高三数学线性规划1

合集下载

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。

高三数学简单的线性规划

高三数学简单的线性规划

备用题
例 5 、要将两种大小不同的钢板截成 A 、 B、 C 三种规格,每张钢板可同时截得三种规格 的小钢板的块数如下表:
块数 规格 种类 第一种钢板 A 1 B 2 C 1
第二种钢板
1
Hale Waihona Puke 13每张钢板的面积为:第一种 1m2 ,第二种 2 m2,今需要A、B、C三种规格的成品各12、 15、27块,问各截这两种钢板多少张,可得 所需的三种规格成品,且使所用钢板面积最 小?
二、问题讨论 1、二元一次不等式(组)表示的平面区域 例1、画出下列不等式(或组)表示的平面区域
x 2 y 1 0 1 x 2 y 1 0 1 x 2 3
(2)(优化设计P109例1)求不等式
| x 1 | | y 1 | 2 表示的平面区域的面积。
y
y
x x
图2 图1
【评述】画图时应注意准确,要注意边界,若不 等式中不含“=”号,则边界应画成虚线,否则应 画成实线。 2、应用线性规划求最值
x 4 y 3 例2、设x,y满足约束条件 3 x 5 y 25 x 1
分别求: (1)z=6x+10y , (2)z=2x-y,(3)z=2x-y , (x,y均为整数)的最大值,最小值。
y
14
12.5 9 2y+3x=0 2.5 o 2y+3x=38
3 x 10 5 25 y 2 2 9 x y 14
x
3
9 10
14
3x 2 y k
【解题回顾】要能从实际问题中,建构有关 线性规划问题的数学模型 例 4(优化设计 P110页 ) 某矿山车队有 4辆载重 量为 10 吨的甲型卡车和 7 辆载重量为 6 吨的乙 型卡车,有9名驾驶员,此车队每天至少要运360 吨矿石至冶炼厂。已知甲型卡车每辆每天可 往返 6 次,乙型卡车每辆每天可往返 8 次。甲 型卡车每辆每天的成本费为252元,乙型卡车 每辆每天的成本费为160元。问每天派出甲型 车与乙型车各多少辆,车队所花费成本最底?

高三数学一轮复习-线性规划课件-新人教B版

高三数学一轮复习-线性规划课件-新人教B版

• (6)满足线性约束条件的解(x,y)叫做可行解.由所有可行 解组成的集合叫做可行域.
• (7)使目标函数达到最大值或最小值的点的坐标,称为问 题的最优解.
• 3.利用图解法解决线性规划问题的一般步骤 • (1)作出可行域.将约束条件中的每一个不等式所表示的
平面区域作出,找出其公共部分.
• (2)作出目标函数的等值线. • (3)确定最优解 • (一)在可行域内平行移动目标函数等值线,最先通过或最
x+y≤60 据题意得x≥23y
x≥5 y≥5
,所获利润 z=0.4x+0.6y.
画出可行域,由目标函数对应直线 0.4x+0.6y=z 知 最优解为(24,36),
∴zmax=0.4×24+0.6×36=31.2(万元). • 答案:B
B.2
• C.3
D.无数个
• 分析:点N(x,y)在不等式表示的平面区域之内,U=·为x,
y的一次表达式,则问题即是当点N在平面区域内变化时,
求U取到最大值时,点N的个数.
• 解析:如图所示,可行域为图中阴影部分,而·=2x+y, 所以目标函数为z=2x+y,作出直线l:2x+y=0,显然 它与直线2x+y-12=0平行,平移直线l到直线2x+y- 12=0的位置时目标函数取得最大值,故2x+y-12=0上 每一点都能使目标函数取得最大值,故选D.
5
• 该厂有工乙人200人,每8 天只能保5证160kW2·h的用电额度,
每天用煤不得超过150t,请在直角坐标系中画出每天甲、 乙两种产品允许的产量范围.
• 解析:设每天分别生产甲、乙两种产品xt和yt. • 生产xt甲产品和yt乙产品的用电量是(2x+8y)(kW·h),根
据条件有,2x+8y≤160; • 用煤量为(3x+5y)(t),根据条件有,3x+5y≤150; • 用工人数(5x+2y)(人),根据条件有,5x+2y≤200; • 另外,还有x≥0,y≥0. • 综上所述,x、y应满足以下不等式组

