TiO2光解水及CO2催化转化

合集下载

TiO2光催化原理和应用

TiO2光催化原理和应用

TiO2光催化原理及应用一.前言在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。

根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。

长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。

水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。

常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。

包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。

臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。

这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。

自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。

这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

光化学反应的过程与植物的光合作用很相似。

光化学反应一般可以分为直接光解和间接光解两类。

直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。

直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。

间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。

半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。

半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。

Ni–TiO2光催化还原CO2和水制备甲烷

Ni–TiO2光催化还原CO2和水制备甲烷

Ni–TiO2光催化还原CO2和水制备甲烷摘要:光催化是一种最潜在的方法来减少二氧化碳转化为有用的化合物。

在这个工作中,为了提高照片的二氧化碳减少,镍离子被嵌入二氧化钛作为光催化剂。

XRD 和TEM结果显示与纳米二氧化钛锐钛矿结构。

表面的特点用BET和电动电势测量。

经紫外可见和PL的光化学属性。

二氧化碳减排测试液体反应器和GC对产品进行了分析。

Ni-TiO2(0.1摩尔%)相比其他催化剂有最高收益率的甲烷。

简介在过去的几十年中,快速推动了全球能源需求不断增长的世界人口。

如今,能源基础设施几乎依赖于化石燃料。

使用化石燃料产生的温室气体如二氧化碳(CO2),这是全球变暖的主要原因[1,2]。

为了解决这个问题,许多研究人员正努力开发替代能源和利用二氧化碳。

有三种途径:利用二氧化碳CO2转化为燃料,利用二氧化碳作为化工原料,以及非转换使用的二氧化碳。

在各种方法中,光催化还原二氧化碳与水成烃燃料和有用的化学物质是值得注意的方式来生产能源与缓解全球气温降低二氧化碳浓度[3 - 5]。

Inoue at al [6]报道,HCOOH一氧化碳,CH3OH,甲烷是主要的产品在CO2和H2O的光致还原作用。

在一般情况下,运输过程中电子和空穴在光催化反应中可以通过几个步骤来解释:光吸收,运输光生电子和空穴在光催化剂表面,反应的电子和空穴,电子和空穴的复合光催化剂表面和反应物的传质[7]。

在各种半导体如氧化钛(二氧化钛)[8],氧化钨电致)[9],氧化锌(氧化锌)[10]、磷化镓(GaP)[11],硫化镉(cd)[12],和碳化硅(SiC)[13],重点是二氧化钛。

