高考数学 平面向量模拟试题

合集下载

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。

5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。

三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。

7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。

8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。

四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。

10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。

答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)

高中数学平面向量经典练习题(含答案)一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .2.已知向量a=(1,-6),b=(-2,14),则向量 13a-2b 的坐标= .3.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 .6.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .AEDBCADBC7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a用b、c表示。

则a= .8.已知向量a=(x,5√3+11),b=(x+2√3+1,-1),若a,b互相垂直,则x的值为 .9.已知向量a(1,√2),b(-√2,x)它们的夹角为α,且sin2α=1,则x= .10.已知向量a=(1-x,1),b=(-2,2x),若向量2a+b与a-b平行,则a·b= .二、解答题11.已知向量a=(1,1),b=(√2,-1),若(xa-b)⊥(2a+b),求实数x的值.12.已知|a|=1,|b|=2,它们的夹角为60°,设c=3a+xb,d= -xa+2b,若c⊥d,求实数x的值.参考答案 一.填空题1.在平行四边形ABCD 中,AC 、BD 为对角线,则AB→ + AD→ + CD→ +DB→ +BA→ = .解:AB→ + AD→ + CD→ + DB→ +BA→=AB→ + AD→ + CD → +(DB→ +BA→ )=AB→ + AD→ + CD→ +DA→=(AB→ + CD→ )+(AD→ +DA→ )(因为AB→ ,CD→ 大小相等,方向相反,它们的和为0)=0+0 =0故原题的答案为:02.已知a=(1,-6),b=(-2,14),则 13a-2b= .解: 13a = 13(1,-6)=(13,-2)2b=2(-2,14)=(-4, 12)13a-2b =(13+4,-2- 12)=( 133,- 52)故原题的答案为: 133,- 523.已知向量a ,b ,若|a |=2,|b |=2√5,且(a-b )·(2a-3b )=68-10√15,则向量a ,b 的夹角为 .解:由已知,得|a |2=4,|b |2=20,|a |·|b |=4√5(a-b )·(2a-3b )=2a 2-5ab+3b 2=8-5ab+ 60 =68-5ab=68-10√15则ab=2√15cosa = ab |a |.|b|= 2√154√5= √32所以向量a ,b 的夹角为30° 故原题的答案为:30°4.在△ABC 中,设BC→ =m ,BA→ =n ,D 为AC 上的一点,且AD DC= 45,若向量BD→ 用m ,n 表示,则BD→ = .解:BC→ =m ,BA→ =n则AC→ = m-n又AD DC= 45所以DC→ = 59AC→= 59m - -59nBD→ = BC→ - DC→=m -( 59m - 59n )= 49m + 59n故原题的答案为: 49m + 59nADBC5.已知向量a=(2,3m-4),b=(m-5,m+1),若a ,b 共线,则m 的值是 . 解:因为a ,b 共线所以2·(m+1)=(3m -4)·(m -5) 整理,得m 2-7m+6=0 解得,m=1或m=6 故原题的答案为:1或66.在△ABC 中,D 为边BC 上,CD=3DB ,E 在边AC 上,且AE=2EC ,设AC→ =a→,AD→ =b→,用向量a→,b→表示向量EB→ ,则EB→ = .解:CD→ = b→ - a →CB → = 43CD → = 43(b→ - a→)= 43b→ - 43a→EC → = 13AC → = 13a→EB→ = EC→ +CB→ =(13a→)+(43b → - 43a →)= 43b→- a→故原题的答案是: 43b→- a→7.已知向量a=(-3,6),b=(4,0),c=(1,4),若a 用b 、c 表示。

高三平面向量练习题

高三平面向量练习题

高三平面向量练习题平面向量是高中数学中的重要内容,它具有广泛的应用和深厚的理论基础。

在高三阶段,我们需要熟练掌握平面向量的运算规则,并能够应用到实际问题中。

本篇文章将为大家提供一些高三平面向量练习题,希望能够对大家的学习有所帮助。

练习题一:已知向量 a = (3, 5) 和向量 b = (-2, 7),求向量 a + b 和 2a - 3b。

解答:向量 a + b = (3, 5) + (-2, 7) = (1, 12);2a - 3b = 2(3, 5) - 3(-2, 7) = (12, -1)。

练习题二:已知平面上三点 A(-1, 2),B(3, -4)和 C(5, 6),求向量AB 和向量 AC。

解答:向量 AB = (3, -4) - (-1, 2) = (4, -6);向量 AC = (5, 6) - (-1, 2) = (6, 4)。

练习题三:已知向量 a = (-2, 3) 和向量 b = (4, 7),求它们的数量积和夹角余弦。

解答:向量 a · b = (-2, 3) · (4, 7) = -8 + 21 = 13;|a| = √((-2)^2 + 3^2) = √13,|b| = √(4^2 + 7^2) = √65。

所以夹角余弦为cosθ = (a · b) / (|a|·|b|) = 13 / (√13·√65)。

练习题四:已知平面向量 a = (2, 4) 和向量 b = (3, -1),求它们的叉积和叉积的模长。

解答:向量 a × b = 2*(-1) - 4*3 = -14;|a × b| = |ab|·sinθ = |(2, 4)×(3, -1)| = |-14| = 14。

练习题五:已知平面上一点 A(-3, 4)和向量 a = (5, 2),求点 A 关于向量 a 的对称点 B 的坐标,并计算向量 AB。

高中数学平面向量经典练习题(附答案)

高中数学平面向量经典练习题(附答案)

D、m= -2+2 3,n= 2 +2 3
12、已知向量a与b, 3a + b = 6,a − 3b = 8,若则a ⊥ b,则 + 的值是( )
A、2
B、9
C、 6
D、 10
13、在△APD 中,AC=CD,AB=2BC,点 E 在 PA 上,H 在 PD 上,F 是 EH 的中
点,G 是 PC 与 EH 的交点,则 =(
3 23
2
解得:a=2b
已知 C 是 AD 的中点,设 = n ,
所以
=
2
+2
设 S = t KS,
-----------------------------------------⑤
得:
= 2tb
+(1-t) b
-----------------------⑦
由⑤、⑦式中对应系数相等,2tb = 2 (1 − t) b = 2
( + )·( + )=0 ------------------------⑨
由⑦,⑧,⑨,得:
cos( + , + )= ( + )·(3 + )
+ ∙3 +
=0 所以:向量 + , + 的夹角为 90°
故答案为:C
第 18 题 解: 已知 2 − 3 = 7 等号两边同时平方,得: 4 2- 12 ∙ +9 2 = 7 将 = 2, · =3 代入上式, 4·22-12·3+9 2 = 7 化简得: = 3

=

=(3,2)
8、已知向量 , 满足 = 3 , ⊥(2 + 3 ),则向量 与 的夹角

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案

高中数学平面向量测试题及答案一、选择题1、下列哪一组向量是平行向量?A. (3,4)与(4,3)B. (3,4)与( - 4,- 3)C. (3,4)与( - 4,9)D. (3,4)与(7,8)2、下列哪一组向量是共线向量?A. (1,2)与(2,3)B. (1,1)与(2,2)C. (1,2)与( - 2,4)D. (1, - 1)与( - 2,2)3、下列哪一组向量是垂直向量?A. (1,2)与(2,1)B. (3,4)与(4,3)C. ( - 3,4)与(4, - 3)D.平面向量是数学中的一个重要概念,是解决许多实际问题的重要工具。

