 R 灵敏度系数受两个因素影响: ①受力后材料几何尺寸的变化, 即(1+2µ); ②受力后材料的电阻率发生的变化, 即∆ρ/

第三章 传感器

第三章 传感器

第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。

也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。

传感器通常直接作用于被测量。

传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。

近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。

深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。

二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。

通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。

因此,传感器的组成将依不同情况而有差异。

敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。

传感元件——又称变换器,是传感器的重要组成部分。

传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。

如热电偶和热敏电阻等。

传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。

测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。

测量电路视传感元件的类型而定。

三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。

为了对传感器有一个概括的认识,对传感器进行研究是很必要的。

《电阻应变式传感器》课件

《电阻应变式传感器》课件
薄膜电阻应变式传感器利用薄膜材料制作,具有高灵敏度、低热误差等特点;微型电阻应变式传感器则具有体积 小、重量轻、易于集成等优点,常用于微机电系统等领域。
03
电阻应变式传感器的测量电路
直流电桥测量电路
优点
简单、可靠、稳定性好。
缺点
对温度变化敏感,需要采取温度 补偿措施。
交流电桥测量电路
优点
对直流电源的稳定性要求较低,可以减小电源波动对测量结 果的影响。
在工业生产过程中,电阻应变式压力传感器被广泛应 用于压力控制、流量控制等场合,如气瓶压力监测、 管道压力监测等。
汽车行业
汽车发动机、气瓶、刹车系统等都需要用到压力传感 器,来监测和控制各种气体和液体的压力。
位移传感器的应用实例
自动化生产线
在自动化生产线上,位移传感器被用来检测和控制系 统中的物体位置,如机器人手臂的定位、传送带的物 体位置检测等。
电阻应变式传感器
目 录
• 电阻应变式传感器简介 • 电阻应变式传感器的类型与特性 • 电阻应变式传感器的测量电路 • 电阻应变式传感器的误差来源与补偿方法 • 电阻应变式传感器的应用实例
01
电阻应变式传感器简介
定义与工作原理
定义
电阻应变式传感器是一种将应变转换为电阻变化的传感器,通过测量电阻的变 化来测量受力状态。
总结词
半导体应变式传感器具有高灵敏度、 低温度系数和良好的线性等优点。
详细描述
半导体应变式传感器利用半导体的压 阻效应,即当半导体受到外力作用时 ,其电阻值会发生变化。这种传感器 常用于测量加速度、压力和振动等物 理量。
陶瓷电阻应变式传感器
总结词
陶瓷电阻应变式传感器具有耐高温、耐 腐蚀、高绝缘性和良好的稳定性等特点 。

电阻式应变传感器

电阻式应变传感器

电阻式应变传感器是以电阻应变计为转换元件的传感器,其精确测量工作的原理是应变式原理。

这种应变计可以将变形能量转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。

弹性敏感元件、电阻应变计、补偿电阻和外壳组成的电阻应变式传感器,可以根据具体测量要求,设计成多种结构的形式。

还有这样的事实存在,弹性敏感元件如果受到所测量的力会产生变形,并使附着其上的电阻应变计一起变形。

目前,在测量行业内,常用的电阻应变式传感器有应变式测力传感器、应变式压力传感器、应变式扭矩传感器、应变式位移传感器、应变式加速度传感器和测温应变计等。

电阻应变式传感器的优点是精
度高,测量范围广寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、整体化和品种多样化等。

电阻式应变传感器常见的特点有以下几点:
①精度高,测量范围广;
②使用寿命长,性能稳定可靠;
③结构简单,体积小,重量轻;
④频率响应较好,既可用于静态测量又可用于动态测量;
⑤价格低廉,品种多样,便于选择和大量使用。

蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。

公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还
可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要求。