二氧化钛研究在过去几年中由于其众多的优点包括良好的光敏,电荷转移潜力,低成本、无腐蚀性,生物稳定、无毒[14]。

然而,二氧化钛的效率很低,因为宽的带隙(3.20 eV),立即重组光生电子空穴对[15-16]。

为了提高二氧化钛的光催化效率,许多表面改性方法已被研究人员进行。

金属氧化物的光催化性能

金属氧化物的光催化性能

金属氧化物的光催化性能引言光催化是一种利用光能将光子转化为化学反应能的技术。

金属氧化物是一类重要的光催化材料,具有良好的光吸收性能和光生电荷分离能力,被广泛应用于环境净化、水处理和能源转化等领域。

本文将探讨金属氧化物的光催化性能及其应用前景。

一、金属氧化物的光吸收性能金属氧化物具有较低的能带间隙,能够吸收可见光和紫外光。

其中,钛酸钡(BaTiO3)是一种常见的光吸收材料,其能带间隙约为3.2电子伏特,能够吸收波长小于390纳米的紫外光。

锌氧(ZnO)是另一个常用的光催化材料,其能带间隙约为3.37电子伏特,能吸收波长小于370纳米的紫外光。

金属氧化物的光吸收性能直接影响着其光催化性能。

二、金属氧化物的光生电荷分离能力金属氧化物的光吸收后,电子会从价带跃升到导带,并与空穴分离形成电荷对。

金属氧化物的光生电荷分离能力取决于其能带结构和晶体结构等因素。

例如,铁酸钛(Fe2O3)的能带结构有助于电荷分离,因此具有较好的光催化性能。

三、金属氧化物的光催化机理金属氧化物的光催化机理可大致分为两种类型:直接光解和间接光解。

直接光解是指光能直接激发金属氧化物中的电子和空穴形成活性物种,例如氧气和水分子,从而产生氧化还原反应。

间接光解是通过金属氧化物的携带者,例如氧化镁(MgO)等中间体催化光反应。

金属氧化物的光催化机理复杂多样,研究其机理有助于优化光催化性能。

四、金属氧化物的光催化应用4.1 环境净化金属氧化物具有良好的光催化降解有机污染物的能力。

例如,二氧化钛(TiO2)在光照下可以将有机污染物降解为二氧化碳和水。

此外,锌氧和钛酸锶(SrTiO3)等金属氧化物也被广泛应用于大气中有害气体(如NOx和SOx)的降解。

4.2 水处理金属氧化物的光催化性能可以用于水处理和净化。

例如,氧化铁(Fe2O3)和铁酸钛被用于污水中有机物的降解和重金属的去除。

此外,锌氧和氧化钒(V2O5)等材料也能够有效分解水中的有机污染物和重金属。

光催化和电催化co2还原

光催化和电催化co2还原

光催化和电催化co2还原
1光催化还原CO2
光催化还原CO2,是指利用光催化剂(如TiO2、ZnO、Cu/TiO2等)吸收太阳能,将CO2分子与水分子分解,将其还原为有机分子和氧气的过程。

这种技术可以转化CO2为有用的化学品和燃料,并同时减少CO2的排放,是一种很有前途的绿色能源技术。

研究人员已经在实验室中成功地利用光催化技术还原CO2,但要在实际应用中取得成功,还需克服一些挑战,如催化剂的稳定性、光谱效率低下等。

因此,未来的研究方向应该是探索新的催化材料,并提高其光谱效率和稳定性,以实现光催化还原CO2的大规模产业应用。

2电催化还原CO2
电催化还原CO2是指利用电催化剂将CO2还原为有机化合物的过程。

该技术主要基于电化学原理,通过加入外部电源将电子输送到催化剂上,在电子的作用下将CO2还原为有机化合物。

与光催化技术相比,电催化技术的优势是操作更加简单,而且更容易实现高效的转化效率。

电催化还原CO2技术目前已经得到了广泛的研究,相关研究人员也已经成功地将其应用于实际工业生产中。

其中最重要的电催化剂是金属催化剂(如银、铜、金等)和非金属催化剂(如金刚烷酸、多酚等),它们能够在电子的作用下促进CO2还原反应。

虽然CO2的光催化还原和电催化还原技术都有其优势和限制,但两种技术都在解决环境问题和能源安全问题方面,发挥着重要的作用。

未来我们需要继续深入研究这两种技术,发掘新的催化剂,扩大这两种技术的实际应用规模,以更好地实现CO2的还原和环保减排的目标。

TiO2简要介绍及其修饰改性

TiO2简要介绍及其修饰改性
ቤተ መጻሕፍቲ ባይዱ
TiO2的表征
40 30 20
10
0
2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 Band gap/ev
利用(Ahν)2对hν做 图,直线部分外 推至横坐标交点, 可知禁带宽度为 3.13eV
Absorption/a.u.
TiO2(sample) P25
300
400
专题报告
TiO2简要介绍及其修饰改性
TiO2简介
• TiO2俗称钛白粉,广泛应用于涂料和颜料等 行业。 • 1972年,Fujishima 在N-型半导体TiO2电极 上发现了水的光催化分解作用,从而开辟 了半导体光催化这一新的领域。 • 随着纳米科学及纳米技术的发展,新的制 备方法和表针手段的出现,纳米TiO2的研究 不断的深入。
80 60 40 20 0
US:1.7MHz MO:10mg/L P25:1.0g/L
t/min US-UV和US-UV-TiO2辐射后甲基橙相对浓度
0
10
20
30
40
50
60
实验结果分析
100
relative concentration/(C/C0*100%)
80
1.7MHz 2.0MHz 2.4MHz
MoS2的制备
• 方法三: (NH4)2MoS4 质量11mg,MIL-101质 量22mg,DMF2.5mL加热回流,然后趁热过滤 干燥,140 ℃抽真空干燥 • 方法四:双溶剂法使(NH4)2MoS4 质量11mg, 浸入至MIL-101质量22mg中 检验MIL-101,ZIF-8,MIL-53(44mg), DMF10mL, N2H4· H2O 0.1mL,200 ℃加热10h 结论ZIF-8彻底破坏,其余的有剩余固体存在

