二阶常微分方程的几种解法

合集下载

二阶微分方程的3种通解

二阶微分方程的3种通解

二阶微分方程的3种通解“二阶微分方程的3种通解”是微积分中的一门重要课题。

它是研究复杂的动态系统的重要研究工具,也是理解现实世界的运行规律的有力手段。

本文旨在介绍二阶微分方程的三种通解。

一、什么是二阶微分方程二阶微分方程是一种常微分方程,它可以用来描述复杂的动态系统。

定义上它就是将变量y和它的导数y1放入一个非齐次微分方程中,使得它们的值随时间的变化满足这个方程,即:a1(t)y(t)+a2(t)y(t)+a3(t)F(t)=0其中,a1(t)、a2(t)、a3(t)是方程的系数函数,而F(t)是方程右边的非齐次项,是外界作用而引入的。

二、二阶微分方程的3种通解1.特解特解是指对具体二阶微分方程求出的特殊解,它是由具体方程确定的。

这种解与普通解不一样,它是一个全体解,不需要任何约束条件,而普通解需要满足初值条件。

特解的形式是由双曲函数表示的。

2.普通解普通解是指满足二阶微分方程的通用解,它可以用不同的参数来描述多个解,用来满足不同的初值条件。

它的形式是由一个线性组合的两个线性无关的解所组成,即:y=c1y1+c2y2,其中c1,c2是常数,而y1,y2则是线性无关的解。

3.通用解通用解是指二阶微分方程可以求得的最一般的解,它由两个线性无关的特解的线性组合所组成,即:y=a1y1+a2y2,其中a1,a2是常数,而y1,y2则是线性无关的特解。

三、总结从本文所介绍的二阶微分方程的三种通解的形式来看,可以不难发现:特解是满足特定方程的特定解;普通解是满足特定方程的通用解;而通用解则是满足特定方程的最一般解。

因此,二阶微分方程求解的3种通解形式是有用的,可以帮助我们研究复杂的动态系统,并理解真实世界的运行规律。

本文介绍了二阶微分方程的三种通解,即特解、普通解和通用解,以及它们之间的区别。

它们可以用来描述复杂的动态系统,是理解现实世界的运行规律的有力手段。

同时我们也可以看到,二阶微分方程的求解是一个复杂但又有趣的问题,它不仅需要我们掌握许多数学知识,还需要我们借助计算机等工具来解决实际问题。

二阶微分方程求解的技巧

二阶微分方程求解的技巧

二阶微分方程求解的技巧一阶微分方程只含有一阶导数,而二阶微分方程含有二阶导数。

求解二阶微分方程的技巧较为复杂,需要利用一些特定的方法和技巧。

下面我们将介绍几种常用的技巧,帮助你求解二阶微分方程。

1.齐次线性方程法:如果二阶微分方程可以写为形式:$ay''+by'+cy=0$,其中a、b、c是常数,则称之为齐次线性方程。

我们可以从中解得一个求解公式:$y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$,其中$C_1$和$C_2$是任意常数,$\lambda_1$和$\lambda_2$是方程的特征根。