以下是一些经典的平面向量测试题,可以帮助大家了解和评估自己的平面向量水平。

给出平面向量的基本概念和性质,包括向量的表示、向量的模、向量的加法、减法和数乘等。

给出一个向量的坐标表示,包括在直角坐标系中的表示和在极坐标系中的表示。

给定两个向量 a和 b,求它们的数量积、夹角和模长。

给定一个向量 a,求它的单位向量、零向量和负向量。

给定一个平面向量场,求其中的平行向量、共线向量和线性无关向量。

给定一个三维平面向量场,求其中的法向量和切线向量。

给定一个向量的模长和夹角,求这个向量的坐标表示。

给定两个三维向量 a和 b,求它们在空间中的位置关系,如平行、共线和垂直等。

给定一个平面向量 a和一个非零向量 b,求 a和 b的垂直平分面和a和 b的中垂线。

给定一个向量的正交分解和极坐标表示,求这个向量的直角坐标表示和极坐标表示。

以上是平面向量经典测试题的一些例子,这些题目可以帮助大家巩固平面向量的基本概念和性质,提高解决实际问题的能力。

解释:平面向量是由两个数值和一个字母组成的,其中字母表示向量的方向,而数值表示向量的模长。

选项A符合这个要求,而其他选项都不符合。

解释:平面向量的基本运算包括加法、减法和数乘,而D选项中的“数乘和加法”实际上是包含了这三种运算,因此不是平面向量的运算。

平面向量测试题-高考经典试题-附详细答案

平面向量测试题-高考经典试题-附详细答案

平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。

2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。

3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2m b m α=+其中,,m λα2,a b =则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km mk m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确. 6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。

平面向量高考试题精选含详细答案)

平面向量高考试题精选含详细答案)

