数值分析实验报告
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。
在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。
本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。
一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。
1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。
常见的数值方法有二分法、牛顿法、割线法等。
在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。
2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。
插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。
在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
3.数值积分这部分实验要求使用数值方法计算给定函数的积分。
常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。
在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。
4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。
常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。
二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。
结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。
2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。
结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值分析方法实验报告

一、实验目的通过本次实验,掌握数值分析方法的基本原理和应用,熟悉MATLAB编程环境,学会使用MATLAB进行数值计算,并分析不同数值方法的优缺点。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种迭代方法,通过不断缩小根所在的区间,直到满足精度要求为止。
(2)步骤:①给定初始区间[a, b],使得f(a) f(b) < 0;②计算区间中点c = (a + b) / 2;③判断f(c)的符号:a. 若f(c) = 0,则c为方程的根;b. 若f(c) f(a) < 0,则新的区间为[a, c];c. 若f(c) f(b) < 0,则新的区间为[c, b];④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = bisection_method(f, a, b, tol)while (b - a) / 2 > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a) f(c) < 0b = c;elsea = c;endendroot = (a + b) / 2;end```2. Newton法求方程根(1)原理:Newton法是一种基于切线逼近的迭代方法,通过不断逼近函数的零点。
(2)步骤:①给定初始值x0;②计算导数f'(x)和f(x)在x0处的值;③计算新的近似值x1 = x0 - f(x0) / f'(x0);④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = newton_method(f, df, x0, tol)while abs(f(x0)) > tolx1 = x0 - f(x0) / df(x0);x0 = x1;endroot = x0;end```3.不动点迭代法求方程根(1)原理:不动点迭代法是一种迭代方法,通过不断逼近不动点,即方程的根。
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析原理实验报告
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告5篇
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析实验报告总结
一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
数值分析实验报告模板
数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。
即若x0 偏离所求根较远,Newton法可能发散的结论。
并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。
前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。
掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。
熟悉Matlab语言编程,学习编程要点。
体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
程序设计:本实验采用Matlab的M文件编写。
其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析》实验报告1实验1.1 病态问题 1.1 程序代码% 对应于实验1.1 的程序 clear;prompt = {'请输入扰动项n: 0~20 间的整数','请输入扰动系数ess:0~1间的小数'}; def={'19','0.00001'};dlgTitle='实验1.1 病态问题'; lineNo=1;result = inputdlg(prompt,dlgTitle,lineNo,def); NE = str2num(char(result));%转换结果 if ((NE(1,1)>20) | (NE(1,1)<0)), error('请输入合适的项数!'); endess = NE(2,1); VE = zeros(1,21);VE(21 - NE(1,1)) = ess; %将扰动项变成向量模式,以便相加 ROOT = roots(poly(1:20) + VE); %求p(x) + ess*x = 0;的解1.2 结果记录1.2.1在第19项加扰动ess 后,方程 0)(19201=∙+-∏=xess k x k (1),的根如表1所示: 阶数\ess1.00E-011.00E-031.00E-051.00E-071.00E-091 36.4232+13.18i 27.0817+5.03812i 22.5961+2.3083i 20.422+0.999203i 19.952+0i2 36.4232-13.18i 27.0817-5.03812i 22.5961-2.3083i 20.422-0.999203i 19.2293+0i3 18.2486+16.1526i 19.5337+9.1664i 18.8972+5.00563i 18.1572+2.4702i 17.6573+0.692896i4 18.2486-16.1526i 19.5337-9.1664i 18.8972-5.00563i 18.1572-2.4702i 17.6573-0.692896i5 11.3192+10.81i 13.8235+7.77167i 14.9123+4.95848i 15.3149+2.69865i 15.4524+0.875524i6 11.3192-10.81i 13.8235-7.77167i 14.9123-4.95848i 15.3149-2.69865i 15.4524-0.875524i 78.773+6.95838i 10.7211+5.4609i 12.0289+3.73551i 12.8466+2.06246i 13.3527+0.486992i8 