电磁场数值计算.共101页
电磁场数值计算及其应用简介

例 1) 忽略端部效应的平板电源自器中的静电场其为一维问题, 可以解析求解。
•
场域中电位满足Laplace方程: 边界条件:
2 2
x 2
0
|x0 0
|xd U
通解与特解: C1x C2 U x d
E=U/d
d
2) 考虑端部效应的平板电容器
• •
二维Laplace方程: 边界条件:
四、现状
算法研究较少,主要是应用研究。 因算法研究效果大大低于计算机发展速度带来的效果。 但仍有计算技术方面的研究。
重点为通用、实用软件的开发。
商业软件已经使得非电磁场数值计算人员可以实现对实际 问题的计算机仿真。
目前流行的软件: OPERA(算法专业、使用较难), Ansoft(傻瓜型、低频、高频、时变电路计算模块齐全), ANSYS(开放型、专业型、以低频为主、多场耦合计算)
▲ 同时也在算法上做了一些改进。
3. 80年代国外提出一些有效处理Maxwell方程组求解的方法。 ▲ 有效位函数的引入与求解。
关键与难点是解的唯一“规范”约束的实现问题。
4. 74年在英国召开第一届COMPUMAG
Conference on Computation of Electromagnetic Fields
六、有待解决的问题 软件性能的提高。计算方法和技术,时变瞬态场,耦合场
问题,场路结合, 优化问题,逆问题(故障诊断、多解性)
七、我们的工作
有七限、元我法们的计工算作
变压器升高座电磁场
升高座涡流分布
低磁钢板
导磁钢板
升高座涡流损耗密度分布
电流互感器磁场计算
三维计算模型
电流互感器磁场计算
电流互感器电场计算
电磁场数值积分

特征:
面向电磁场工程 数学、物理概念与工程观点的有机结合; 计算机辅助分析、设计(仿真研究) 与工程应用技术知识、能力的综合。
任务:
面向电磁场工程分析、设计的需要 培养 具有分析与解决工程电磁场问题的能力、 有初步编程和应用工程软件包能力的、 理论联系实际、有再学习、再创造潜能的 高层次的专门人才(高素质的创新型人才)。
电磁场学科与电磁场工程 电磁场学科
研究宏观电磁现象和电磁过程的基本规律、分析计算方法, 并面向电气工程、电气信息学科的工程科学技术 电磁场工程应用的重要技术基础学科。
电磁场工程
基点:电磁场的有效控制和利用 理解近代科学技术成果、发展并实现新的科学技术成果——— 电磁场理论及其应用不仅是日趋发展的电工、电子和信息工程科学技术 的重要基础,而且也是旁及军事、生态、医疗、地质、航天等众多领域 新工程科学技术的生长点。
例如:* 浦东国际机场磁悬浮线(EMS型磁浮列车); 日本山梨磁悬浮试验线(EDS型磁浮列车)
时速: 430km/h 磁浮线里程:33km,全程运时 8 min
上海磁悬浮列车 (EMS型)
上海磁悬浮列车(EMS型)横断面视图
关键技术——
悬浮、驱动和导向 电磁系统
长定子同步直线电机系统
长定子
导向电磁铁
) 离散的数学模型 (代数方程组) 代数方程 组解法
(数据处理)
离散解 (数值解)
(后处理)
结果的检验、实验 比较和校核
待求各物理量和电磁参解答, 图形显示等
飞机对电磁脉冲的响应
FDTD网格空间中F-111飞机模型
F-111腹部一点上脉冲引发的 电流计算值与实测结果的比较
D
C
电磁场数值分析 第16讲.

