工程力学第十章强度理论与组合变形

合集下载

强度理论与组合变形ppt

强度理论与组合变形ppt
桥梁监测和维护
通过监测桥梁的变形、裂缝等指标,及时发现 并解决潜在的安全隐患。
3
桥梁修复和加固
根据强度理论分析,针对受损或老化桥梁采取 适当的修复和加固措施。
强度理论在建筑物中的应用
建筑设计
01
考虑建筑物结构的强度、刚度和稳定性,以确保建筑物在使用
过程中的安全性。
抗震设计
02
强度理论在地震作用下用于评估建筑物的抗震性能,设计合理
02
组合变形
组合变形的定义与特点
定义
组合变形是指结构或构件在复杂受力或温度变化等作用下,由平面弯曲、拉 伸、压缩、扭转等基本变形组合而形成的变形形式。
特点
组合变形具有复杂性、多变性、综合性等特点,变形形式多种多样,影响因 素较为复杂,需要综合考虑多种因素进行分析和计算。
组合变形的影响因素
材料性质
组合变形对强度理论的影响
组合变形过程中,材料内部的应力 、应变和裂缝等状态是不断变化的 ,这些因素对强度理论的应用和验 证产生一定的影响。
VS
在复杂应力状态下,材料的强度和 稳定性受到多种因素的影响,因此 需要综合考虑各种因素来评估材料 的强度和稳定性。
强度理论与组合变形的相互作用
强度理论是组合变形的基础,它为组合变形的分析 和设计提供了重要的理论依据。
强度理论分类
根据不同的破坏特征和受力条件,强度理论可分为最大拉应 力理论、最大伸长线应变理论、最大剪切应力理论和形状改 变比能理论等。
强度理论的重要性
强度理论是工程应用中设计、制造、使用和维护各种材料的 关键依据之一,可以指导人们合理地选择材料、制定工艺和 优化结构。
强度理论能够为各种工程结构的分析、设计和优化提供理论 基础,从而提高工程结构的可靠性、安全性和经济性。

工程力学之组 合 变 形

工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。

10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。

又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。

此时,柱子既产生压缩变形又产生弯曲变形。

再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。

10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。

研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。

(2)分别计算各个荷载分量所引起的应力。

(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。

(4)判断危险点的位置,建立强度条件。

10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。

斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。

斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。

10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。

下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。

图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。

工程力学(静力学与材料力学)-10-组合受力与变形杆件的强度计算

工程力学(静力学与材料力学)-10-组合受力与变形杆件的强度计算
max M y
TSINGHUA UNIVERSITY
My Mz
max M y
x
z
max M z
第10章 组合受力与变形杆件的强度计算
斜弯曲
TSINGHUA UNIVERSITY
对于圆截面,因为过形心的任 意轴均为截面的对称轴,所以当横 截面上同时作用有两个弯矩时,可 以将弯矩用矢量表示,然后求二者 的矢量和,这一合矢量仍然沿着横 截面的对称轴方向,合弯矩的作用 面仍然与对称面一致,所以平面弯 曲的公式依然适用。

max=
My Wy

Mz Wz
max
第10章 组合受力与变形杆件的强度计算
斜弯曲
最大正应力叠加公式应用限制

max
TSINGHUA UNIVERSITY

My Wy

Mz Wz

max=
My Wy

Mz Wz
本章将介绍杆件在斜弯曲、拉伸(压缩)与弯曲组 合、弯曲与扭转组合以及薄壁容器承受内压时的强度问题。
第10章 组合受力与变形杆件的强度计算
TSINGHUA UNIVERSITY
斜弯曲 拉伸(压缩)与弯曲的组合 弯曲与扭转组合 圆柱形薄壁容器应力状态与强度计算 结论与讨论
返回总目录
第10章 组合受力与变形杆件的强度计算
斜弯曲
TSINGHUA UNIVERSITY
以矩形截面为例,当梁的横截面上同时作用两个弯矩My 和 Mz(二者分别都作用在梁的两个对称面内)时,两个弯矩在同一 点引起的正应力叠加后,得到总的应力分布图。
Mz
第10章 组合受力与变形杆件的强度计算