平面向量高测试题精选〔一〕一.选择题〔共14小题〕1. 〔2021?河北〕设D 为△ ABC 所在平面内一点,前二3五,那么〔〕A疝-仁小产:豆2. 〔2021?福建〕正_L 正,|标肝, |正|二t ,假设P 点是△ ABC 所在平面内一点,A. 13B. 15C. 19D. 213. 〔2021?四川〕设四边形 ABCCfe 平行四边形,|画二6, |面=4,假设点M N 满足就二3元,而二2说,那么标•疝二〔〕A. 20B. 15C. 9D. 64. 〔2021?安徽〕△ ABC 是边长为2的等边三角形,向量 E 满足靛=2;,AC =2a +b,那么以下结论正确的选项是〔 〕 A. | b|=1 B. alb C. a?b=1 D. 〔4a+b 〕,前5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔 〕A. |l^b |<|a || b|B, H-b |<|| ;| 一 |E||C. 〔 a+b 〕 2=| a+b | 2D. 〔a+b 〕 ? 〔 ; Y 〕<2 -百6. 〔2021?重庆〕假设非零向量 a, 七满足|1二组1:|可,且〔1-%〕 ± 〔 3a+2b 〕,那么3 !与E 的夹角为〔〕A. —B. —C. —D.冗 4 247. 〔2021?重庆〕非零向量 * b 满足|b|=4| J ,且a ,〔2a+b 〕那么占与b A J B J C _I D __L 3 2 368. 〔2021?湖南〕在平面直角坐标系中, O 为原点,A 〔- 1, 0〕, B 〔0,立〕,C 〔3, 0〕,动点D 满足|而|=1 ,那么| OA +OB +OD l 的取值范围是〔〕且」 .「|AB| |AC| 那么再•衣的最大值等于〔A. [4, 6]B. [V19-1, V19+1]C. [2 立,2书]D.[由-1,,+1]9. 〔2021?桃城区校级模拟〕设向量%,工满足| a |= |b |=1,二后二,V ■a- c, b-c>=60° ,那么l A的最大值等于〔〕A. 2B. Vs C .& D . 110. 〔2021?天津〕菱形ABCD勺边长为2, /BAD=120 ,点E、F分别在边BGDC上,施"前,谄.,假设凝?谆1赤?正谓,那么入+尸〔〕A. B.二 C.二D 二2 3 6 1211. 〔2021?安徽〕设,,E为非零向量,|而2|十,两组向量*,离,寓,巧和宝, 斤三,斤均由2个;和2个E排列而成,假设耳?宣+中卫+E?三+五?五所有可能取值中的最小值为4| a|2,那么!与芯的夹角为〔〕A 二B 二C 二D. 0 3 3612. 〔2021?四川〕平面向量最〔1, 2〕, b= 〔4, 2〕, c=m+b 〔mGR〕,且彳与1的夹角等于W与Z的夹角,那么m=〔〕A. - 2B. - 1C. 1D. 213. 〔2021?新课标I 〕设D, E, F分别为△ ABC的三边BC CA AB的中点,那么直+而=〔〕A 二B. 一DC. : D. 一:2 214. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD 所在平面内任意一点,那么赢+5S+无+而5等于〔〕A. i"B. 2 i“C. 3 i"D. 4 i"二.选择题〔共8小题〕15. 〔2021?浙江〕设司、.为单位向量,非零向量岸x q+y., x、yGR假设司、同的夹角为30.,那么集的最大值等于_________________ .lb |16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足点二次/+Nm〔1<入02, 0<医01〕的点P组成,那么D的面积为.17. 〔2021?湖南〕如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么AP .正=.18. 〔2021?北京〕己知正方形ABCD勺边长为1,点E是AB边上的动点.那么而•百的值为.19. 〔2021?天津〕直角梯形ABC前,AD// BC / ADC=90 , AD=2 BC=1, P 是腰DC上的动点,那么|位+3瓦|的最小值为 .20. 〔2021?浙江〕平面向量五,百〔五产万,五卉万〕满足IT 1=1,且五与下的夹角为120.,那么|三|的取值范围是 .21. 〔2021?天津〕如图,在^ ABC中,ADLAB,前4菽那么AC ,箴=.22. 〔2021?天津〕假设等边△ ABC的边长为2加,平面内一点M满足而^^总正,那么6 3而,而=.三.选择题〔共2小题〕23. (2021?上海)定义向量0M= (a, b)的“相伴函数〞为f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx的“相伴向量〞为赢=(a, b)(其中O为坐标原点).记平面内所有向量的“相伴函数〞构成的集合为S.(1)设g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模;(3)M(a, b) (b乎0)为圆C: (x - 2) 2+y2=1上一点,向量超的“相伴函数〞f (x)在x=x.处取得最大值.当点M 在圆C上运动时,求tan2x.的取值范围._一、_________ 2 n...........................24. (2007?四川)设F I、F2分别是椭圆工+,=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且西・后己二-总,求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角 (其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高测试题精选(一)参考答案与试题解析一.选择题(共14小题)1 . (2021?河北)设D为△ ABC所在平面内一点,BC-3CD,那么( )A归工:岳B折,13 0 *s, 0八一 4 一 1 - r —1 4―1 —C—,'4'. D.解:由得到如图由仙二处+8口=标亨岸冠4 国-靛)=-掷号正;应选:A.2. (2021?福建)正1京,I店|[, |正|二t,假设P点是△ ABC所在平面内一点,,那么无•五的最大值等于(A. 13B. 15C. 19D. 21解:由题意建立如下图的坐标系, 可得 A (0, 0), B (工0) , C (0, t),・•・P (1, 4),PB= (-- 1, - 4) , pc= ( - 1 , t -4),PB*PC=- (1-1) - 4 (t -4) =17-(1+4t),t由根本不等式可得l+4t>2^T^=4,.•.17-(1+4t) < 17- 4=13,当且仅当上4t即t6时取等号, .二有•五的最大值为13, 应选:A.3. 〔2021?四川〕设四边形ABCDfe平行四边形,|画二6, |初=4,假设点M N满足而二3元,而二2前,那么氤,而i=〔A. 20B. 15C. 9D. 6解:「四边形ABCM平行四边形,点M N满足面i=3元,丽二2束,.二根据图形可得:= + ?--= . : . II,4 4洲二MI -蝴,V或•而二标?〔记-讪〕二俞-嬴•福.-1|2=・"2 . : •",・小।-r -.-,-1= :."21二卜,2. ;3 4 2 '| 'B|=6 , | -1||=4 ,..」「'/二,:::「12=12-3=9应选:C4. 〔2021?安徽〕△ ABC是边长为2的等边三角形,向量京E满足屈=2£AC=2g+b,那么以下结论正确的选项是〔〕A. | b|=1B. a±bC. a?b=1D. 