CO2转化技术的研究现状与发展趋势

CO2转化技术的研究现状与发展趋势

CO2转化技术的研究现状与发展趋势随着环境问题的不断加剧,CO2转化技术越来越被人们所关注。

CO2是一种重要的温室气体,其排放量不仅对人类健康及生态系统造成威胁,更是导致气候变化的主要原因之一。

因此,CO2转化技术的研究已成为减缓全球气候变化的重要手段之一。

一、CO2转化技术现状CO2转化技术目前已得到广泛的研究和应用,包括光催化、电化学、生物酶催化等多种技术手段。

1.光催化技术光催化技术是利用光能来激发固体表面的电子,从而促进CO2的转化为有用的化学品。

常见的催化剂包括TiO2、ZnO、CdS等半导体材料。

目前该技术已被应用于CO2的光解、光还原和光化学反应等方面。

光催化技术需要大量的光能来提供电子,因此其能效较低。

同时,催化剂的光吸收剖面也会限制该技术的转化效率和选择性。

2.电化学技术电化学技术是利用外部电势来促进CO2转化的过程。

该技术包括电解制氢、电化学合成烃类、电化学还原CO2等多个领域。

其中,利用电化学合成烃类是最有前景的CO2电化学转化技术之一。

当前,电化学技术的效率和选择性已有了很大提升,并且使用现代催化剂也能使CO2转化产物的选择性增加。

但电化学技术需要大量的电能来推动CO2的转化,因此需要更高效的电化学系统,同时还面临着催化剂寿命短、成本高等问题。

3.生物酶催化技术生物酶催化技术是利用酶催化反应来促进CO2的转化。

该技术不需要高温高压条件,具有反应温和、选择性高等优点。

此外,生物酶催化技术还能模拟生物体内的代谢过程,实现对CO2的高效转化。

例如,有机酸类催化剂和铁谷氨酸等天然酶都可以用于CO2转化。

不过,当前的生物酶催化技术还面临着反应速率慢、催化机制不明确等问题。

因此需要进一步优化反应条件和生物酶催化剂的设计,从而提高该技术的效率和可实施性。

二、CO2转化技术发展趋势CO2转化技术正在不断发展,在未来还有很大的应用前景。

以下是CO2转化技术的发展趋势:1.提高CO2转化技术的效率和可控性提高CO2转化技术的效率和可控性是未来研究的关键方向。

h2o与tio2反应

h2o与tio2反应

h2o与tio2反应水(H2O)和二氧化钛(TiO2)是好朋友。

它们可以互相作用,生成另一种化合物,水合二氧化钛(TiO2H2O)。

这个反应是光化学的,意味着由太阳光照射引起的化合反应,它可以把水分解成氢气和氧气。

水合二氧化钛在水溶液中有着非常重要的应用,它可以被用作光催化剂,可以在太阳光作用下,有效地分解污染物,如VOCs,氮氧化物等,从而达到有效控制污染的目的。

H2O和TiO2反应的机理可以被描述如下:首先,TiO2在太阳光的照射下,会由Ti4+被激发到Ti3+,这期间会释放出自由基,如自由氧和羟基,随后,H2O中的水分子会被这些自由基捕获,形成水合二氧化钛。

水合二氧化钛常被用作光催化剂,它能有效地把VOCs,氮氧化物和碳氢化合物分解成二氧化碳和水,通常会在某种空气处理设备或太阳能发电站中使用。

除了光催化应用外,水合二氧化钛也作为一种抗菌剂被人们广泛使用,它可以有效地抑制细菌的生长,尤其是一些耐药性较强的细菌,如抗生素耐药性的细菌,这对于控制细菌的扩散,以及防止对其他抗生素敏感的细菌的进一步扩散有着重要的作用。

H2O和TiO2反应是一种十分有效的光化学反应,它不仅有效地把污染物分解为无害的产物,还能有效地杀灭细菌,这使得它在环境保护,污染控制和防病毒方面有着广泛的应用。