12-2 工程力学-组合变形的强度计算

12-2 工程力学-组合变形的强度计算



故,安全。
3 2 4 2
6.37 2 435.7 2 71.7 MPa
[例7] 方形截面杆的横截面面积在 mn 处减少一半,试求由 轴向载荷 P 引起的 mn 截面上的最大拉应力。
解:
N M m ax A W
a2 a a a2 P P/ P / 8 2 2 4 4 6 a
§12–3
拉(压)弯组合 偏心拉(压)
一、拉(压)弯组合变形:杆件同时受横向力和轴向力的作用而产
生的变形。
P P R
x z
P
x y z Mz
P
My
y My
二、应力分析: x z Mz P
P
MZ
My
y My
P xP A
Mzy xM z Iz
xM
y
Myz Iy
P Mz y Myz x A Iz Iy
max
F1 M max A Wz F1 F e A Wz
m
m
4)强度计算 因危险点的应力是单向应力 状态,所以其强度条件为:
F1 F e max 135MPa [ ] A Wz
例11-11 如图所示为一起重支架。已知a =3.0m, b=1.0m,F=36.0kN,AB梁材料的许用应力[ ]=140 MPa。试确定AB梁槽钢的型号。
拉压与弯曲组合变形的分析步骤
(1)、外力分析:
y
x
y P1
y
y P
x
=
P1
x
+
x P2
P2
P
P1 P cos
P2 P sin
(2)、内力分析:

材料力学(单辉祖)第十章组合变形

材料力学(单辉祖)第十章组合变形
17
弯压组合
可见,危险截面为C截面 其轴力和弯矩分别为
FNC 3 kN M c M max 4 2 8kN m
A
FAy
10kN m a x
g g f
C m
FBy
B
危险点 截面C上的最低点f 和最高点g
FN M c s A W
f
18
弯压组合
A I

4
10kN
解 首先计算折杆的支座反力 由平衡方程可得 FAx A
FAx 0, FAy 5kN, FBy 5kN
FAy
m
10kN
C 1.2m B 1.6m FBy
a x 1.6m
m
由于折杆左右对称,所以只需分析一半即可。 折杆AC部分任一截面上的内力
FN FAy sin 3 kN FS FAy cos 4 kN M xFAy cos
杆件变形分析步骤 首先, 在杆件原始尺寸上分别计算由横向力和 轴向力引起变形、应力 然后, 利用叠加原理,合成在横向力和轴向力 共同作用下杆件变形、应变和应力等物理量 若杆件抗弯刚度EI较大,轴力引起杆件的弯曲 变形较小,可以忽略
10
弯拉组合
细长杆件强度问题, 受力如图,抗弯刚度 EI,截面抗弯模量W , 横截面面积A。
n
e n
P
z b h y
30
偏心拉伸(压缩)
解: 1. 力系简化 力P对竖直杆作用等效于作 用在杆轴线上一对轴力P和 一对作用在竖直平面内力 偶mz=Pe
FN P 2000 N, M z mz Pe 120 N m
mz P
n
e n
P
mz P
可见,竖直杆发生弯拉组合变形

上篇 工程力学部分 第10章 组合变形

上篇 工程力学部分 第10章 组合变形
上一页
返回
下一页
第二节
斜 弯 曲
外力F的作用线只通过横截面的形心而不 与截面的对称轴重合,梁弯曲后的挠曲线不再 位于梁的纵向对称平面内,这类弯曲称为斜弯 斜弯 曲。斜弯曲是两个平面弯曲的组合,下面将讨 论斜弯曲时的正应力及其强度计算。
一、正应力计算
斜弯曲时,梁的横截面上同时存在正应力和剪应力,但因剪应 力值很小,一般不予考虑。 斜弯曲梁的正应力计算的思路可以归纳为“先分后合”,具体 计算过程如下: 1.外力的分解:由图10-3(a)可知:Fy=Fcosφ,Fz=Fsinφ 2.内力的计算 距右端为l1的横截面上由Fy、Fz引起的弯矩分别是: Mz=Fya=Facosφ My=Fza=Fasinφ 3.正应力的计算 由Mz和My在该截面引起K点正应力分别为σ’=±Mzy/Iz , σ’’=±Myz/Iy Mz和My共同作用下K点的正应力为
上一页
返回
下一页
二、双向偏心压缩(拉伸)时的 双向偏心压缩(拉伸) 正应力计算
图10-7(a)所示的偏心受拉杆,平行于轴线的拉力 的作用点不在截面的任何一个对称轴上,与z轴、y轴 的距离分别为ey和ez,此变形称为双向偏心拉伸 双向偏心拉伸,当F 双向偏心拉伸 为压力时,称为双向偏心压缩 双向偏心压缩。 双向偏心压缩 双向偏心压缩(拉伸)实际上是轴向压缩(拉伸) 与两个平面弯曲的组合变形。任一点的正应力由三部 分组成,计算这类杆件任一点正应力的方法,与单向 偏心压缩(拉伸)类似。 三者共同作用下,横截面上ABCD上任意点K的总 正应力为以上三部分叠加,即 F Mz y M yz / // /// (10-6) σ = σ +σ +σ = ± ± A Iz Iy
Mz FN (b) _ h (a) +