〔4a+b〕,前解:由于三角形ABC的等边三角形,;,E满足靛=2;,应=2:+%,又正=7B+前, 所以‘:..;,・‘,所以-=2, - ;.=1X2Xcos120 =- 1,4a・b=4X 1X2Xcos120° =- 4,寸=4,所以狐・石+]士=0,即〔4a+b〕*B=0,即〔G+E〕•前=0,所以〔4;+芯〕1BC;应选D.5. 〔2021?陕西〕对任意向量!、b,以下关系式中不恒成立的是〔〕A. |a-b|<|;|| b|B. | a-b l<ll ^l -I bllC 〔髓〕2=| a+b| 2 D. 〔a+b〕? 〔a-b〕=?- b2解:选项A正确,丁 | a p b|=| 君|| b||cos < " Z>|,又|cosv;, b>| <1,,|.讶&G| %| 恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得|g-E l >ll』-|芯|| ;选项C正确,由向量数量积的运算可得〔a+b〕2=|a+b|2;选项D正确,由向量数量积的运算可得〔彳+E〕?〔1-b〕二2-%2.应选:B6. 〔2021?重庆〕假设非零向量a, 七满足|』=竺|可,且〔:-%〕± 〔3a+2b〕,那么3!与E的夹角为〔〕A.三B.C. 12£D.冗4 2 4解:二 ( a - b) ± ( 3 a+2b),(5-b) ? ( 3 a+2b) =0,即 3.;— 2:,2- ? =0,即就=3;-2寸金2, 3即V a, E>=三, 4应选:A7. 〔2021?重庆〕非零向量b满足lbl=4| J,且a,〔2a+b〕那么祖与b的夹角为〔〕A二B二C三D三3 2 3 6解:由非零向量之,b满足lbl=4| a l ,且a,〔2a+b〕,设两个非零向量a, b的夹角为°,所以a? 〔 2 a+ b〕=0,即2$十| |b|C os9 =.,所以cos 9 =-.,9 Q0 ,九],所以eW;应选C.8. 〔2021?湖南〕在平面直角坐标系中, O为原点,A〔- 1, 0〕, B 〔0,右〕,C 〔3, 0〕,动点D满足l而l=1 ,那么l m+55+55l的取值范围是〔〕A. [4 , 6]B. [ V19- 1, V19+1] C . [2 遮,2<7] D.[邛-1,道+1]】解:•••动点D满足|而|=1 , C 〔3, 0〕,「•可设 D (3+cos 9 , sin 9 ) (6 q0 , 2 兀)).又 A ( - 1, 0), B (0,立),, + 1+ 1= 1 - - - - ■一』I 「+"+0」= 一::」二二二•,一F"船…,•:飞不、」=倔公斤京西河丁,〔其中sin 6二焉,8s小嚼- 1<sin 〔 9 +〔[〕〕 &1,•,•〔"-1〕 2= * - W748+2VV sin 〔 9 + 小〕< 8+2沂=〔^+1〕2,「.I OA+OB+OD|的取值范围是W7 - I,近+11.应选:D.9. 〔2021?桃城区校级模拟〕设向量I,工满足|l|=|b |=1,.泰-L V b-c>=60°,那么1看的最大值等于〔〕A. 2B.g C . & D . 1解:「I aI二I b |二1,乱〞二一, -W二.W, %的夹角为120° ,设赢二W, OB=b,0C=c那么不二^一与;CB=1一工贝4/AOB=120 ; / ACB=60丁./AOB+ ACB=180・•.A,O, B, C四点共圆.一2• • AB /. AB^/3由三角形的正弦定理得外接圆的直径当OC 为直径时,模最大,最大为 2 应选A10 . 〔2021?天津〕菱形 ABCD 勺边长为2, /BAD=120 ,点E 、F 分别在边BG DC 上,BE = k BC, DF =〔1DC,假设标?m =1, CE ?CF =- 贝U 入+医=〔〕3A. 'B. :C. ' D — 2 3 6 12解:由题意可得假设.•,?•, = 〔 ",+神〕?〔川+】,〕=",, '1+三二 + ■ - -,-i +^-D?' =2X2Xcos120° + 屈,■屈+ 入 75?菽+入标?医 7S = 一 2+4医+4入 + 入d X2X2Xcos120° =4入+4医一2入医—2=1, 「•4人+4d 一2入医=3①CE ?CF =- EC ?〔-而〕=EC*FC = 〔1 -入〕前?〔1 -医〕DC = 〔1 -入〕而?〔1 -医〕总=〔1 一入〕〔1 —医〕X2X2Xcos120° = 〔1一入一医+入医〕〔一2〕= - 2, 3即一人一〔1 +入[L = ~ —②.3 由①②求得入+医=总 故答案为:!11 .〔2021?安徽〕设己,b 为非零向量,| b|=2| a| ,两组向量工,器,工,V?和行, 々,¥3' V/均由2个日和2个b 排列而成,假设町?为+工2?方+工3?%+%?%所有可 能取值中的最小值为4|;|2,那么:与E 的夹角为〔解:由题意,设!与E 的夹角为民, 分类讨论可得]? y I + X?? y ?+工3?y § + Xq ?% =为?为+ a ?2+b ?b+b? b=10| 君| ,不满足2KA — B.3 C. D. 0②T^^T+T^r+F?丁+『??=:?;+:?%+%?:+Z?Z=5| a|1 2+4| a| 2cos 民,不满足;1 J12 J23 734 J4③7j?元+7;?卫+三?同+3?耳=4!?岸8| a| 2cos a =4| a| :满足题意,此时COS a」2・•. W与E的夹角为—. 3应选:B.12. (2021?四川)平面向量短(1, 2), b= (4, 2), c=m+b (m GR),且W与;的夹角等于W与E的夹角,那么m=( )A. - 2B. - 1C. 1D. 2解:二向量a= (1, 2), b= (4, 2),=m + = (m+4, 2m+2 ,又丁[与;的夹角等于1与Z的夹角,k I • | a | I c |* |b |•••飞一’ — f )lai |b|二’解得m=2应选:D13. (2021?新课标I )设D, E, F分别为△ ABC的三边BC CA AB的中点,那么冠+而= ( )A. . ।B. DC. :,D.2 2【解答】解::D, E, F分别为AABC的三边BC, CA, AB的中点, .•.而+而=(丽+丽+ ( FE+EC) =FB+EC=1 (屈+近)=15,应选:A14. 〔2021?福建〕设M为平行四边形ABCD寸角线的交点,O为平行四边形ABCD所在平面内任意一点,那么加+而+枳+而等于〔〕A. I"B. 2 i"C. 3 I" D〕. 4 I"解:丁0为任意一点,不妨把A点看成O点,那么加+无+权+玩=1+/+而+元,・「M是平行四边形ABCD勺对角线的交点,,0 + AB+AC+AD=2AC=4OM应选:D.二.选择题〔共8小题〕15. 〔2021?浙江〕设二司为单位向量,非零向量E=x6+y G,x、yGR.假设]、, 的夹角为30.,那么集的最大值等于 2 .Ib| -------解:为单位向量,T和U的夹角等于30° ,,U・£=1X1X cos30.二亚•「非零向量Z=x4+y',•./而后二J/+ 2工y T] W +产J X2+我盯旷,. 44=,.—=I」= | I 2 = I1 2 ,旧寸J+V^v+v? *+行中+,,l打巧工0〕V〔7垮〕£故当2=-立时,&取得最大值为2,x 2 |b故答案为2 .16. 〔2021?北京〕点A 〔1, -1〕, B 〔3, 0〕, C 〔2, 1〕.假设平面区域D由所有满足获:人五+P•豆〔1<入02, 0<医01〕的点P组成,那么D的面积为 3 .解:设P的坐标为〔x, y〕,那么靛二(2, 1), AC= (1, 2), AP= (x—1, y+1), < 7?二工m+U 正,\ - 1=2 + |A 宿万一/ 日_解N得,y+l= X+2Uy+11<?