为了寻找特征根,我们需要解决特征方程:$a\lambda^2+b\lambda+c=0$。

如果特征方程有两个相异的实根$\lambda_1$和$\lambda_2$,则方程的解是通解。

如果它们是重根,则方程的解是通解的一部分。

如果特征方程有两个虚根,则方程的解由实部和虚部组成。

2.变量可分离法:如果方程可以写为形式:$y''=f(x)g(y')$,其中f和g是一元函数,我们可以利用变量可分离法进行求解。

首先,设$y'=p$,则$y''=p\frac{dp}{dx}$。

将这些代入原方程,我们得到:$p\frac{dp}{dx}=f(x)g(p)$。

将上式变换为分离变量:$\frac{dp}{g(p)}=f(x)dx$。

然后,我们对两边进行积分,并解出p关于x的函数,最后再通过积分得到y关于x的函数。

3.常数变易法:如果方程可以写为形式:$ay''+by'+cy=f(x)$,其中f(x)是已知的函数,我们可以使用常数变易法进行求解。

首先,我们猜测一个特解$y^*$,并将其带入方程中。

然后我们将$y^*$代入方程,并解出常数。

我们将这些解代入齐次线性方程的通解中,并得到方程的通解。

4.欧拉方程法:如果方程是二阶常系数线性方程,并可以写为形式:$ax^2y''+bxy'+cy=0$,我们可以使用欧拉方程法进行求解。

二阶常系数线性微分方程的解法word版

二阶常系数线性微分方程的解法word版

第八章 讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' 1的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 1变成0=+'+''qy y p y 2我们把方程2叫做二阶常系数齐次线性方程,把方程式1叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式2的两个解, 则2211y C y C y +=也是式2的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程2的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程2的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程2的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式2的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间a,b 内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式2的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数是方程式2的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=21,C C 是任意常数是方程0=+''y y 的通解.由于指数函数rxe y =r 为常数和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rxe y =满足方程2.将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程2,得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r 3只要r 满足方程式3,rx e y =就是方程式2的解.我们把方程式3叫做方程式2的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程2y y y ,,'''的系数. 特征方程3的两个根为 2422,1q p p r -±-=, 因此方程式2的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程2的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程2的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程2的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程2, 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程3的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程2的另一个解 x r xe y 12=.那么,方程2的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程3有一对共轭复根 βαβαi r i r -=+=21, 0≠β于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程2的解具有叠加性,所以-1y ,-2y 还是方程2的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程2的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:1写出方程2的特征方程02=++q pr r2求特征方程的两个根21,r r3根据21,r r 的不同情形,按下表写出方程2的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为t e t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程1的一个特解,Y 是式1所对应的齐次方程式2的通解,则*+=y Y y 是方程式1的通解.证明 把*+=y Y y 代入方程1的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程1的两端恒等,所以*+=y Y y 是方程1的解. 定理4 设二阶非齐次线性方程1的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' 4 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程4的特解, 非齐次线性方程1的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程1的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程1的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程1并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ 5以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:1 若λ不是方程式2的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式5的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入5式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*2 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式5成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.3 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使5式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式1中的x m e x P x f λ)()(=,则式1的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令xe xb y 20-=*,代入原方程解得230-=b故所求特解为 xxe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 xe x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去x e 得126-=+x b ax比较系数,得61=a 21-=b于是 xe x x y )216(2-=*所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法 ,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式1成为x B x A q y p y ωωsin cos +=+'+'' 7这种类型的三角函数的导数,仍属同一类型,因此方程式7的特解*y 也应属同一类型,可以证明式7的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a 解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=*** 代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x sin 51cos 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常微分方程的解法