高中线性规划

高中线性规划

高中线性规划线性规划是运筹学中的一种优化方法,用于在给定的约束条件下寻觅一个线性目标函数的最优解。

在高中数学中,线性规划是一个重要的内容,它可以匡助我们解决一些实际问题,例如资源分配、生产计划等。

一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行解。

目标函数是我们要优化的线性函数,通常表示为最大化或者最小化某个变量。

约束条件是限制目标函数变量的取值范围的条件,可以是等式或者不等式。

可行解是满足所有约束条件的解。

二、线性规划的数学模型线性规划可以通过数学模型来表示。

设有n个决策变量x1, x2, ..., xn,目标函数为f(x1, x2, ..., xn),约束条件为g1(x1, x2, ..., xn)≤b1, g2(x1, x2, ..., xn)≤b2, ...,gm(x1, x2, ..., xn)≤bm。

其中,f(x1, x2, ..., xn)为线性函数,g1(x1, x2, ..., xn)≤b1,g2(x1, x2, ..., xn)≤b2, ..., gm(x1, x2, ..., xn)≤bm为线性不等式。

三、线性规划的求解方法线性规划可以使用图形法、单纯形法等方法进行求解。

其中,图形法适合于二维问题,通过绘制约束条件的直线和目标函数的等高线,找到最优解。

而单纯形法适合于多维问题,通过构造初始单纯形表,不断迭代求解,找到最优解。

四、线性规划的应用举例1.资源分配问题:某工厂生产两种产品A和B,每天可用的资源有限,产品A和B的生产所需资源不同,且每种产品的利润也不同。

如何合理分配资源,使得利润最大化?2.生产计划问题:某工厂需要生产多种产品,每种产品的生产时间、所需资源和利润不同。

如何安排生产计划,使得产量最大化同时资源利用率最高?3.投资组合问题:某投资者有多种投资标的可选,每种标的的收益率、风险和投资额不同。

如何合理选择投资标的,使得收益最大化同时风险最小化?五、线性规划的局限性线性规划方法在解决一些实际问题时可能存在一些局限性。

高中线性规划

高中线性规划

高中线性规划线性规划是一种数学优化方法,它用于在给定的约束条件下,找到使目标函数最大或最小的变量值。

在高中数学中,线性规划通常作为一种应用题出现,要求学生根据给定的条件,建立数学模型并求解最优解。

一、问题描述假设某公司生产两种产品A和B,每天可供应的资源有限,且每种产品的生产所需资源不同。

产品A每个单位的利润为10元,产品B每个单位的利润为15元。

已知产品A每天最多可生产100个单位,产品B每天最多可生产80个单位。

同时,产品A每个单位需要2个单位的资源,产品B每个单位需要3个单位的资源。

现在的问题是,如何安排生产,使得每天的利润最大化。

二、建立数学模型设x为生产产品A的单位数,y为生产产品B的单位数。

根据题目中的条件,可以得到以下约束条件:1. x≥0,y≥0,即生产单位数不能为负数;2. x≤100,y≤80,即每天生产的单位数不能超过最大限制;3. 2x+3y≤R,其中R为每天可供应的资源总数,即每天所需资源不能超过可供应的资源总数。

三、确定目标函数根据题目中的条件,利润最大化是我们的目标。

设P为每天的利润,可以得到以下目标函数:P=10x+15y四、求解最优解通过线性规划的方法,我们可以求解出最优解。

下面是求解过程:1. 根据上述的约束条件和目标函数,可以列出线性规划问题的标准形式:Maximize P=10x+15ysubject tox≥0, y≥0x≤100, y≤802x+3y≤R2. 将目标函数和约束条件转化为不等式形式:P-10x-15y=0-x≤0, -y≤0x-100≤0, y-80≤0-2x-3y+R≤03. 构建拉格朗日函数:L(x,y,λ)=P-10x-15y-λ(-x)-λ(-y)-(λ(x-100))-(λ(y-80))-(λ(-2x-3y+R))4. 对拉格朗日函数求偏导数,并令其等于0,得到如下方程组:∂L/∂x=-10-λ+λ=0∂L/∂y=-15-λ+λ=0∂L/∂λ=-x≤0∂L/∂λ=-y≤0∂L/∂λ=x-100≤0∂L/∂λ=y-80≤0∂L/∂λ=-2x-3y+R≤05. 解方程组,得到最优解。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是一种数学建模方法,通过建立数学模型来解决实际问题。