如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。

应变电阻式传感器

应变电阻式传感器

tk
0.8
l0 v
(3-17)
式中: l0——应变片基长; v——应变波速。
若取l0=20mm, v=5000 m/s,则tk=3.2×10-6 s。
第3章 应变式传感器
3.4 电阻应变片的测量电路
电阻应变式传感器的测量电路常采用电桥电路 可以分为直流电桥或交流电桥。 桥的作用:将应变片产生的应变而引起的电阻变化量 △R转 换成电压变化量 △mV或电流变化量 △I 输出。
第3章 应变式传感器
3.3 电阻应变片的特性
弹性敏感元件 +电阻应变片⇒ 电阻应变式传感器 3.3.1
物体在外力作用下而改变原来尺寸或形状的现象称为变形, 而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种 变形称为弹性变形。 具有弹性变形特性的物体称为弹性元件。
弹性元件在应变片测量技术中占有极其重要的地位。它首 先把力、力矩或压力变换成相应的应变或位移,然后传递给粘 贴在弹性元件上的应变片,通过应变片将力、力矩或压力转换 成相应的电阻值。 弹性元件的基本特性有:
第3章 应变式传感器
3.4.1
1. 直流电桥平衡条件 电桥电路如图3-9所示,图中E为电源电压,R1、R2、R3及 R4为桥臂电阻,RL为负载电阻。 当RL→∞时,电桥输出电压为
Uo
E
R1 R1 R2
R3 R3 R4
(3-34)
第3章 应变式传感器
R1 A
R3
B
Io
R2
C
R4 D

RL Uo -
对变化ΔR/R。理论和实验表明,在一定应变范围内ΔR/R与εt的
R R
Kt
式中, εt为应变片的轴向应变。
(3-16)

机械工程测试基础 第三章 传感器

机械工程测试基础  第三章 传感器
R 1 2 E x R
3.3.1 电阻式传感器 R / R Sg E
x
●优点:尺寸、横向效应、机械滞后都很小,灵 敏系数大,输出大,可不需放大器连接,使得测量系 统简化。 ●缺点:电阻值和灵敏系数的温度稳定性差;测 量较大应变时非线性严重;灵敏系数随受拉或压而变, 且分散度大 。 分析表明,金属丝应变片与半导体应变片工作原 理的主要区别在于:前者利用导体形变引起电阻变化, 后者利用半导体电阻率变化引起电阻变化。
3.1 概述 2)按工作的物理基础分类: 见表3-1:机械式,电气式,光学式,流体式等.
3.1 概述 3)按信号变换特征: 能量转换型和能量控制型. 能量转换型:直接由被测对象输入能量使其工作. 例如:热电偶温度计,压电式加速度计. 能量控制型:从外部供给能量并由被测量控制外部 供给能量的变化.例如:电阻应变片.
dR d (1 2 ) x R

dR / R
x
1 2
d /
x
灵敏系数: 令
Sg dR / R
x
1 2 E , (d / E x )
Sg称为金属丝的灵敏系数,表示金属丝产生单 位变形时,电阻相对变化量的大小。 显然,sg 越大,单位变形引起的电阻相对变化 量越大。
机械工程测试技术基础
第三章
常用传感器与敏感元件
本章学习要求:
1.掌握传感器的分类方法 2.掌握常用传感器测量原理、 特点及其应用 3.掌握传感器选用原则
第三章 常用传感器与敏感元件
3.1 概述
1. 传感器定义 传感器是直接感受规定的被测量,并能按一定 规律将被测量转换成同种或别种量值输出的装置。 物理量 电量
Rp
xp

电阻式传感器

电阻式传感器
r
F F
y x
r
a
l1 l (a) (b)
图3-5 横向应变 (a) 应变片及轴向受力图; (b) 应变片的横向效应图
第3章 电阻式传感器 综上所述,将直的电阻丝绕成敏感栅后,虽然长度改 变产生的应变情况相同,但由于圆弧段截面积增大,电阻值 减小,敏感栅的灵敏系数 k 较同样长度单纯受轴向力时的 灵敏系数 k0要小。这种因弯折处应变的变化使灵敏系数减 小的现象称之为应变片的横向效应。横向效应。
R R k L L