二阶常微分方程的解法

二阶常微分方程的解法二阶常微分方程是微积分中的一个重要概念,涉及到求解具有两个未知函数的微分方程。

本文将介绍二阶常微分方程的一些解法方法。

一、可分离变量法对于形如f''(x) = g(x)的二阶常微分方程,可以通过分离变量的方法求解。

首先将方程进行变形,得到f''(x)-g(x) = 0。

然后令y=f'(x),将方程转化为一阶方程y'-g(x)=0,再次进行变形得到dy/dx=g(x)。

接下来,对方程两边进行积分,得到y的表达式,再次积分即可得到f(x)的解。

二、特征方程法对于形如f''(x) + a1f'(x) + a0f(x) = 0的二阶常微分方程,可以通过特征方程法求解。

首先假设f(x)的解为f(x) = e^(rx),其中r为待求解的常数。

代入原方程,得到特征方程r^2 + a1r + a0 = 0。

解特征方程,可以得到两个根r1和r2,然后f(x)的解可以表示为f(x) = C1e^(r1x) +C2e^(r2x),其中C1和C2为待定常数。

三、常系数齐次线性微分方程法对于形如f''(x) + af'(x) + bf(x) = 0的二阶常微分方程,可以通过常系数齐次线性微分方程法求解。

首先假设f(x)的解为f(x) = e^(rx),代入原方程,得到特征方程r^2 + ar + b = 0。

解特征方程,可以得到两个根r1和r2。

根据根的不同情况,可以得到不同的解形式。

1)当r1和r2是不相等的实根时,f(x)的解可以表示为f(x) =C1e^(r1x) + C2e^(r2x),其中C1和C2为待定常数。

2)当r1和r2是相等的实根时,f(x)的解可以表示为f(x) = (C1x +C2)e^(r1x),其中C1和C2为待定常数。

3)当r1和r2是共轭复数根时,f(x)的解可以表示为f(x) =e^(ax)[C1cos(bx) + C2sin(bx)],其中C1和C2为待定常数。

二阶常系数微分方程解法

二阶常系数微分方程解法

二阶常系数微分方程解法微分方程是数学中一个非常重要的部分,它描述了很多现实生活和科学问题。

其中,二阶常系数微分方程是应用广泛的一种类型的微分方程,其解法也相对较为简单,下面将详细介绍解这类微分方程的方法。

一、二阶常系数微分方程的定义和形式二阶常系数微分方程指的是形如 y''+ay'+by=f(x) 的微分方程,其中 y、f(x)均为函数,a和b均为常数。

这类微分方程中,y”表示 y 对自变量 x 的二次导数,y'表示 y 对 x 的一次导数。

二、特征方程法解二阶常系数微分方程最常用的方法是特征方程法。

根据 y=Ae^{mx} 这种形式,我们可以将 y" 和 y' 带入 y 中,得到以下等式:(Ae^{mx})''+a(Ae^{mx})'+bAe^{mx}=0化简后可得:m^2+am+b=0以上所得到的方程式称为特征方程,解特征方程的根 m_{1}, m_{2} 就可以得到二阶常系数微分方程的通解。

1、特征方程有两个不相等的实根如果特征方程有两个不相等的实根 m_{1} 和 m_{2},那么通解为:y=C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}其中,C_1、C_2 为任意常数,分别由初始值条件所决定。

2、特征方程有两个相等的实根如果特征方程有两个相等的实根 m,那么通解为:y=(C_1+C_2x)e^{mx}其中,C_1、C_2 为任意常数。

3、特征方程有两个共轭复根如果特征方程有两个共轭复根α+iβ 和α-iβ,那么通解为:y=e^{αx}(C_1\cos βx+C_2\sin βx)其中,C_1、C_2为任意常数。

三、拉普拉斯变换法除了特征方程法外,拉普拉斯变换法也可以用来求解二阶常系数微分方程。

我们将 y、y' 和 y" 进行拉普拉斯变换,得到:L\{y''\}=s^2Y(s)-sy(0)-y'(0)L\{y'\}=sY(s)-y(0)L\{y\}=Y(s)将以上三个式子带入二阶常系数微分方程中,消去 Y(s),就可以得到:s^2Y(s)-sy(0)-y'(0)+a(sY(s)-y(0))+bY(s)=F(s)其中 F(s) 为右侧函数的拉普拉斯变换。

二阶常微分方程的几种解法

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。

微分方程阶数越高, 相对于低阶的解法越难。

那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。

而由此产生的通解公式给出了该方程通解的更一般的形式。

设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。

为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。

1 若特征方程有两个相异实根12k 、k 。

则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。

再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()xkx kt kx kx y e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t xxy e e te dt e e te dt c e c e --=-++⎰⎰32321200x xx t x x x e te dt e tdt c e c e -=-++⎰⎰2232132x x xx x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。

二阶线性常微分方程求解

二阶线性常微分方程求解

二阶线性常微分方程求解
二阶线性常微分方程是一种重要的微分方程,它是一个双重阶的微分方程,包含一个高阶导数和一个一阶导数,可以用来描述物理过程中特定变量之间的变化。

它可以用来描述复杂系统的行为,从而为我们提供一种有效的解决方法。

二阶线性常微分方程的一般形式为:y''+P(x)y'+Q(x)y=f(x),其中y是一个未知函数,P(x)和Q(x)是确定的函数,f(x)是给
定的函数。

二阶线性常微分方程的解法有多种,但是最常用的是牛顿迭代法。

牛顿迭代法是一种迭代法,它可以解决二阶线性常微分方程。

牛顿迭代法的基本思想是:将二阶线性常微分方程分解为两个一阶线性常微分方程,然后采用牛顿迭代法迭代求解。

牛顿迭代法的步骤如下:(1)确定初值,即设定y(x0)和
y'(x0)的初始值;(2)求解y'(x0)的值,即求解一阶线性常微
分方程;(3)求解y(x0)的值,即求解二阶线性常微分方程;(4)将求得的y(x0)和y'(x0)作为下一次迭代的初始值,重复
步骤(2)和(3),直到满足给定精度要求为止。