希望未来可以有更多的利用H2O和TiO2反应的方式来保护我们的环境,而我们也需要更加重视这方面的研究,给出更有效的应用方法。

H2O和TiO2反应是一种常见的反应,但它们的特殊性却显而易见。

它们各自的作用能够有效地发挥出它们在环境保护,污染控制和消毒领域的作用,使它们两者千丝万缕起来,得以打造一个健康,安全的环境。

希望我们能够充分利用H2O和TiO2反应的优势,为我们的未来做出更多的贡献。

TiO2光催化反应及其在废水处理中的应用

TiO2光催化反应及其在废水处理中的应用

TiO2光催化反应及其在废水处理中的应用TiO2光催化反应及其在废水处理中的应用摘要:近年来,随着环境问题的日益突出,废水处理成为了重要的课题之一。

光催化技术由于其高效、环保的特点,被广泛应用于废水处理领域。

其中,钛白粉(TiO2)光催化反应被认为是一种非常有效的方法。

本文从TiO2光催化反应的基本原理、反应机制和影响因素等方面进行了探讨,并详细介绍了其在废水处理中的应用。

一、引言随着工业化进程的不断加快,废水排放问题日益严重。

废水中含有大量的有机物、重金属离子等污染物,不仅对水体生态环境造成了严重的破坏,也对人类的健康产生了潜在的危害。

因此,如何有效地处理废水成为了亟待解决的问题。

光催化技术由于其高效、环保的优势,被广泛应用于废水处理领域。

其中,TiO2光催化反应因其低成本、易得性和良好的稳定性等特点,成为了研究的热点之一。

二、TiO2光催化反应的基本原理TiO2光催化反应是指在紫外光照射下,通过激发TiO2表面的电子,产生一系列氧化还原反应,最终实现有机污染物的降解。

TiO2光催化反应的基本原理可以归结为:1) 紫外光照射下,TiO2表面的电子被激发至导带,形成自由电子和空穴;2) 自由电子和空穴在TiO2表面进行氧化还原反应,产生一系列高活性氧化物种,如羟基自由基、超氧自由基等;3) 这些高活性氧化物种与有机污染物发生反应,使其降解为无害物质。