|工-当-1<2,- K入02, 0<医01, ..•点P坐标满足不等式组,04 - £工+"|^1<1作出不等式组对应的平面区域,得到如图的平行四边形CDE极其内部其中C (4, 2), D (6, 3), E (5, 1), F (3, 0)二|CF|二;一丁一卜:二 _ 二,,点E (5, 1)到直线CF: 2x—y—6=0的距离为d1上士工^1二■还V5 5「•平行四边形CDEF勺面积为S=|CF|X d=V^x2四=3,即动点P构成的平面区域D 5的面积为3故答案为:317. (2021?湖南)如图,在平行四边形ABC前,APIBD垂足为P,且AP=3,那么族•近二18 .【解答】解:设AC与BD交于点O,那么AC=2AO/APIBD AP=3,在Rt^APO中,AOcos/ OAP=AP=3・•・I 面cos /OAP=2|瓦| XcosZOAP=2|AP|=6 ,由向量的数量积的定义可知, 6•正二|6||正|cos/PAO=3 6=18故答案为:1818. (2021?北京)己知正方形ABCD勺边长为1,点E是AB边上的动点.那么DE-CB 的值为1 .【解答】解:由于血,后=而瓜=应卜iXlcosC正♦瓦>=5丁=1.故答案为:119. (2021?天津)直角梯形 ABC 前,AD// BG / ADC=90 , AD=2 BC=1, P是腰DC 上的动点,那么|位+3瓦|的最小值为 5 .解:如图,以直线 DA DC 分另U 为x, y 轴建立平面直角坐标系,那么 A (2, 0), B (1, a), C (0, a), D (0, 0)设 P (0, b) (0<b<a)那么m =(2, - b), PB = (1, a- b),PA+3PB = (5, 3a-4b)•- IPA+3PB l =/25+ (3a-4b) 2>5-故答案为5.20. (2021?浙江)平面向量 五,J (五通,五产下)满足|T 1=1,且五与 方-五的夹角为120° ,那么|无|的取值范围是 (0,当鸟_.3解:令用 屈二无、AC =T,如以下图所示:那么由萩书-五,又二云与E-W 的夹角为120° ,・ ./ABC=60又由AC=|下一-:| 向 G (0, ^p ] 故|五|的取值范围是(0, 二]故答案:(0,芋]21. (2021?天津)如图,在4ABC 中,ADLAB,前一画,|75 I =1,那么说・75=_立【解答】解:AC-A S=|AC IHADicosZDAC,■-n ,由正弦定理sinC sin60.得:..一•一■. .. ■:: II-,.-- . .A,,cos/DAC=sinZ BAQAC *AD= lAC |-|AD|cosZDAC= | AC|-cosZDAC= | AClsinZBAC ,在△ ABC中,由正弦定理得里L=变形得|AC|sin / BAC=|BC|sinB, sinB sin/BACAC*AD=| AC !* | AD|cosZEAC= | AC |-cosZDAC= | AC|sinZBAC ,二|BC|sinB= |BC|・-需-=V5,故答案为V3 •22. 〔2021?天津〕假设等边△ ABC的边长为273,平面内一点M满足而卫司+2而,那么6 3瓦,诬=-2 .解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得C 10,01, R 〔2"^,.〕,B〔V3,3〕,• • CB =三〕,CA二〔2^3 〕.〕,••乐翔翁二〔¥,y,“:■ , 1,"」1,MA*MB=〔亚,--〕?〔-近,-〕=-2.2 2 2 2故答案为:-2.三.选择题〔共2小题〕23. (2021?上海)定义向量 0M = (a, b)的“相伴函数〞为 f (x) =asinx+bcosx , 函数f (x) =asinx+bcosx 的“相伴向量〞为 赢=(a, b)(其中O 为坐标原点).记 平面内所有向量的“相伴函数〞构成的集合为 S.(1)设 g (x) =3sin (x+21) +4sinx ,求证:g (x) GS; 2(2)h (x) =cos (x+a ) +2cosx,且h (x) GS,求其“相伴向量〞的模; (3)M(a, b) (b 乎0)为圆C: (x - 2) 2+y 2=1上一点,向量超的“相伴函数〞 f (x)在x=x .处取得最大值.当点 M 在圆C 上运动时,求tan2x .的取值范围.【解答】 解:(1) g (x) =3sin (x+—) +4sinx=4sinx+3cosx ,其‘相伴向量'0M = (4, 3), g (x) GS.(2) h (x) =cos (x+a) +2cosx =(cosxcos a - sinxsin a ) +2cosx =-sin a sinx+ (cos a +2) cosx 函数 h (x)的‘相伴向量’ 丽=(-sin a , cos a +2).那么 | 皿=q (一式11al —= ( cos a+2)―2=5+4曲口 .(3) OM 的'相伴函数'f ( x) =asinx+bcosx= ^^^sin (x+([)),其中cos 小=> ^ sin 小=Va 2 + b Z —,kGZ 时,f (x)取到最大值,故 x0=2k % +—-小,kGZ. 2 2-'.tanx 0=tan (2k % +- -([)) =cot ([)—, 2 b2tan x 口tan2x 0二 1-tan x o 1-(① b 也为直线OM 勺斜率,由几何意义知:-q -VI, 0) u (0, a a 3a 2 + b 2当 x+([)=2k % +___= r a b令m=,贝U tan2x0=—mq —亚,0) U ( 0,立}.③川」 3 3rr当-亚0m<0 时,函数tan2xo=—J单调递减,,0< tan2xo<Vs;3IT当0Vm<立时,函数tan2x 0=—片单调递减,/.- 加&tan2x0<0.rr综上所述,tan2x°q -遮,0) U (0,a]. .............. 、 c 24. (2007?四川)设Fi、F2分别是椭圆工+/=1的左、右焦点.4(I)假设P是第一象限内该椭圆上的一点,且可■玩二-求点P的作标;(II)设过定点M (0, 2)的直线l与椭圆交于不同的两点A、B,且/AO的锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(I)易知a=2, b=1,钎我.•• Fi (一〃,0),F2(如,0) •设P 那么PF;・PF;二(-百一工,-y)(伤一小x +y =4 x2=i m联立,2 ,解得" 2 3n a,P?儿卜=4(n)显然x=0不满足题设条件.可设l V..V 2联立,瓦+y n = (kx+2) gn (1+£y=kx+2. 一12 * 16k1 • #1 K n- °,及i + 乂力一r.1^1+4/ 1上l+4k Z^△= (16k) 2-4? (1+4k2) ?12>016k2- (x, y) (x>0, y>0).2一/二K./- 3二- "1,又亍+yJl,£1,喙)•的方程为y=kx+2,设 A (x1, y., B (x2, Ik") z2+16kx+12=03 (1+4k2) >0, 4k2- 3>0,得①),又yM二(kxi+2) (kx2+2) =k2XiX2+2k(X1+X2) +4 ..xiX2+yiy2= (1 +k2) xiX2+2k (X1+X2) +4=(1+k2) ,—(--^5) +4 1+41 1+4 k 2_12 (1+ k2) 2k*16k .------------ 2- ------------ r+4l+4k2l+4k2l+4k2综①②可知••.k的取值范围是(-2, -亨)U (亨2)•。