二阶线性常微分方程在工程学和物理学中都有着广泛的应用,例如,可以用它来模拟物理系统的运动,从而获得精确的解决方案;也可以用它来解决水利工程中的洪水问题,从而获得最优的解决方案。

总之,二阶线性常微分方程可以用来模拟各种复杂物理过程,牛顿迭代法是一种有效的解决方法,它可以帮助我们获得更准确的解决方案。

二阶常微分方程的几种解法

二阶常微分方程的几种解法

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:通解的一般方法是将其转化为对应的齐次方程的通阶与它本'''()y ay by f x ++=身的特解之和。

微分方程阶数越高, 相对于低阶的解法越难。

那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。

而由此产生的通解公式给出了该方程通解的更一般的形式。

设二阶常系数线性非齐次方程为(1)'''()y ay by f x ++=这里都是常数。

为了使上述方程能降阶, 考察相应的特征方程b a 、(2)20k ak b ++=对特征方程的根分三种情况来讨论。

1 若特征方程有两个相异实根。

则方程(1) 可以写成12k 、k'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---= 记 , 则(1) 可降为一阶方程'2z y k y =-由一阶线性方程的通解公'1()z k z f x -= [5]()()[()]p x dx p x dxy e Q x e dx c -⎰⎰=+⎰(3)知其通解为这里表示积分之后的函数是以为自变量的。

1130[()]xk xk tz e f t edt c -=+⎰0()xh t dt ⎰x 再由11230[()]x k xk t dy k y z e f t e dt c dx--==+⎰解得12212()()34012[(())]k k xxuk xk k ue y e ef t dt du c c k k --=++-⎰⎰应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k xxxk xk tk te e y ef t edt f t edt c c k k k k k k ----=-++---⎰⎰(4)1122121200121[()()]x x k x k t k xk t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰2 若特征方程有重根, 这时方程为k 或'''22()y ky k y f x -+='''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]x kx kt y ky e e f t dt c --=+⎰再改写为'1()xkxkx kt ey key e f t dt c ----=+⎰即10()()x kxkt d e y e f t dt c dx--=+⎰故(5)120()()xkx kt kx kx y ex t e f t dt c xe c e -=-++⎰例1 求解方程'''256xy y y xe -+=解 这里 的两个实根是2 , 32560k k -+=.由公式(4) 得到方程的解是2()x f x xe =332222321200xxx t t x t t x xy e e te dt e e te dt c e c e --=-++⎰⎰32321200xxx t x x xe te dt e tdt c e c e -=-++⎰⎰2232132xx x x x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里.321c c =-例2 求解方程'''2ln x y y y e x-+=解 特征方程 有重根1 , .由公式(5) 得到方程的解是2210k k -+=()ln x f x e x =120()ln xx t t x xy ex t e e tdt c xe c e -=-++⎰120()ln xxx xe x t tdt c xe c e =-++⎰1200[ln ln ]xxxx xe x tdt t tdt c xe c e =-++⎰⎰21213ln 24x x xx e x c xe c e ⎡⎤=-++⎢⎥⎣⎦二 常数变易法二阶常系数非齐次线性微分方程的一般形式是, (6)'''()y py qy f x ++= , (7)'''0y py qy ++=其中 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方p q 、程(7) 的通解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶常系数非齐次线性微分方程的几种解法一 公式解法目前,国内采用的高等数学科书中, 求二阶常系数线性非奇次微分方程[1]:'''()y ay by f x ++=通解的一般方法是将其转化为对应的齐次方程的通阶与它本身的特解之和。