在高中数学中,线性规划是一个重要的概念,它可以匡助我们解决一些优化问题。

本文将详细介绍高中线性规划的概念、原理和应用。

一、线性规划的概念1.1 线性规划的定义线性规划是一种数学优化方法,它的目标是找到一组变量的最佳取值,使得目标函数达到最大或者最小值,同时满足一组线性约束条件。

1.2 线性规划的基本要素线性规划包含以下基本要素:- 目标函数:表示需要最大化或者最小化的数学模型。

- 决策变量:需要确定的变量,它们的取值将影响目标函数的结果。

- 约束条件:限制决策变量的取值范围,通常为一组线性不等式或者等式。

1.3 线性规划的解法线性规划可以使用图象法、单纯形法或者二次规划等方法进行求解。

其中,图象法适合于二维问题,单纯形法适合于多维问题,而二次规划适合于目标函数为二次函数的问题。

二、线性规划的原理2.1 线性规划的线性性质线性规划的目标函数和约束条件都是线性的,这意味着它们的图象是直线或者平面。

这种线性性质使得线性规划问题的求解相对简单。

2.2 线性规划的可行解与最优解线性规划的可行解是指满足所有约束条件的解,而最优解是在可行解集合中使得目标函数取得最大或者最小值的解。

线性规划问题可能存在多个最优解,或者无解。

2.3 线性规划的应用领域线性规划广泛应用于生产计划、资源分配、运输问题等领域。

例如,企业可以使用线性规划来确定最佳的生产计划,以最大化利润或者最小化成本。

三、线性规划的应用举例3.1 生产计划问题一个工厂需要生产两种产品,每种产品的生产时间、材料成本和利润不同。

通过线性规划,可以确定每种产品的生产数量,以最大化利润。

3.2 运输问题一个物流公司需要将商品从多个仓库运送到多个销售点,每一个仓库和销售点之间的运输成本不同。

通过线性规划,可以确定每一个仓库和销售点之间的货物运输量,以最小化总运输成本。

3.3 资源分配问题一个学校需要将教师和教室分配给不同的班级,每一个班级的人数和课程要求不同。

高三数学线性规划课件1


线性规划的实际应用
例2:已知甲、乙两煤矿每年的产量分别为200万吨和300万 吨,需经过东车站和西车站两个车站运往外地.东车站每年最多 能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往 东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿 运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤 矿应怎样编制调运方案,能使总运费最少?
y
5
x-y+5=0
x y 5 0
x
y
0
x 3
O3
x
表示的平面区域。
x=3
线性规划
y
5
O3
问题引入 有关概念 x 例题讲解
线性规划
问题:设z=2x+y,式中变量满足下列条件:
3xx45yy235 x 1
求z的最大值与最小值。
探索结论
线性规划
目标函数 (线性目标函数)
问题:设z=2x+y,式中变量满足下列条件:
c≠0时常把原点作为此特殊点。
y x+y-1>0
1
O
1
x
x+y-1<0
x+y-1=0
二元一次不等式表示平面区域
例1:画出不等式2x+y-6<0表示的平面区 域。 y
6
注意:把直
2x+y-6=0
线画成虚线以
表示区域不包 括边界
O3
x
启动几何画板
二元一次不等式表示平面区域
例2:画出不x等+式y=组0
3xx45yy235 x 1
求z的最大值与最小值。
线性约 束条件
线性规划
线性规划:求线性目标函数在线性约束条件下的最 大值或最小值的问题,统称为线性规划问题.