8.773-6.95838i 10.7211-5.4609i 12.0289-3.73551i 12.8466-2.06246i 13.3527-0.486992i 9 7.47593+4.38779i 8.91282+3.47317i 10.059+2.33021i 10.9216+1.10366i 11.8578+0i 10 7.47593-4.38779i 8.91282-3.47317i 10.059-2.33021i 10.9216-1.10366i 11.0427+0i 11 6.60562+2.56677i 7.69268+1.89884i 8.63828+1.0564i 9.56629+0i 9.9916+0i 12 6.60562-2.56677i 7.69268-1.89884i 8.63828-1.0564i 9.11508+0i 9.00201+0i 13 5.90709+1.20368i 6.75761+0.654714i 7.70896+0i 7.99387+0i 7.99952+0i 14 5.90709-1.20368i 6.75761-0.654714i 7.028+0i 7.00027+0i 7.00009+0i 15 5.29122 5.95208+0i 5.99942+0i 6 6 16 5.10369 5.00061+0i 5.00001+0i 5 5 17 3.99978 4 4 4 4 18 3 3 3 3 3 19 2 2 2 2 2201 1 1 1 1表11.2.2在第18项加扰动ess 后,方程0)(18201=∙+-∏=x ess k x k (2),的根如表2所示:阶数\ess1.00E-01 1.00E-03 1.00E-05 1.00E-07 1.00E-091 29.1493+5.98286i23.724+2.8203i 20.994+1.34421i 19.7656+0.300013i 19.9983 2 29.1493-5.98286i 23.724-2.8203i 20.994-1.34421i 19.7656-0.300013i19.0115 320.2125+11.071i 19.4236+6.14475i 18.4909+3.24042i 17.8435+1.30236i 17.9649 4 20.2125-11.071i 19.4236-6.14475i 18.4909-3.24042i 17.8435-1.30236i 17.0524 5 13.4752+9.28466i 14.8344+6.09209i 15.3107+3.55896i 15.4553+1.5856i 15.9662 6 13.4752-9.28466i 14.8344-6.09209i 15.3107-3.55896i 15.4553-1.5856i 14.9771 7 10.1007+6.44431i 11.6561+4.62319i 12.6114+2.82705i 13.1902+1.20025i 14.0752 8 10.1007-6.44431i 11.6561-4.62319i 12.6114-2.82705i 13.1902-1.20025i12.9047 9 8.29727+4.13106i9.60113+2.99431i 10.579+1.73097i 11.275+0.452354i 12.0762 10 8.29727-4.13106i 9.60113-2.99431i 10.579-1.73097i 11.275-0.452354i 10.961 11 7.14293+2.37702i 8.18209+1.56759i 9.04344+0.625845i 9.93183+0i 10.0166 12 7.14293-2.37702i 8.18209-1.56759i 9.04344-0.625845i 9.00952+0i 8.99504 13 6.27379+1.02957i 7.0834+0.388249i 7.93758+0i 7.99935+0i 8.00115 14 6.27379-1.02957i 7.0834-0.388249i 7.00355+0i 7+0i 6.9998 15 5.68402+0i 6.00002 6.00002 6.00002 6.00002 16 5.01294 5 5 5 5 17 4 4 4 4 4 18 3 3 3 3 3 19 2 2 2 2 2 201 1 1 1 1表21.3 结果分析多项式∏=-201)(k k x 展开后,从高到低,其各次项的系数依次如下:1 -210 20615-1.2569e+006 5.3328e+007 -1.6723e9 4.0172e10 -7.5611e11 1.131e13 -1.3559e+014 1.3075e15 -1.0142e16 6.3031e16 -3.1133e+017 1.2066e+018-3.6e+018 8.0378e+018 -1.2871e+019 1.3804e+019 -8.7529e18 2.4329e181.3.1对于方程0)(201=-∏=k k x (3),其方程左边的多项式的第19次项的系数为-210,在其上加上ess (1e-9 ~ 0.1)的扰动,扰动的程度不大于0.05%,但是却给方程(3)的解带来了很大的颠覆性变化!详细分析发现,在第19次项的系数上的加ess 后,对第20、19、18、17次的对应解无影响;但是对其后各次的解,影响却是愈来愈大,直至完全颠覆。
如x1原来的解为20,加入ess=0.1后,变为29.1493+5.98286i 。
1.3.2对于方程(3),其左边多项式的第18次项的系数为20615,在其上加上ess (1e-9 ~ 0.1)的扰动。
分析发现,对第20、19、18、17、16次的对应解无影响;但是对其后各次的解,影响却是颠覆性的。
这与在第19项加ess 的结果是一致的。
只是程度没有前者大。
1.3.3 问题的根源求解实系数高次多项式方程,并没有通用的代数解法,而只能通过迭代法求解。
这就为上述的不稳定现象奠定了伏笔。
同时,对方程(1)或(2)两边对ess 求导(认定x 是关于ess 的函数)发现,由于越低次项的系数越大,故越低次项对应的解对dx/dess 的波动就越敏感!这也就解释了为什么无论是扰动项在18还是19,前5个高次项对应的解基本不变,而后面的却大受其害的现象。
2实验2.1 多项式插值的振荡现象2.1程序代码% 对应于实验2.1 的程序clear;prompt = {'请输入实验函数:f(x)或和h(x)的代号,前者为f,后者是h'}; def={'f'};dlgTitle = '实验2.1 多项式插值的振荡现象';lineNo=1;result = inputdlg(prompt,dlgTitle,lineNo,def);fun = char(result);%转换结果if ((fun ~= 'f') & (fun ~= 'h') ),error('请选择合适的函数!');break;endif( fun == 'f')a = -1; b= 1;f = inline('1./(1+25*x.^2)');elsea = -5; b= 5;f = inline('x./(1+4*x.^4)');endfplot(f, [a b],'m');for i=2:2:10hold on;x0 = linspace(a, b, i+1 );y0 = feval(f,x0);x = a:0.1:b;y = Lagrange(x0, y0, x);if(i==2)plot(x, y, 'gp'); plot(x, y, 'g:');elseif (i==4)plot(x, y, 'r+'); plot(x, y, 'r-.');elseif (i==6)plot(x, y, 'kd'); plot(x, y, 'k-');elseif (i==8)plot(x, y, 'co'); plot(x, y, 'c--');elseplot(x, y, 'b*'); plot(x, y, 'b:');end ;end;函数f(x) = 1/(1+25*x^2)及其2、4、6、8、10点插值函数在[-1,1]上的图象:图2-1函数h(x) = x/(1+4*x^4)及其2、4、6、8、10点插值函数在[-1,1]上的图象:图2-2从上述图2-1 和图2-2 不难发现插值点数从2点增到4点,插值函数对原函数的近似程度要加大。