微分方程阶数越高, 相对于低阶的解法越难。

那么二阶常系数齐次微分方程是否可以降价求解呢? 事实上, 经过适当的变量代换可将二阶常系数非齐次微分方程降为一阶微分方程求解。

而由此产生的通解公式给出了该方程通解的更一般的形式。

设二阶常系数线性非齐次方程为'''()y ay by f x ++= (1) 这里b a 、都是常数。

为了使上述方程能降阶, 考察相应的特征方程20k ak b ++= (2) 对特征方程的根分三种情况来讨论。

1 若特征方程有两个相异实根12k 、k 。

则方程(1) 可以写成'''1212()()y k k y k k y f x --+=即 '''212()()()y k y k y k y f x ---=记'2z y k y =- , 则(1) 可降为一阶方程'1()z k z f x -=由一阶线性方程的通解公()()[()]p x dx p x dx y e Q x e dx c -⎰⎰=+⎰[5] (3) 知其通解为1130[()]x k x k t z e f t e dt c -=+⎰这里0()xh t dt ⎰表示积分之后的函数是以x 为自变量的。

再由11230[()]x k x k t dy k y z e f t e dt c dx--==+⎰ 解得12212()()340012[(())]k k x x u k x k k u e y e e f t dt du c c k k --=++-⎰⎰ 应用分部积分法, 上式即为1212212()()34001212121[()()]k k xk k x x x k x k t k t e e y e f t e dt f t e dt c c k k k k k k ----=-++---⎰⎰ 1122121200121[()()]x x k x k t k x k t k k x e f t e dt e f t e dt c e c e k k --=-++-⎰⎰ (4) 2 若特征方程有重根k , 这时方程为'''22()y ky k y f x -+=或'''()()()y ky k y ky f x ---=由公式(3) 得到'10[()]xkx kt y ky e e f t dt c --=+⎰再改写为'10()xkx kx kt e y ke y e f t dt c ----=+⎰ 即10()()xkx kt de y ef t dt c dx --=+⎰故120()()x kx kt kx kxy e x t e f t dt c xe c e -=-++⎰(5)例1 求解方程'''256x y y y xe -+=解 这里2560k k -+= 的两个实根是2 , 32()x f x xe =.由公式(4) 得到方程的解是332222321200x x x t t x t t x xy e e te dt e e te dt c e c e --=-++⎰⎰32321200x x x t x xxe te dt e tdt c e c e -=-++⎰⎰2232132xx x x x e c e c e ⎡⎤=--++⎢⎥⎣⎦这里321c c =-.例2 求解方程'''2ln x y y y e x -+=解 特征方程2210k k -+= 有重根1 , ()ln x f x e x =.由公式(5) 得到方程的解是 120()ln x x t t x x y ex t e e tdt c xe c e -=-++⎰120()ln x x x x e x t tdt c xe c e =-++⎰ 1200[ln ln ]x xxx x e x tdt t tdt c xe c e =-++⎰⎰ 21213ln 24x x x x e x c xe c e ⎡⎤=-++⎢⎥⎣⎦ 二 常数变易法二阶常系数非齐次线性微分方程的一般形式是'''()y py qy f x ++=, (6) '''0y py qy ++= , (7) 其中p q 、 为常数,根构造方程(7) 的两个线性无关的解,再由这两个解构造出方程(7) 的通解。

特征方程的特征根有三种情况。

1. 当特征方程有两个不相同的实根12λλ、时,方程(7) 的两个线性无关的解为12x x e e λλ、从而得方程(7) 的通解1212x x c e c e λλ+.2. 当特征方程有二重实根λ时,可得方程(7) 的两个线性无关的解x x e xe λλ、,从而得到方程(7)的通解12()x c c x e λ+。