三、TiO2光催化反应的反应机制TiO2光催化反应的反应机制主要包括两个方面:1) 高活性氧化物种生成机制;2) 有机污染物的降解机制。

高活性氧化物种生成机制为:当TiO2表面的电子被紫外光激发,会形成自由电子和空穴。

自由电子在TiO2表面与氧分子发生反应,生成氧化还原活性物种,如羟基自由基;空穴则与水分子发生反应,产生羟基自由基和超氧自由基。

有机污染物的降解机制为:高活性氧化物种与有机污染物发生反应,形成过渡产物,并经过一系列反应逐步降解为无害物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Navarro Y R M,et al., Chem. Sus. Chem, 2009, 2(6): 471–485
光解水催化剂的改性——半导体复合
这 种 方 法 是 指 一种宽带隙半导体与另外一种导带能级较负的 窄带隙半导体进行复合。
右图给出了部分氧化物和硫化物半导体材料的导带与价带的 电位,可以看出很多半导体的能带结构都与光解水的氧化还 原电位相匹配。
Sant P A,et al,Phys. Chem. Chem. Phys, 2002, 4(2): 198–203
ቤተ መጻሕፍቲ ባይዱ
光解水催化剂的改性——贵金属沉积
光生电子和空穴在激发后有自然复合的倾向。在实际应用中,这种 复合作用降低了光催化剂的催化活性。
研究发现,在光催化剂的表面沉积适量的贵金属,这种具有不同电 子能级的异质结构可以有效地提高光生电子和空穴的分离效率。
Fujishima A et al., Nature, 1972, 238, 37-38
二氧化钛晶体
二氧化钛是宽禁带半导体,在自然界中主要存在三种晶型:锐钛矿型(anatase)、金红石 型(rutile)和板钛矿型(brookite)。
板钛矿晶型热稳定性较差,几乎不具备光催化活性。
锐钛矿颗粒热稳定性相对低一些,但光催化活性最高。
光解水催化剂的改性——元素掺杂
优点:工艺简单,成本相对低廉,易于控制掺杂物的浓度,掺杂物种还可以随意组合。 缺点:活性不太稳定。 利用物理或化学的方法将灵活性强的阳离子掺杂取代宽带隙半导体中的晶格元素,或者间隙掺杂, 这将改变晶格的结构类型,引入新的电荷,使光生电子和空穴的运动状况发生改变,能带结构发 生变化,可能会产生杂质能级态,进而拓展了其对可见光的响应范围。 近年来,许多学者报道了关于用阴离子掺杂对氧化物半导体进行改性,例如用氮取代晶格氧。
光解水制氢的评价指标
一般来说考察催化剂的光解水催化性能主要有两个指标, 一为催化活性,二为催化剂稳定性。
我们可以将单位时间内的产氢量与催化剂的使用量联系 起来,以气体的生成速率来表示其催化活性和这使得在 相同的反应条件下,不同的催化剂之间具有一定的可比 性。
作为总量子效率概念的深化,表观量子效率是一种重要 而同时被人们广泛认可的评价催化剂催化活性的一种指 标。总量子效率与表观量子效率的计算方法分别如右式。
这是因为贵金属能在金属–导体表面形成 Schottky势垒,这是一种 电子的浅势阱,可以捕获光生载流子,半导体导带上的电子转移至 金属上,加强了氢的还原,同时空穴留在半导体上,抑制光生电子 和空穴的复合,延长空穴的寿命。
金属的沉积量对催化活性有着至关重要的影响,要把沉积量控制在
光催化技术作为绿色技术之一,可缓解环境和能源问题,尤其是光催化还原, 不仅有助于消除温室气体,避免环境污染,而且可以得到碳氧化合物,实现 碳资源的循环使用。
2010年7月,我国将“太阳能催化制氧与二氧化碳转化親合研究”列为重大项 目 , 为我国光催化技术研究注入了新的动力。多年来,如何设计合成具有可 见光活性的稳定光催化材料,实现光生电子和空穴的有效分离和传输等一直 是光催化领域研究的热点和难点。
啊啊 啊啊 啊啊
一个好的光催化材料除了具有高的光催化活性量子效率外,还 应具有良好的稳定性。 一般用重复实验来测试催化剂的稳定性。据文献报道,光腐烛 是催化剂失活的一个重要原因。 比 如 对于金属硫化物而言。 以 CdS来说,更容易被空穴氧化而 产生光腐烛现象。
Yugo M,et al., Chem.Soc.ReV, 2009, 38, 253-278
二氧化钛在 550~750nm处没有特征吸收峰,而 CdS/TiO2复合 物在 550~750 nm处则出现宽吸收谱带。由于CdS的能带较窄,
使CdS/TiO2复合物把光的吸收范围从紫外光部分拓展到了可 见光区。此外,该复合半导体使得光致电子和空穴得到了更
有效的分离,提高了光催化剂的量子效率。
Xu Y,et al,Am. Mineral, 2000, 85: 543–556
光催化剂被太阳光或外界光源照射后,位于价带上的电子被激 发至导带,而空穴仍然留在价带上,所以就形成了带负电的电 子和带正电的空穴对。光激发以后,产生的电子和空穴分离并 且迁移到光催化剂的表面,在光解水反应中它们分别起还原和 氧化作用。
Fujishima A, et al., Nature, 1972, 238, 37-38
一方面,随着尺寸变小,常规二氧化钛中准连续的电子能级发生分立,禁带宽度变大,吸收 蓝移生成能量更高的光电子和空穴,具有更高的氧化和还原能力。
另一方面,随着粒径减小,电子从体相迁移到表面的时间缩短,从而降低了光生电子和空穴 对的复合几率,有效提高光产率。
此外,二氧化钛的比表面积亦因尺寸降低而显著增大,吸附底物的能力明显增强,促进了光 催化反应的进行。
因 二 氧 化 钛 物理化学性质稳定、光催化活性高、廉价无毒等研究较多,目前 仍为光催化领域研究的热点。
TiO2光催化
光解水制氢 CO2催化转化 食品应用 白色染料 防晒 保护环境
二氧化钛光解水的原理
H2O → H2 + 1/2O2 当二氧化钛表面受到紫外光照射后,导致水发生氧化反应产生 氧气,而在电极上则发生还原反应生成氢气。
但某些情况下,对金红石型二氧化钛的结构进行改性后表现出良好的光催化活性。
纳米二氧化钛的特性
20世纪90年代以来,随着纳米技术的发展赋予了二氧化 钛材料新的特性和应用。 与体相二氧化钛材料相比,纳米尺寸的二氧化钛具有更 高的光催化活性。
表面效应 小尺寸效应 量子尺寸效应 宏观量子隧道效应
纳米二氧化钛的特性
TiO2光解水及CO2催化转化
侯旭望 16250220004 2016.12.9
稳定性
光催化特性
TiO2
无毒无害
1 研究背景
目录
CONTENTS
2 二氧化钛光解水
3 二氧化钛光催化转化二氧化碳
4 二氧化钛光催化研究前景
1972年,Fujishima发表了二氧化钛单 晶表面在紫外光照射下水的光分解现 象,激起了人们极大的研究兴趣,揭 开光催化技术序幕。
相关文档
最新文档