高三线性规划知识点

高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。

本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。

一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。

在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。

线性规划通过建立数学模型,帮助我们找到最优解。

二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。

这个函数被称为目标函数,记作Z。

2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。

3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。

4. 可行解:满足所有约束条件的解称为可行解。

可行解的集合称为可行域。

5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。

三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。

2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。

3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。

4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。

四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。

已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。

工厂每天可以使用材料A 600千克,材料B 200千克。

问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。

目标函数Z表示利润的最大值,即Z=1000x+1200y。

约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。

而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。

本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。

一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。

线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。

在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。

通常情况下,我们可以将线性规划问题表示为标准型或非标准型。

标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。

二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。

其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。

2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。

3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。

4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。

5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。

需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。

高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。

在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。

本文将详细介绍高中线性规划的概念、应用以及解题方法。

一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。

1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。

例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。

1.3 可行解和最优解:满足所有约束条件的解称为可行解。

在可行解中,使目标函数达到最大或者最小值的解称为最优解。

二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。

通过考虑资源约束和市场需求,可以确定每种产品的生产量。

2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。

例如,可以确定每一个部门的资源分配,以满足不同项目的需求。

2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。

三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。

通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。

3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。

该方法通过迭代计算,逐步接近最优解。

3.3 整数规划:在某些情况下,变量的值必须是整数。

这种情况下,可以使用整数规划方法来解决问题。

整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。

四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式x点+y组-1成>的0的平解面为区域坐。标不的点的 O 1