专题07 平面向量-2022年高考真题和模拟题数学分类汇编(解析版)

专题07 平面向量-2022年高考真题和模拟题数学分类汇编(解析版)

专题07 平面向量1.【2022年全国乙卷】已知向量a ⃑=(2,1),b ⃑⃑=(−2,4),则|a ⃑−b ⃑⃑|( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a ⃑−b ⃑⃑,然后求得|a ⃑−b ⃑⃑|. 【详解】因为a ⃑−b ⃑⃑=(2,1)−(−2,4)=(4,−3),所以|a ⃑−b ⃑⃑|=√42+(−3)2=5. 故选:D2.【2022年全国乙卷】已知向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=√3,|a ⃑−2b ⃑⃑|=3,则a ⃑⋅b ⃑⃑=( ) A .−2 B .−1 C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵|a ⃗−2b ⃑⃗|2=|a ⃗|2−4a ⃗⋅b ⃑⃗+4|b ⃑⃗|2, 又∵|a ⃗|=1,|b ⃑⃗|=√3,|a ⃗−2b ⃑⃗|=3, ∴9=1−4a ⃗⋅b ⃑⃗+4×3=13−4a ⃗⋅b ⃑⃗, ∴a ⃗⋅b ⃑⃗=1 故选:C.3.【2022年新高考1卷】在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃑⃑⃑⃑⃑⃑=m ⃑⃑⃗,CD ⃑⃑⃑⃑⃑⃑=n ⃑⃗,则CB ⃑⃑⃑⃑⃑⃑=( ) A .3m ⃑⃑⃗−2n ⃑⃗ B .−2m ⃑⃑⃗+3n ⃑⃗C .3m ⃑⃑⃗+2n ⃑⃗D .2m ⃑⃑⃗+3n ⃑⃗【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出. 【详解】因为点D 在边AB 上,BD =2DA ,所以BD ⃑⃑⃑⃑⃑⃑⃑=2DA ⃑⃑⃑⃑⃑⃑,即CD ⃑⃑⃑⃑⃑⃑−CB ⃑⃑⃑⃑⃑⃑=2(CA ⃑⃑⃑⃑⃑⃑−CD ⃑⃑⃑⃑⃑⃑), 所以CB ⃑⃑⃑⃑⃑⃑= 3CD ⃑⃑⃑⃑⃑⃑−2CA ⃑⃑⃑⃑⃑⃑=3n ⃑⃑−2m ⃑⃑⃑ =−2m ⃑⃑⃗+3n ⃑⃗. 故选:B .4.【2022年新高考2卷】已知向量a ⃑=(3,4),b ⃑⃑=(1,0),c ⃑=a ⃑+tb ⃑⃑,若<a ⃑,c ⃑>=<b ⃑⃑,c ⃑>,则t =( ) A .−6 B .−5 C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:c ⃗=(3+t,4),cos 〈a ⃗,c ⃗〉=cos 〈b,c ⃗〉,即9+3t+165|c⃗|=3+t|c ⃗|,解得t =5,故选:C5.【2022年北京】在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑的取值范围是( ) A .[−5,3] B .[−3,5]C .[−6,4]D .[−4,6]【答案】D 【解析】 【分析】依题意建立平面直角坐标系,设P (cosθ,sinθ),表示出PA ⃑⃑⃑⃑⃑⃑,PB ⃑⃑⃑⃑⃑⃑,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得; 【详解】解:依题意如图建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),因为PC =1,所以P 在以C 为圆心,1为半径的圆上运动, 设P (cosθ,sinθ),θ∈[0,2π],所以PA⃑⃑⃑⃑⃑⃑=(3−cosθ,−sinθ),PB ⃑⃑⃑⃑⃑⃑=(−cosθ,4−sinθ), 所以PA⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑=(−cosθ)×(3−cosθ)+(4−sinθ)×(−sinθ) =cos 2θ−3cosθ−4sinθ+sin 2θ=1−3cosθ−4sinθ=1−5sin (θ+φ),其中sinφ=35,cosφ=45,因为−1≤sin (θ+φ)≤1,所以−4≤1−5sin (θ+φ)≤6,即PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑∈[−4,6]; 故选:D6.【2022年全国甲卷】已知向量a ⃑=(m,3),b ⃑⃑=(1,m +1).若a ⃑⊥b ⃑⃑,则m =______________.【答案】−34##−0.75 【解析】 【分析】直接由向量垂直的坐标表示求解即可. 【详解】由题意知:a ⃑⋅b ⃑⃑=m +3(m +1)=0,解得m =−34.故答案为:−34.7.【2022年全国甲卷】设向量a ⃑,b ⃑⃑的夹角的余弦值为13,且|a ⃑|=1,|b ⃑⃑|=3,则(2a ⃑+b ⃑⃑)⋅b ⃑⃑=_________. 【答案】11 【解析】 【分析】设a ⃑与b ⃑⃑的夹角为θ,依题意可得cosθ=13,再根据数量积的定义求出a ⃑⋅b ⃑⃑,最后根据数量积的运算律计算可得. 【详解】解:设a ⃑与b ⃑⃑的夹角为θ,因为a ⃑与b ⃑⃑的夹角的余弦值为13,即cosθ=13, 又|a ⃑|=1,|b ⃑⃑|=3,所以a ⃑⋅b ⃑⃑=|a ⃑|⋅|b ⃑⃑|cosθ=1×3×13=1, 所以(2a ⃑+b ⃑⃑)⋅b ⃑⃑=2a ⃑⋅b ⃑⃑+b ⃑⃑2=2a ⃑⋅b ⃑⃑+|b ⃑⃑|2=2×1+32=11. 故答案为:11.8.【2022年浙江】设点P 在单位圆的内接正八边形A 1A 2⋯A 8的边A 1A 2上,则PA ⃑⃑⃑⃑⃑⃑12+PA 2⃑⃑⃑⃑⃑⃑⃑⃑2+⋯+PA ⃑⃑⃑⃑⃑⃑82的取值范围是_______. 【答案】[12+2√2,16] 【解析】 【分析】根据正八边形的结构特征,分别以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设P(x,y),再根据平面向量模的坐标计算公式即可得到PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,然后利用cos22.5∘≤|OP|≤1即可解出. 【详解】以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示:则A 1(0,1),A 2(√22,√22),A 3(1,0),A 4(√22,−√22),A 5(0,−1),A 6(−√22,−√22),A 7(−1,0),A 8(−√22,√22),设P(x,y),于是PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,因为cos22.5∘≤|OP|≤1,所以1+cos45∘2≤x 2+y 2≤1,故PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82的取值范围是[12+2√2,16].故答案为:[12+2√2,16].1.(2022·陕西·西北工业大学附属中学模拟预测(理))在直角坐标系xOy 中的三点(),3M m ,()4,N n ,()2,2E -,若向量OM 与ON 在向量OE 方向上的投影相等,则m 与n 的关系为( )A .7m n +=B .3m n -=C .m n =D .m n =-【答案】A 【解析】 【分析】根据向量在向量上的投影的定义列式可求出结果. 【详解】(),3OM m =,(4,)ON n =,(2,2)OE =-,向量OM 在向量OE 方向上的投影为||OM OE OE ⋅==向量ON 在向量OE 方向上的投影为8||ON OE OE ⋅=,=7m n +=. 故选:A.2.(2022·山东潍坊·三模)已知a ,b 是平面内两个不共线的向量,AB a b λ=+,AC a b μ=+,λ,μ∈R ,则A ,B ,C 三点共线的充要条件是( )A .1λμ-=B .2λμ+=C .1λμ=D .1λμ= 【答案】C 【解析】 【分析】利用向量共线的充要条件有AB mAC =且R m ∈,即可得答案. 【详解】由A ,B ,C 三点共线的充要条件是AB mAC =且R m ∈,所以1m mμλ=⎧⎨=⎩,故1λμ=.故选:C3.(2022·江苏苏州·模拟预测)在ABC 中,π3A =,点D 在线段AB 上,点E 在线段AC 上,且满足22,2AD DB AE EC ====,CD 交BE 于F ,设AB a =,AC b =,则AF BC ⋅=( )A .65B .175C .295D .325【答案】B 【解析】 【分析】根据平面共线向量的性质,结合平面向量数量积的运算性质、平面向量数量积的定义、平面向量的加法的几何意义进行求解即可. 【详解】设DF DC λ=,EF EB μ=,因为11111()(),33333AF AD DF AB DC AB DA AC AB AB AC AB AC λλλλλ-=+=+=++=+-+=+11111()(),22222AF AE EF AC EB AC EA AB AC AC AB AC AB μμμμμ-=+=+=++=+-+=+所以有21531152λλμμμλ-⎧⎧==⎪⎪⎪⎪⇒⎨⎨-⎪⎪==⎪⎪⎩⎩,因此AF BC ⋅=2212121()()55555+-+=-+-⋅AB AC AB AC AB AC AC AB ,因为π3A =,3AB =,4AC =,所以AF BC ⋅=1211179163455525⋅=-⨯+⨯-⨯⨯⨯=AF BC ,故选:B4.(2022·内蒙古·满洲里市教研培训中心三模(文))若(2,3a =-,(2sin ,2cos)66b ππ=,下列正确的是( ) A .//()b a b -B .()b a b ⊥-C .a 在b 方向上的投影是12-D .()a b a b +⊥-()【答案】C 【解析】 【分析】根据向量平行的坐标表示判断A ,根据向量垂直的坐标表示判断BC ,根据向量的投影的定义判断C. 【详解】由已知(2,3a =-,(1,3)b =,所以(((2,3=1,a b -=---,((()2,3=3,0a b+=-+, 因为1(10⨯-≠,所以b ab -,不平行,A 错, 因为(10⨯-≠,所以b a b -,不垂直,B 错,因为a 在b 方向上的投影为2211cos ,=21a b a a b b ⋅⨯-==-+,C 对,因为(13+00⨯-⨯≠,所以a b a b +-,不垂直,D 错, 故选:C.5.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b 满足1a =,2b =,()235a a b ⋅+=,则a 与b 的夹角为( )A .6πB .3π C .23π D .56π 【答案】B 【解析】 【分析】根据数量积的运算律得到a b ⋅,再根据cos a b a bθ⋅=⋅计算可得;【详解】解:因为1a =,2b =,()235a a b ⋅+=,所以2235a a b +⋅=,即2235a a b +⋅=,所以1a b ⋅=,设a 与b 的夹角为θ, 则1cos 2a b a bθ⋅==⋅,因为[]0,θπ∈,所以3πθ=; 故选:B6.(2022·北京·潞河中学三模)已知菱形ABCD 的边长为,60a ABC ∠=,则DB CD ⋅=( ) A .232a -B .234a -C .234aD .232a【答案】A 【解析】 【分析】将,DB CD 分别用,BA BC 表示,再根据数量积的运算律即可得出答案. 【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=-.故选:A.7.(2022·湖北·华中师大一附中模拟预测)已知向量(,3)a m =,(1,)b m =,若a 与b 反向共线,则3a b -的值为( )A .0B .48C .D .【答案】C 【解析】 【分析】由向量反向共线求得m =3a b -. 