cos θ − 1 cos θ + 1
(1-20)
第16讲 边界条件
这就是一阶近似式作用在 x = 0 界面后所残留的反射波 与入射波之比(反射系数)。进一步考察泰勒级数中保 留两项的情形,此时
1− S 2 ≅ 1− 1 2 S 2
(1-21)
显然,在相同精度要求下,这一近似与一阶近似相比
ˆ 可取稍大的S,或者说允许向网格边界x=0传播的波同 − x Dy 方向的夹角稍大一些,因为 的比值可以更大一些 ,总
∂2 f 2 2 k k + ( − y)f = 0 2 ∂x
频域
(1-6)
第16讲 边界条件
∂2 2 2 定义 L = ∂x 2 + (k − k y ) ,则上式可写为
Lf = 0
(1-7) (1-8) (1-9a) (1-9b)
+
将 L 进行因式分解:
L=( ∂ ∂ 2 2 )( + j k 2 − k y ) − j k2 − ky ∂x ∂x L− = (
第16讲 边界条件
本章将讨论目前应用最广泛的 Mur 吸收边界条件, Berenger完全匹配层以及单轴各向异性完全匹配层吸收 边界条件。
1. Engquist-Majda吸收边界条件
如果一个偏微分方程允许波沿一定的方向传播,则称 它为单向波方程。当在FDTD网格外边界处应用单向波 方程时,可以吸收外向散射或辐射波。 Engquist和Majda导出了适合直角坐标FDTD网格吸 收边界条件的单向波方程,他们的单向波方程可以用偏 微分算子分解因式得到,以直角坐标系中的二维波动方 程为例: ∂2 f ∂2 f 1 ∂2 f + 2 − 2 2 =0 (1-1) 2
电磁场数值计算(基本原理)概要

电磁场数值计算
任课教师:王泽忠
James Clerk Maxwell (1831-1879) 麦克斯韦
2018年11月6日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
9
电磁场数值计算
任课教师:王泽忠
James Clerk Maxwell (1831-1879) came from a middle class Edinburgh family. He is ranked with Newton and Einstein for the fundamental nature of his many contributions to physics. Most importantly, he originated the concept of electromagnetic radiation and his field equations (1873) led to Einstein's special theory of relativity, It is ironic that when in 1860 the University of Aberdeen was formed by a merger between King's College and Marischal College where he held a post, Maxwell was "redundant". He applied at the University of Edinburgh, but was turned down in favor of another. He found it necessary to move to London's King's College. In 1871, Maxwell was appointed the first Cavendish professor of experimental physics at Cambridge. Maxwell died at fortynine after a short illness. He was buried in Scotland in the family plot; there were no public honors at his passing.
电磁场数值计算(平行平面和轴对称)

任课教师:王泽忠
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
2
电磁场数值计算
任课教师:王泽忠
开域截断-人工边界
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
3
电磁场数值计算
任课教师:王泽忠
电位1
远 边 界 电位2 ?
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
9
电磁场数值计算
任课教师:王泽忠
电
电
流
流
正
正
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
10
电磁场数值计算
任课教师:王泽忠
电
电
流
流
正
负
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
6
电磁场数值计算
任课教师:王泽忠
对称性简化
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
7
电磁场数值计算
任课教师:王泽忠
电
电
位
位
正
正
2020年1月31日
华北电力大学(北京)-电力工程系-高电压与电磁兼容研究所
8
电磁场数值计算
任课教师:王泽忠
电
电
位
位
正
负
2020年1月31日
21
电磁场数值计算
任课教师:王泽忠
rz 平面的轴对称矢量场经过旋度运算可以得到另一个相应的矢量场,
M r, z
电磁场数值分析

电磁场数值分析电和磁现象在自然界普遍存在,两者相互依存形成一个不看分割的整体。
电能产生磁,磁能生电。
很早以前人们就注意到电现象和磁现象,但是两者之间的这种相互联系在很长的一段时间内都没有被人们认识。
直到奥斯特首先发现了通电直导线周围存在磁场这一现象人们才开始把电和磁放在一起来研究。
然而这个时候人们依然没有办法揭示电和磁中间的秘密,只是停留在实验研究阶段,没有形成科学的理论。
1831年法拉第发现了电磁感应定律,从此电和磁的计算可以量化了,人类历史也开启了一个新的时代—电气时代。
由于法拉第的杰出工作,电和磁不再是不可触摸的了,人们已经掌握了运用它的钥匙。
在法拉第之后,另一位杰出的科学家麦克斯韦则更进一步,建立了麦克斯韦方程组,电和磁的理论已经到了相当完美的程度。
现代电机,不管结构多么复杂,都是基于法拉第电磁感应定律和麦克斯韦方程组的原理来运行的,其电和磁的相关量都可以利用这两个定律来进行精确地分析,在设计电机时,我们也是基于这两个定律对电机的电磁过程来进行精确的设计,从而设计出理想的电机。
学会电磁场分析,主要是基于麦克斯韦方程组的相关计算,对电机的学习非常重要。
它为我们今后的学习打下基础。
在学习过程中,主要要把握以下几个度之间的关系:梯度、旋度、散度,这三者的变换正体现了电和磁之间的转换。
一基本原理电磁场的内在规律由电磁场基本方程组—麦克斯韦(Maxwell )方程组表达。
这些方程是由麦克斯韦对大量实验结果及基本概念进行了数学加工和推广归纳而成的。
麦克斯韦方程组是分析和计算电磁场问题的出发点,它既可写成微分形式,又可写成积分形式。
微分形式的麦克斯韦方程组为 t DJ H ∂∂+=⨯∇(1) t BE ∂∂-=⨯∇(2) 0=⋅∇B(3) ρ=⋅∇D (4)式中,E 为电场强度(V/m );B 为磁感应强度(T );D 为电位移矢量(C/m 2);H 为磁场强度(A/m );J 为电流密度(A/m 2);ρ为电荷密度(C/m 2)。
工程电磁场数值计算(七)