R k R
(3-36)
式中, ε为应变片的轴向应变, ε =ΔL/L。 k 为应变片的灵敏系数,又称“标称灵敏系数” 。
第3章 电阻式传感器 * 2.横向效应和横向灵敏度
当将图3-5所示的应变片粘贴在被测试件上时,由于其敏 感栅是由n条长度为l1 的直线段和直线段端部的n-1个半径为r 的半圆圆弧或直线组成,若该应变片承受轴向应力而产生纵 向拉应变εx外, 还在与x方向垂直的y方向产生压缩应变εy, 使圆弧段截面积增大,电阻值减小。
k0 dR R

(1 2 )
d

(1)应变片受力后材料几何尺寸的变化,即1+2μ; (2) 应变片受力后材料的电阻率发生的变化, 即
d


对金属材料来说,电阻丝灵敏度系数表达式中1+2μ 的值要比(dρ/ρ)/ε大得多。一般金属材料在弹性形变时, μ约为0.3,所以k0的第一项约为1.6 。 用金属电阻材料制成的金属丝应变片和金属箔式应变 片,其灵敏系数k0主要取决于第一项,因电阻率的变化而 引起的电阻值变化是较小的。
灵敏系数稳定性好,不但在弹性变形范围内能保持 为常数,进入塑性变形范围内也基本上能保持为常数; 康铜的电阻温度系数较小且稳定,当采用合适的热 处理工艺时,可使电阻温度系数在±50×10-6/℃的范围 内; 康铜的加工性能好,易于焊接,因而国内外多以康 铜作为应变丝材料。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章电阻应变式传感器
作者:黄小胜
3.1 何为电阻应变效应?怎样利用这种效应制成应变片?
3.2 什么是应变片的灵敏系数?它与金属电阻丝的灵敏系数有何不同?为什么?
3.3 为什么增加应变片两端电阻条的横截面积便能减小横向效应?3.4 金属应变片与半导体应变片在工作原理上有何不同?半导体应
变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?为什么有这种差别,说明其优缺点。

举例说明金属丝电阻应变片与半导体应变片的相同点和不同点。

3.5 一应变片的电阻R=120Ω,灵敏系数k=2.05,用作应变为800/m m
μ
的传感元件。

求:①R
∆和/R R
∆;②若电源电压U=3V,初始平衡时电桥的输出电压U0。

3.6 在以钢为材料的实心圆柱形试件上,沿轴线和圆周方向各贴一片
电阻为120Ω的金属应变片R1和R2(如图3-28a所示),把这两应变片接入电桥(见图3-28b)。

若钢的泊松系数0.285
μ=,应变片的灵敏系数k =2,电桥电源电压U=2V,当试件受轴向拉伸时,
测得应变片R1的电阻变化值
10.48
R
∆=Ω。

试求:①轴向应变;②电桥的输出电压。

3.7 一测量吊车起吊重物的拉力传感器如图3-29a所示。

R1、R2、R3、
R4按要求贴在等截面轴上。

已知:等截面轴的截面积为
0.00196m2,弹性模量E=2×1011N/m2,泊松比0.3
μ=,且R1=R2=R3=R4=120Ω, 所组成的全桥型电路如题图3-29b所示,供桥电压U=2V。

现测得输出电压U0=2.6mV。

求:①等截面轴的
纵向应变及横向应变为多少?②力F为多少?
图3-29
3.8 已知:
有四个性能完全相同的金属丝应变片(应变灵敏系数2k =),
将其粘贴在梁式测力弹性元件上,如图3-30所示。

在距梁端0l 处
应变计算公式为
026Fl Eh b
ε= 设力100F N =,0100l mm =,5h mm =,20b mm =,52210/E N mm =⨯。

求:
①说明是一种什么形式的梁。

在梁式测力弹性元件距梁端0l 处画
出四个应变片粘贴位置,并画出相应的测量桥路原理图;②求出各应变片电阻相对变化量;③当桥路电源电压为6V 时,负载电
阻为无穷大,求桥路输出电压U 0是多少?
3.9 图3-31为一直流电桥,负载电阻R L 趋于无穷。