x
集 合等{式( xa,x+yb)y|+xc+<0y表- 1示>的0 } 是 x+y-1<0
什么是图另形一?侧的平面区域。
x+y-1=0
探索结论
判断二元一次不等式表示哪一 侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条
二元一次不等式表示的平面区域
在平面直角坐标系中,以二
y
元一次方结程论x:+二yax集+合by{+(xc>,0y在)|平x+面y-1=0} 1 是经直过角点坐(标0,系1中)和表示(1直,线0)的一
x+y-1>0
条直ax线+lb,y+那c=么0以某二一元侧一所次有不等
简单的线性规划
第一讲 二元一次不 等式表示平面区域
简单的线性规划
• “简单的线性规划”是在学习了直线方程的基础 上,介绍直线方程的一个简单应用,这是大纲对 数学知识应用的重视.线性规划是利用数学为工 具,来研究一定的人、财、物、时、空等资源在 一定条件下,如何精打细算巧安排,用最少的资 源,取得最大的经济效益.它是数学规划中理论 较完整、方法较成熟、应用较广泛的一个分支, 并能解决科学研究、工程设计、经常管理等许多 方面的实际问题.
直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当
c≠0时常把原点作为此特殊点
y x+y-1>0
1
O
1
x
x+y-1<0
x+y-1=0
二元一次不等式表示平面区域
例1 画出不等式2x+y-6<0表示的平面区域。
注意:把直
二元一次不等式表示平面区域
作业:P64 习题 7.4 1
/ 时彩最精准人工计划
各人又出人又出力,还啥啊都没什么捞到,她可真是亏到家咯。可是再觉得亏到家咯,她也必须全力以赴地办好那件事情,她别无选择,所以她才更觉得无尽悲哀。锦茵の丧事体 体面面地办完咯,在头七期间,王爷也多次前往广化寺,在朗朗の诵经声中,他那颗焦虑别安の心也渐渐地回复咯平静,他晓得锦茵走得安心,他亦心安。王爷处处维护水清の做 法深深地刺痛咯淑清の心。以前只是发觉水清处心积虑地处处讨他の欢心,现在才发觉,他の心已经完全地被她夺走咯。第壹卷 第660章 住处人间四月芳菲尽,山寺桃花始盛开。 七七四十九天の丧仪期满之后,为咯让淑清尽快走出痛失锦茵の阴霾,王爷决定今年早些搬到园子里去,希望新の环境,能够让她有壹各新の开始。当他将那件事情吩咐咯排字琦 和苏培盛两人の时候,排字琦急急地问道:“爷,那回都谁过去?”“都过去。”那壹次虽然是因为淑清才那么早地出发,但是其它の女眷们也都很辛苦,全都是出人出力、辛苦 操劳,所以他别假思索地说全都过去,然后就看到咯排字琦面露难色の样子,于是他问道:“怎么咯?有啥啊事情?”“爷,妾身失职,请爷责罚。”“那又是怎么回事?您倒是 说呀,至于责别责罚,自有爷说咯算!”有咯王爷の表态,排字琦那才嘁嘁哎哎地开咯壹各头:“回爷,那各,那各园子里,还没什么给水清妹妹安排院子呢。”听着她の那各回 答,他万分惊讶,怎么会是那各样子?他那么喜欢她,在意她,关心她,竟然在园子里她连各院子都没什么!以前还敢大颜别惭地夸下海口:年氏可是享受咯王府里仅次于福晋の 待遇。结果却是连各自己の院子都没什么!那就是他对她の好,他对她の爱?那件事情假设严格讲起来,排字琦确实也有责任。康熙四十九年,天仙妹妹嫁进王府里来,由于王爷 对她恶感连连,以至于他生辰の时候,排字琦询问接咯妹妹来园子住在哪里,他の回复是“当天回府也可以,临时借住壹晚の客房也可以。”结果却以水清病重没能来咯园子而别 咯咯之。五十年の时候,他带着水清和婉然姐妹两人去咯塞外;五十壹年の时候二废太子和锦茵出嫁,他们没什么来过园子;五十二年因为皇上六十大寿,五十三年因为婉然出嫁, 五二十三年因为水清怀胎生子和管理府务,五十五年因为前往热河……都是因为各式各样の忙碌,或是阴差阳错,导致水清嫁进王府已经七年咯,竟然连园子--王爷那么大の壹 份产业家当都没什么见识过!自然而然地,排字琦也就忘记咯要给水清安排院子の事情。但是那件事情又别能完全算作福晋の责任,王爷才是壹家之主,他别发话,排字琦就是想 起来,也别能擅自行动,还得听他の才行。所以排字琦の责任在于疏于提醒の失职。现在摆在王爷面前の最重要の壹各现实问题就是:园子里根本就没什么富余の院子,水清过去 之后住在哪里?望着半天别表态の王爷,排字琦心里七上八下地直打鼓:别晓得爷壹会儿又要怎么责罚自己咯。而王爷之所以迟迟没什么表态,并别是责怪排字琦,因为他现在の 心思完全放在咯如何解决难题上面,根本就忽略咯追究责任の事情。面对那各心有所属、情有所牵の诸人,他要想出壹各两全齐美の良策,既能短时间内解决水清の住处问题,又 别会亏待咯她。第壹卷 第661章 捐献王爷现在面对の是“巧妇难为无米之炊”の局面,在那各向他最爱の诸人表达心迹の时刻,他壹定要三思,再三思。因为没什么院子而将水 清壹各人留在王府?她嫁过来七年咯都没什么来过园子。他是多么想让她能够看看那里,看到那各包含咯他无数心血、寄托咯他无尽情致の园子。他有着“采菊东篱下,悠然见南 山”の隐士情结,而她,他早就发现,竟与他壹样具有那种理想王国の追求,所以她壹定会喜欢园子胜过王府,对于那壹点他坚信别疑。临时盖院子?没什么壹年半载根本别可能 完工,依照他那精益求精、追求完美の各性,他要为她建造の岂只是壹座房子,壹各院子,他分明就是要为她建造壹座琼楼玉宇,壹座仙居。松溪考月の场景至今都深刻地铭刻在 他の脑海中,那“仙子无
y
3
y=3 3
表示的 x平 面5 区域。x-y=0 0
C A
B 56x
x=5
二元一次不等式表示平面区域小结
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
简单的线性规划
中学所学的线性规划只是规划论中的极小一部分, 但这部分内容体现了数学的工具性、应用性,同时也 渗透了化归、数形结合的数学思想,为学生今后解决 实际问题提供了一种重要的解题方法―数学建模法.通 过这部分内容的学习,可使学生进一步了解数学在解 决实际问题中的应用,培养学生学习数学的兴趣、应 用数学的意识和解决实际问题的能力。
线画成虚线以 表示区域不包
括边界
y
6
2x+y-6=0
O3
x
二元一次不等式表示平面区域
例2 画出不等式组
y
x+y=0 5
x-y+5=0
x y 5 0
x
y
0
表示的平x 面 区3 域。 O 3
x
x=3
二元一次不等式表示平面区域
例3 画出不等式组 y
6
x y 6 0 x+y-6=0
x y 0
相关文档
最新文档