SndS Sm 40 r rn
矩量法算例(五)
• 阻抗矩阵的计算(二)
zmn
Sm
1 dS 'dS
Sn 40 r r '
In (r)dS
Sm 40
zmn
Sm
In (r)dS 4 0
Sm
N i1
wi In (ri )
1
In(r)
Sn
dS rr'
可解析求解
zmn
Sm
1 dS 'dS
s (r ') S 40
1 rr'
dS ' s (r) 2 0
1n E1(r) 2n E2(r)
s (r) 1 2 n s (r ') 1 dS ' 0
20 1 2 S 40 r r '
稳恒电流场问题(六)
s (r) 1 2 n s (r ') 1 dS ' 0
取 q dV '
根据叠加原理,某点电位是所有电荷的贡献和
(r) (r ')dV '
V 40 r r '
静电场问题(三)
• 定义Green 函数
G(r, r ') 1
40 r r '
显然满足
2G(r, r ') (r r ')
可见,给定源分布求解电磁场分布的关键在 于获得Green函数。
O'
S
S
'
nˆ
P P P P0
l l
l
源
矩量法的难点(六)
dS ' lim
S R 0
S S
s
电磁场数值分析方法讨论

目录
01 一、电磁场基本概念 和理论
03
三、电磁场数值分析 的未来方向
02
二、电磁场数值分析 方法及其优缺点
04 参考内容
电磁场是指由电场和磁场共同组成的物理场,它广泛存在于自然界和各种人工 装置中。电磁场的分析和计算对于科学研究、工程应用和实际生产具有重要意 义。本次演示将探讨电磁场数值分析的方法和模型,以及未来的发展趋势和方 向。
点,如对积分核的选取要求较高,对于复杂结构和多介质问题需要进行复杂的 数值积分等。
三、电磁场数值分析的未来方向
随着计算机技术的不断发展和数值计算方法的进步,电磁场数值分析在未来的 发展中将会面临更多的机遇和挑战。以下是一些可能的发展趋势:
1、高性能计算机的应用:随着计算机性能的不断提升,电磁场数值分析将能 够处理更加复杂的问题和更大的计算域。
边界元方法也存在一些缺点,如对边界的划分要求较高,计算量较大,需要较 大的内存空间等。
3、积分方程方法
Байду номын сангаас
积分方程方法是基于电磁场的积分方程进行数值求解的方法。在电磁场数值分 析中,积分方程方法广泛应用于解决封闭区域的电磁场问题。它的优点包括: 数学模型简单,计算量较小,可以直接计算出电磁场的分布。然而,积分方程 方法也存在一些缺
布、电磁力等性能指标。其中,有限元法是一种常用的数值计算方法,它可以 将连续的电磁场离散成多个单元,对每个单元进行计算,并通过插值得到整个 场域的结果。
三、模型建立与验证
在进行电磁场数值计算之前,需要建立永磁电机的电磁场模型。模型包括电机 的主要部件,如定子、转子、永磁体等,以及其材料属性、尺寸、相对位置等 参数。根据这些参数,利用电磁场数值计算软件可以建立起电机内部的电磁场 分布情况,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索 Nhomakorabea•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
电磁场数值计算.
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左