图中E=4V ,
R 1=R 2=R 3=R 4=120Ω,试求:① R 1为金属应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压U 0=? ② R 1、R 2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U 0=? ③ R 1、R 2为金属应变片,如果感应应变大小相反,且ΔR 1=ΔR 2 =1.2Ω,电桥输出电压U 0=?
答案
3.1 答:
导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。

图 3-30
图3-28
当外力作用时,导体的电阻率ρ、长度l 、截面积S 都会发生变化,从而引起电阻值R 的变化,通过测量电阻值的变化,检测出外界作用力的大小。

3.2答:
金属丝灵敏系数0k 主要由材料的几何尺寸决定的。

受力后材料的几何尺寸变化为(12)μ+,电阻率的变化为()//ρρε∆。

而实际应变片的灵敏系数应包括基片、粘合剂以及敏感栅的横向效应。

虽然长度相同,但应变状态不同,金属丝做成成品的应变片(粘贴到试件上)以后,灵敏系数降低了。

3.3答:
敏感栅越窄,基长越长的应变片,横向效应越小,因为结构上两端电阻条的横截面积大的应变片横向效应较小。

3.4答:
金属导体应变片的电阻变化是利用机械形变产生的应变效应,对于半导体而言,应变传感器主要是利用半导体材料的压阻效应。

金属电阻丝的灵敏系数可近似写为 012k μ≈+,即0 1.52k ≈~;半导体灵敏系数近似为 ()0//k E ρρεπ≈∆=≈50~100。

3.5解:
2.05;800/k m m εμ==
/0.0164;0.2R R k R ε∴∆=⋅=∆≈Ω应变引起的电阻变化
033 1.234R U V U mV R
∆==⋅=当电源电压时,电桥输出电压
3.6解1:
1)11/R R k ε∆=
则轴向应变为: 1/0.48/1200.0022
R R k ε∆=== 2)电桥的输出电压为:
011(1)220.002 1.285 5.1422
U Uk mV εμ=+=⨯⨯⨯⨯=
解2:
112;120;0.48;2k R R U V ==Ω∆=Ω=
1101142R R k U U R R mV ε∆=
=⋅∆=/轴向应变: 0.002电桥输出电压: / 3.7解:
211212340120;0.3;0.00196;210/;2; 2.6R R R R S m E N m U V U mV μ====Ω===⨯==
050.156//0.0008125120.00048753.18510U R R U
l R R R R l k r l r l
F SE N εμμε∆=
=Ω∆∆∆====+∆∆=-=-==⨯按全桥计算:轴向应变:横向应变:力:
3.8解:
①梁为一种等截面悬臂梁;应变片沿梁的方向上下平行各粘贴两个;
②5202;100;100;5;2;210/k F N l mm h mm b mm E N m ======⨯
02620.012Fl R k R Eh b
ε∆∴===应变片相对变化量为: ③060.072R V U V R ∆=⨯=桥路电压6时,输出电压为:
3.9 图3-31为一直流电桥,负载电阻R L 趋于无穷。

图中E=4V ,
R 1=R 2=R 3=R 4=120Ω,试求:① R 1为金属应变片,其余为外接电阻,当R 1的增量为ΔR 1=1.2Ω时,电桥输出电压U 0=? ② R 1、R 2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U 0=? ③ R 1、R 2为金属应变片,如果感应应变大小相反,且ΔR 1=ΔR 2 =1.2Ω,电桥输出电压U 0=?
解:
①100.0104E R R U V R ∆=⋅=因为只有为应变片,电桥输出按单臂电桥计算, ②00U V =因为两应变片变化大小相同,相互抵消无输出, ③120,0.022E R R R U V R ∆=⋅=因为应变时大小变化相反,电桥输出按半桥计算,。

相关文档
最新文档