材料力学 第十章 组合变形(4,5,6)

材料力学 第十章 组合变形(4,5,6)

[例10-7]:偏心拉伸杆,弹 性模量为E,尺寸、受力如图 所示。求: (1)最大拉应力和最大压 应力的位置和数值; (2)AB长度的改变量。 分析:这是偏心拉伸问题
最大拉应力发生在AB线 上各点,最大压应力发 生在CD线上各点。
CL11TU24
解:(1)应力分析
Ph Pb N P, M y , M z 2 2 t N M y Mz c A Wy Wz
3.算例 [例10-4]求高h,宽b的矩形截面的截面核。 b (1)作中性轴Ⅰ,z , a y a 解:
(2)求载荷点① , 2 iy b2 2 b zF ② az 2 6 b 3 z iz ③ yF 0 ① ay ④ (3)作中性轴Ⅱ , h a z , a y 2 b y b (4)求载荷点② , 2 2 2 Ⅰ 2 2 iy iz h h h z F 0, yF ay 6 2 3 az
(1)过截面周边上的一点作切线,以此作为第一 根中性轴; (2)据第一根中性轴的截距求第一个载荷点坐标; (3)过截面周边上相邻的另一点作切线,以此作 为第二根中性轴; (4)按(2)求于第二个中性轴对应的第二个载荷 点坐标; (5)按以上步骤求于切于周边的各特征中性轴对应 的若干个载荷点,依次连接成封闭曲线即截面核心。
中性轴把横截面分为受拉区和受压区,两个 区范围的大小受载荷作用点坐标的控制。 定义:使横截面仅受一种性质的力时载荷作用 的最大范围成为截面核心。
二.截面核心的求法 1.截距与载荷坐标的关系
z F , az ; zF , az
2.作截面核心的方法
zF 0, az ; zF , az 0
解:(1)简化外力:

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算


FP a2
ww w
5
.k hd
b
m
上表面

σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP

ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6

后 答

FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
(10-6)
tg 2a0=-s2xt-xsyy (10-4)
切应力取得极值的角a 1有两个,二者相差90。 即t max和t min分别作用在两相互垂直的截面上。
a 1和a 0 的关系?
tg
2a 1 =
-
1
tg 2a0
=-ctg2a 0=-
tg
(p2±2a0) =
tg
(2a
0
p m
2
)
即有:a1=a0p/4
如果正确,单元体应力状态用主应力如何表示?
(a)
(b)
(c)
切应力互等?
t
t
t
t是极限切应力,主平面? 与极限剪应力面成 45 。
s1
二主应力之和?
s1 在哪个面上?
s1
s1 +s3 =sx +sy=0。 s1 =-s3
多大? (s1 -s3 )/2=t
s1
=t 20
平面应力状态小结
求任一截面应力—(10-1)、(10-2)式
=x
记 tg2a =0 x, 有 sin2a=x/(1+ x 2) 1/2 cos2a=1/(1+ x2)1/2
x
a
1
代入(10-1)式:
s
n=
s
x
+
s
y±{
(s
x
-
s
y
)2/
2
+
2t
2 xy
2
(s x -s y)2 +4t xy
}
极值 应力
s s
max
min
=
s
x
+ 2
s
y
±
[(s
x
-s
y
)
/
y smax压
C
M
s max 拉
smax
s max拉 [s 拉 ] s max压 [s 压 ]
2
返回主目录
组合变形:
A
压弯组合 e F
FT2 FT1 弯扭组合
B
AC
D
B
M
(b) 带传动轴 (a) 钻床立柱 承受组合变形的构件
问题: 危险点应力状态? 强度判据?
3
返回主目录
10.1.1 平面应力状态
(
30
-10)2 2
+
202
=
42.36MPa - 2.36MPa
主方向角:由(10-4)式有:
y
tyx sx
sy a=s5x8.28
txy
a
x 0
sy
n
tg
2a 0 =
-
2 20 30 -10
=
-2
2a 0= -63.43, a 0= -31.72
主平面方位: a01=58.28, a02=148.28
还有: s1、s 2平面内,t max 之值等于 (s1- s2 )/2。
s2、s 3平面内,t max 之值等于
(s2
-
s3
)/2。 18
讨论三、极值切应力作用面上s是否为零?
除若纯极剪限情况剪外应,力极作值用切面应力上平面上
正s应均力为不零为,零,且必纯有剪sx=sy。
y
txy
sx=sy=0
由(10-7)式知,此时应有:
2a1=
s
x -s 2t xy
y
=x (10-6)
同样有 sin2a=x/(1+ x 2)1/2 ;cos2a=1/(1+ x 2)1/2
代入(10-2)式:
极值切应力
t t
max min