3. 当特征方程有一对共轭复根i αβ±时,可得方程(7) 的两个线性无关的解e cos sin x x x e x ααββ、。

从而得方程(7) 的通解12cos sin x x c e x c e x ααββ+。

综上所述可知,方程(7) 总有形如cos x e x αβ、sin x e x x αββ的解,其中i αβ±为方程(7) 所对应的特征方程的特征根。

关于方程(6) 的求解,我们就()f x 为x e α或[]2()cos sin n p x x p x ϖϖ+时进行了讨论,给出了这两种情况下的解法。

我们将由方程(7) 的一个特解,通过参数变易法构造出方程(6) 的通解。

首先求出方程(7) 的一个特解,不妨将此解记为11()cos x y y x e x αβ==。

设方程(6) 有形为1()()()cos x y c x y x c x e x αβ==[5]的解,将1y cy ='''11y c y cy =+''''''''1112y cy c y c y =++(其中c 为()c x ,1y 为1()y x 代入方程(6) ,得'''''''111111(2)()()c y y py c y py qy c f x +++++=∵1y 是方程(7) 的解∴上式为''''111(2)()c y y py c f x ++=,令'c u =,得''11121()()y u p u f x y y ++=根据一阶线性非齐次方程的解法,得''111122()()111u [()]y y p dx p dx y y e f x e dx c y -++⎰⎰=+⎰(22)(22)11[()]cos tg x p dx tgx x e f x e dx c e xαββαβαβ--+-⎰⎰=+⎰ [(2)2ln cos ](2)2ln cos 11[()]cos p x x p x x x e f x e dx c e x αβαβαβ-++++=+⎰ ()()121[()cos ]cos x x e f x e xdx c xαβαβββ-++=+⎰ 2c udx c =+⎰(2)()1221cos [][()cos ]cos x p x p x y e x e f x e xdx c dx c x αααββ-++∴=+++⎰⎰〕为方程(6) 的通解。

三 多项式法命题: 对于常系数线性微分方程'''()x m y py qy p x e λ++= (8) 其中p 、 q 与λ是常数, ()m p x 是x 的m 次多项式,若令x y ze λ=,则方程(8) 可化为: ''''''2!()1!()()m F z F z F z p x λλ++=[7] 2()F p q λλλ=++为方程(8) 对应齐次方程的特征多项式.此处即要求方程(8) 的特解()x y x e λφ=,只要求''''()()()m z F z F z p x λλ++=的特解()y x φ=,而得到(8) 的特解()x y x e λφ=. 此解法虽然类似教材[5]上的待定系数法, 仔细斟酌, 要简单很多. 教材[5]中则把特解设为()k x m y x Q x e λ=,这里k=0、1、2、()m Q x 是m 次多项式.例3 求微分方程'''2(5)x y y y e x -++=-的一个解.解:2()21F λλλ=++ , - 1 为其二重特征根,故原方程对应的齐次方程的两个线性无关的解是x x e xe --、。

'(1)0F -=,从而令x y ze -= ,原方程化为: ''5z x =- ,解之得其特解为322151(5)626z x x x x =-=-故原方程的特解是21(5)6x y x x e -=-。

原方程的解是, 2121(5)6x x x y c e c xe x x e ---=++-(其中12c c 、是常数) 四 阶数上升法所谓的阶数上升法就是:设'''()y py qy f x ++=(9)()f x 为多项式时,设1011()n n n n f x a x a x a x a --=+++[7]此时,方程两边同时对x 求n 导倒数,得''''''12011(1)n n n y py qy na x n a x a ---++=+-+……(1)(1)01!(1)!n n n y py qy a xn a n +-++=+-(2)(1)0!n n n y py qy a n ++++=令()0!n a n y q=(0q ≠),此时(2)(1)0n n y y ++== 由(1)n y +与()n y 通过倒数第二个方程可得(1)n y - ,依次往上推,一直推到方程(9) ,即可得到方程(9) 的一个特解()y x ,上面的这种方法称为阶数上升法.(9) 当1011()()()n n x n n f x a x a x a x a e R λλ--=+++∈时,令()x y u x e λ=,则 ''()x y u u e λλ=+, '''''2(2)x y u u u e λλλ=++代入方程(9) ,经整理得:'''21011(2)()n n n n u p u p q u a x a x a x a λλλ--+++++=+++于是问题(9) 就转化为(8) 的形式.从以上可以看出,阶数上升法不需要讨论λ是 否为特征方程的特征根的问题,因此问题得以简化.例4 求微分方程'''67(1)x y y y e x +-=+的一个解.解:原方程所对应的齐次方程的特根是正1、-7,对应的两个线性无关的解是-7x x e e 、。

相关文档
最新文档