【详解】由题意23m =,得m =又a 与b 反向共线,故m =3(23,6)a b -=-, 故3=43a b -. 故选:C.8.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF , 即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .9.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AHAG +=D .23BO BHBG +=【答案】D 【解析】 【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误. 【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误;()112333AO AHAG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BHBG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.10.(2022·江苏·南京外国语学校模拟预测)已知,,OA OB OC 均为单位向量,且满足102OA OB OC ++=,则AB AC ⋅的值为( ) A .38B .58C .78D .198【答案】B 【解析】 【分析】通过向量的线性运算进行化简求值即可. 【详解】()2,32AO OB OC AB OB OC =+=+,同理23AC OB OC =+()()2274(),,32238AO OB OC OB OC AB AC OB OC OB OC =+∴⋅=-⋅=++2291566136688OB OC OB OC =++⋅=+-=. 故选:B.11.(2022·辽宁沈阳·三模)已知椭圆()22:40C x y m m +=>的两个焦点分别为12,F F ,点P是椭圆上一点,若12PF PF ⋅的最小值为1-,则12PF PF ⋅的最大值为( ) A .4 B .2C .14D .12【答案】D 【解析】 【分析】设00(,)P x y ,求出焦点坐标,利用向量的坐标运算得出12PF PF ⋅,再根据椭圆的范围利用二次函数求最值即可得解. 【详解】设00(,)P x y ,由()22:40C x y m m +=>可知1(F ,2F ,100(,)PF x y ∴=---,0023(,)2PF x y =--, 22222012000033311(4)44442x m m PF PF x y x m x m ∴⋅=-++=-++-=-,0m x -≤≤00x ∴=时,12PF PF ⋅的最小值为112m -=-,解得2m =.当0x =12PF PF ⋅的最大值为312142⨯-=.故选:D12.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=,所以a b -与a 的夹角为3π. 故选:B13.(2022·浙江省江山中学模拟预测)在ABC 中,E ,F 分别为,AC BC 的中点,点D 是线段AF (不含端点)内的任意一点,AD mAB nAE =+,则( ) A .(0,1)m ∈ B .(0,2)n ∈ C .2n m = D .1m n +=【答案】C 【解析】 【分析】根据向量的线性运算的定义和平面向量基本定理确定,m n 的关系和范围. 【详解】因为点D 是线段AF (不含端点)内的任意一点, 所以可设(01)AD AF λλ=<<, 因为E ,F 分别为,AC BC 的中点,所以11112222AF AB BF AB BC AB AC AB AE =+=+=+=+,所以2AD AB AE λλ=+,又AD mAB nAE =+,所以10,22m λ⎛⎫=∈ ⎪⎝⎭,()0,1n λ=∈,2n m =,32m n λ+=, 所以A ,B ,D 错误,C 正确, 故选:C.14.(2022·安徽·合肥一中模拟预测(文))已知向量(1,0)a =,(1,1)b =,向量a b 与a 垂直,则实数λ的值为( ) A .2- B .2 C .1- D .1【答案】C 【解析】 【分析】由题得()0λ+⋅=a b a 化简即得解. 【详解】 因为ab 与a 垂直,所以()20,0λλ+⋅=∴+⋅=a b a a a b , 所以1+(10)0,1λλ⨯+=∴=-. 故选:C.15.(2022·海南华侨中学模拟预测)已知不共线的平面向量,,a b c 两两所成的角相等,且1,4,7a b a b c ==++=,则c =( )A B .2 C .3 D .2或3【答案】D 【解析】 【分析】 先求出23πθ=,转化2()7a b c a b c ++=++=,列方程即可求出. 【详解】由不共线的平面向量a ,b ,c 两两所成的角相等,可设为θ,则23πθ=.设|c |=m. 因为147a b a b c ==++=,,,所以27a b c ++=, 即2222227a a b b b c a c c +⋅++⋅+⋅+=,所以2222221214cos424cos 21cos 7333m m m πππ+⨯⨯++⨯⨯+⨯⨯+= 即2560m m -+=,解得:2m =或3. 所以|c |=2或3 故选:D16.(2022·贵州贵阳·模拟预测(理))已知()1,2a =,()2,1b =-,()1,c λ=,且()c a b ⊥+,则λ=______. 【答案】3- 【解析】 【分析】由向量垂直的坐标表示计算可得. 【详解】由题意()()3,1a b +=,又()c a b ⊥+,则()()()1,3,130c a b λλ⋅+=⋅=+=,故3λ=-. 故答案为:3-.17.(2022·河北·沧县中学模拟预测)已知向量,a b 的夹角为23π,4a =,3b =,则a b +=___________.【解析】 【分析】根据2222a b a a b b +=+⋅+求解即可. 【详解】 21cos43632a b a b π⎛⎫⋅==⨯⨯-=- ⎪⎝⎭, 则()222222426313a b a a b b +=+⋅+=+⨯-+=, 则13a b +=.18.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________.【答案】2π##90 【解析】 【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 19.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====AC DB ⋅值为__________. 【答案】94##2.25【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ==== 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:9420.(2022·浙江·镇海中学模拟预测)设,a b 为不共线的向量,满足,342(,R)c a b λμλμλμ=++=∈,且c a c b c --==,若3a b -=,则()22()⋅⋅-a ba b 的最大值为________. 【答案】324【解析】 【分析】采用建系法,令,,a OA b OB c OC ===,将各个点用坐标表示,然后表达出OAB 面积的最大值,进而求得()22()⋅⋅-a b a b 的最大值;【详解】令,,a OA b OB c OC ===,又因为c a c b c --==, 即==OC CA CB ,则点C 为OAB 的外心,因为3-==a b AB , 设33,0,,0,(0,)22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭B AC m ,不妨取0m >则点()00,O x y 在圆2229:()4+-=+C x y m m 上, 由OC OA OB λμ=+,代入坐标,()00000033,,,22λμ⎛⎫⎛⎫---=--+--- ⎪ ⎪⎝⎭⎝⎭x m y x y x y ,解得003(),211-+=⋅-=----mx y m μλμλλμλμ,联立342+=u λ和2229:()4+-=+C x y m m ,解得12λ⎫<⎪⎭m,故0()1μλλμ+=+--m y m622λ=≤-+ ⎪⎝⎭,1λ=-时取“=”. 故01||92=⋅≤OABSAB y ,于是 ()22222max max(||||)()||||1cos a b a b OA OB AOB ⎡⎤⎡⎤⋅-⋅=⋅⋅-∠⎣⎦⎣⎦ ()2222maxmax||||sin 4324OAB OA OB AOB S ⎡⎤=⋅⋅∠==⎣⎦△.故答案为:324 【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学模拟试题:平面向量△注意事项:1.填写答题卡请使用2B铅笔填涂2.提前5分钟收答题卡一、选择题(本大题共10小题)1.(2010聊城期末)已知向量()A. B.C. D.【答案解析】2.(2010山东猜题卷)O为△ABC的内切圆圆心,且AB=5、BC=4、CA=3,下列结论中正确的是()A.B. >C. ==D. <=【答案解析】答案:A3.(2010临沂一模文)若O为△ABC所在平面内一点,且满足,则△ABC的形状为A、正三角形B、直角三角形C、等腰三角形D、以上都不对【答案解析】答案:C4.(2010济宁质检一文)已知向量,设,若,则实数的值为A.- 1B.C.D. 1【答案解析】答案:B5.(2010湖南师大附中月考文)已知|p |=22,|q |=3,p ,q 夹角为4π,则以p ,q 为邻边的平行四边形的一条对角线的长度为 ()A .5B .5C .9D .27【答案解析】A6.(2010海淀区二模文)已知向量)(||),2,1(),1,2(R b a b a ∈+==λλ则的最小值为( )A .55 B .552 C .553 D .5【答案解析】C7.(2010湖北鄂州5月模拟理)已知、b 是平面内两个互相垂直的单位向量,若向量满足(-)·(b -)=0,则c 的最大值是A .1B .2C .2D .22【答案解析】C8.(2010宜昌一中10月月考文)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +λ(AB AC|AB ||AC |+),),[∞+∈λ0,则点P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 【答案解析】B9.(2010海淀区期末文)已知向量的夹角是 ( )A .B .C .D .【答案解析】C10.(2010丰台区期末文)已知向量= ( 1 , 3 ),= ( 3 , n )若2–与共线,则实数n 的值是( ) A .B .C .6D .9 【答案解析】D二 、填空题(本大题共5小题,) 11.(2010启东中学期末)已知点O 为的外心,且,则▲ .【答案解析】答案:612.(2010湖北重点中学联考理)给出下列命题:①若0,a ≠则a b a c ⋅=⋅是b c =成立的必要不充分条件; ②已知(3,4),(0,1),a b ==-则a 在b 方向上的投影为4-; ③设点P 分12PP 所成的比为3,4则点1P 分2P P 所成的比为37-; ④函数tan()3y x π=+的图象关于点(,0)6π成中心对称.其中正确命题的序号是______________(请将所有正确命题的序号都填上).【答案解析】① ② ④ 13.(09南通交流卷)在周长为16的中,,则的取值范围是 ▲【答案解析】答案:14.(2010东城区期末文)已知向量,则的取值范围是_______. 【答案解析】答案:15.(2010丰台区二模理)已知以下条件:①;BC AD =②||||AB AD =;③;0=⋅AB AD ④||||BD AC =。