[(s
x
-
s
y
)
/
2]
2
+
t
2 xy
(10-7)式
9
极值切应力作用平面? 主平面方位
tg
2a1=
s
x -s 2t xy
第十章 强度理论与组合变形
10.1 应力状态 10.2 强度理论 10.3 组合变形
返回主目录
1
10.1 应力状态

拉压
扭转

截面 应力
y
C
FN s=smax
危险点
应力状态
smax
强度 判据
smax拉 [s 拉 ] smax压 [s 压 ]
y
o
T
t max
t max t max [t ]
弯曲
最一般状态:
有s x、s y、t xy =t yx。
y
sy tyx
sx
sx
x
txy
sy
一般情况
txy a
a
sn
a
n
sx otyx
tn
b
sy
x
问题: 任意斜横截面上的应力s 、n t ?n
思路:研究力的平衡。设单元体厚度为1,有
SFx=snabcosa+tnabsina-sxabcosa+tyxabsina=0 SFy=snabsina-tnabcosa-syabsina+txyabcosa=0
J1--- 称为表示一点应力状态的第一不变量,即过某 点任意三个相互垂直平面上的正应力之和是不变的。
17
讨论二、主应力与极值切应力
平面应力
由(10-5)式
ssmmianx
=
s
x
+ 2
s
y
±
状态sz=0
[(s
x
-
s
y
)
/
2]2
+
t
2
xy
平有面:应s力1 -状s态3 =s2z=0[(s
x
-
s
y
)
/
2]2
4
返回主目录
注意到txy=tyx,解得:
sn=sxcos2a+ s ysin2a- 2txysinacosa t n=(s x-s y)sinacosa+txy(cos2a -sin2a)
txy a
a
sn
a
n
sx otyx
tn
b
sy
x
利用cos2a=(1+cos2a)/2,sin2a=(1-cos2a)/2,
2]2
+t
2
xy
(10-5)式
7
10.1.2 极值应力与主应力
极值 应力
s s
max min
=
s
x
+ 2
s
y
±
[(s
x
-
s
y
)
/
2]2
+t
2
xy
(10-5)式
极值应力截面方位:
tg
2a0
=
-
2t xy sx -sy
(10-4)式
注意到: tg2a0=tg(p+2a0)
正应力取得极值的角a 0有两个,二者相差90。 即smax和smin分别作用在两相互垂直的截面上。
s
n
=
s
x
+s
2
y
+
s
x
-s
2
y
cos2a
-txysin2a
t
n
=
s
x
-s
2
y
sin
2a
+
t
xy
cos
2a
y
sy sn
tyx n a sx
sx
tn txy x
sy
求主应力大小和方位—(10-5)、(10-4)式
s s
max
min
=
s
x
+ 2
s
y
±
[(s
x
-s
y
)
/
2]2
+t
2
xy
tg
2a0
=
-
2t xy sx -sy
tg2a0 = -s2xt-xsyy ---(10-4)
---(10-3)
在a=a 0 的斜截面上,s n 取得极值;且 t n =0。
6
返回主目录
10.1.2 极值应力与主应力
s
n
=
s
x
+s
2
y
+
s
x
-s
2
y
cos2a
-t
xy
sin2a
(10-1)式
sn取极值的条件:
tg2a0
=
-
2t xy sx -sy
s s
max
min
=
s
x
+ 2
s
y
±
[(s
x
-s
y
)
/
2]2
+t
2
xy
tg
2a0
=
-
2t xy sx -sy
主应力作用面上t=0,是主平面;主平面相互垂直。
一点的应力状态可由三个主应力描述,对于平面应
力状态,第三个主应力 s z =0。 11
求极值切应力 --(10-7)式,作用面与主平面相差45。
切应力取得极值的平面与主平面间的夹角为45。
10
平面应力状态
求任一截面应力—(10-1)、(10-2)式
s
n
=
s
x
+s
2
y
+
s
x
-s
2
y
相关文档
最新文档