若四边形ABCD 是矩形,则需要条件 (注:填上你认为正确条件的序号即可,不必考虑所有可能有的情形)。

【答案解析】①和③ 或①和④ 三 、解答题(本大题共5小题,)16.(2010湖北重点中学联考理)(12分)已知向量(cos ,sin )OA λαλα=(0)λ≠,(sin ,cos ),OB ββ=-其中O 为坐标原点. (1)若3πβα=-,求向量OA 与OB 的夹角;(2)若2AB OB ≥对任意实数αβ、都成立,求实数λ的取值范围. 【答案解析】(1)cos ,(OA OB OA OB OA OBλ⋅〈〉==sin()λαβλ-==(4分) 当0λ>时,3cos ,2OA OB 〈〉=,∴向量OA 与OB 的夹角为6π; (5分)当0λ<时,cos ,OA OB 〈〉=,∴向量OA 与OB 的夹角为56π. (6分)(2)2AB OB ≥对任意实数αβ、都成立,即22(cos sin )(sin cos )4λαβλαβ++-≥对任意的αβ、恒成立, 亦即212sin()4λλβα++-≥对任意的αβ、恒成立。

所以20214λλλ>⎧⎨-+≥⎩或20214λλλ<⎧⎨++≥⎩(10分)解得3λ≥或3λ≤- (11分) 故所求实数λ的取值范围是(][),33,-∞-+∞.(12分)17.(2010宜昌一中12月月考文)(12分)已知向量(1,2),(3,2a b ==-r r,向量,3x ka b y a b =+=-r r r u r r r.(1)当k 为何值时,向量x y ⊥r u r;(2)若向量x r 与y u r的夹角为钝角,求实数k 的取值范围.【答案解析】解析:(3,22),3(10,4)x ka b k k y a b =+=-+=-=-r r r u r r r(1分)(1),0x y x y ⊥∴⋅=r u r r u rQ ,即10(3)4(22)0k k --+=,238k =,19k ∴=(6分)(2)238,x y k ⋅=-r u r 又cos 0x y x yθ⋅=<r u rr u r ,2180k ∴-<,即19k < (10分)但此时,2x πθπ<<∴r 与y u r不共线若x r 若y u r 共线,则有4(3)10(22)0k k ---+=,13k ∴=-故所求实数k 的取值范围是19k <且13k ≠-(12分)18.(2010武汉二中调研)(12分)已知A (2,0),B (0,2),C (ααsin ,cos ),且0<α<π.(1)若求,7||=+的夹角; (2)若αcos ,求⊥的值.【答案解析】解析:(1)7||=+ ,即.7sin )cos 2(22=++αα),0(,21cos παα∈=∴又 3πα=∠=∴AOC又,2π=∠AOB.6π与∴………………(6分)(2))2sin ,(cos ),sin ,2(cos -=-=αααα⊥21cos sin =+∴αα ,41)sin (cos 2=+∴αα),2(ππα∈又由27sin cos 0sin cos 47cos sin 21)sin (cos 2-=-<-=-=-αααααααα得及 得471cos -=α………………(12分) 19. (2010湖北黄冈联考理)(12分)已知m R ∈, 2 (1, )a x m =-+,1 (1, )b m x=+,(,)x c m x m=-+. (1)当1m =-时,求使不等式 1a c ⋅<成立的x 的取值范围; (2)求使不等式 0a b ⋅>成立的x 的取值范围.【答案解析】解析:(Ⅰ)当1m =-时,2 (1, 1)a x =--, (1, )1x c x =-.2(1) 11x x a c x -⋅=-+-21x x =+-. ……………………………………… 2分∵ 211a c x x ⋅=+-<,∴ 2211,1 1.x x x x ⎧+->-⎪⎨+-<⎪⎩ 解得 21x -<<-或01x <<. ∴ 当1m =-时,使不等式 1a c ⋅<成立的x 的取值范围是{}2101x x x -<<-<<或.…………………………………………… 5分(Ⅱ)∵ 22(1)(1)() (1)0x m x m x m x x m a b m x x x+-++--⋅=-++==>,…… 8分 ∴ 当m <0时,(, 0)(1, )x m ∈+∞;当m =0时, (1, )x ∈+∞; 当01m <<时,(0, )(1, )x m ∈+∞;当m =1时,(0, 1 )(1, )x ∈+∞;当m >1时,(0, 1 )(, )x m ∈+∞. ......................12分20. (09 年石景山区统一测试文)(13分)已知向量,,且.(Ⅰ)求的值;(Ⅱ)求函数R)的值域【答案解析】解析:(Ⅰ)由题意得,………………3分因为,所以. ………………6分(Ⅱ)由(Ⅰ)知得………9分因为x R ,所以.当时,有最大值;当时,有最小值.所以函数的值域是 (13)分。

相关文档
最新文档