高中数学排列组合笔记梳理
高中数学排列组合知识总结

高中数学排列组合知识总结排列组合问题的解题策略排列组合综合问题的一般解题规律:1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定:“分类”表现为其中任何一类均可独立完成所给的事件,所以分类计数原理强调完成一件事情的几类办法互不干扰,相互独立,不论哪类办法都能将事情单独完成;而“分步”必须把各步骤均完成才能完成所给事件,所以分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,掌握分类和分步的基本技能,达到分类标准明确,分步层次清楚,不重不漏。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
下面介绍几种常用的解题方法和策略。
一、特殊元素——优先考虑法。
对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有(B )。
A. 24个 B.30个 C.40个 D.60个例2. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.(72种)二.正难则反——总体排除法。
对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.例3、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种.故选C.A.140种 B.80种 C.70种 D.35种例4.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 35-3=32个.三.相邻问题——用捆绑法。
高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结陈列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 〔分步〕②加法原理:N=n1+n2+n3+…+nM 〔分类〕2. 陈列〔有序〕与组合〔无序〕Anm=n〔n-1〕〔n-2〕〔n-3〕-…〔n-m+1〕=n!/〔n-m〕! Ann =n!Cnm = n!/〔n-m〕!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=〔k+1〕!-k!3.陈列组合混合题的解题原那么:先选后排,先分再排陈列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再思索其他元素。
以位置为主思索,即先满足特殊位置的要求,再思索其他位置。
捆绑法〔集团元素法,把某些必需在一同的元素视为一个全体思索〕插空法〔处置相间效果〕直接法和去杂法等等在求解陈列与组合运用效果时,应留意:〔1〕把详细效果转化或归结为陈列或组分解绩;〔2〕经过火析确定运用分类计数原理还是分步计数原理;〔3〕剖析标题条件,防止〝选取〞时重复和遗漏;〔4〕列出式子计算和作答。
经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想。
4.二项式定理知识点:①〔a+b〕n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:〔1+x〕n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
〔要留意n为奇数还是偶数,答案是中间一项还是中间两项〕一切二项式系数的和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+...=Cn1+Cn3+Cn5+ Cn7+ Cn9+ (2)-1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处置与指定项、特定项、常数项、有理项等有关效果。
高三数学排列和组合知识点

高三数学排列和组合知识点数学作为一门理科学科,其中的排列和组合是高三学生必须掌握的重要知识点。
本文将为大家详细介绍高三数学排列和组合的知识,并提供一些相关例题和解析,帮助大家理解和掌握这一知识点。
一、排列的概念和性质排列是从给定的对象中选出一部分进行有序排列的方式,每个对象只能使用一次。
在排列中,对象的顺序是重要的。
下面是排列的一些基本概念和性质:1. 排列的定义:从n个不同的对象中取出m个进行有序排列,称为从n个对象中取出m个的排列,记作P(n,m)。
2. 排列的计算公式:P(n,m) = n!/(n-m)!3. 重要性质一:对于任意正整数n,有P(n,n) = n!,即n个不同的对象全排列的总数为n的阶乘。
排列数为1。
5. 重要性质三:P(n,1) = n,即从n个对象中取出一个对象进行排列的方式数为n。
二、组合的概念和性质组合是从给定的对象中选出一部分进行无序组合的方式,每个对象只能使用一次。
在组合中,对象的顺序不重要。
下面是组合的一些基本概念和性质:1. 组合的定义:从n个不同的对象中取出m个进行无序组合,称为从n个对象中取出m个的组合,记作C(n,m)。
2. 组合的计算公式:C(n,m) = n!/[(n-m)!*m!]3. 重要性质一:对于任意正整数n,有C(n,n) = 1,即n个不同的对象全组合的总数为1。
组合数为1。
5. 重要性质三:C(n,1) = n,即从n个对象中取出一个对象进行组合的方式数为n。
三、排列与组合的应用排列和组合在实际生活和数学问题中有着广泛的应用。
下面是一些常见的应用领域:1. 排列的应用:排列在一些需要考虑顺序的情况下很有用,比如密码的穷举破解和赛车比赛的计算等。
2. 组合的应用:组合在一些不考虑顺序的情况下很有用,比如从一组物品中选取特定数量的搭配问题和抽奖活动中奖的计算等。
四、例题和解析下面是一些与排列和组合相关的例题和解析,帮助大家更好地理解和应用这一知识点:例题一:有6个人参加足球比赛,其中3人是A队的球员,3人是B队的球员。
高考数学排列与组合知识点

高考数学排列与组合知识点在高考数学中,排列与组合是一个重要的知识点。
它涉及到集合中元素的选择和排列方式,充满了逻辑思维和计算技巧。
掌握好这个知识点对于高考数学的考试是至关重要的。
下面我将从几个重要方面介绍排列与组合的基础知识和解题技巧。
一、基本概念1. 排列:排列是指从给定的元素集合中选择一部分元素,按照一定的顺序排列起来。
如果从n个不同元素中选取m个元素进行排列,那么排列的数目用P(n, m)表示,其计算公式为:P(n, m) = n! / (n-m)!其中,"!"表示阶乘运算,即n! = n(n-1)(n-2)...1。
2. 组合:组合是指从给定的元素集合中选择一部分元素,不考虑顺序的方式。
如果从n个不同元素中选取m个元素进行组合,那么组合的数目用C(n, m)表示,其计算公式为:C(n, m) = n! / [(n-m)! * m!]二、排列与组合的性质和定理1. 重复排列:当元素中有重复的情况时,排列的计算公式需要进行相应的修正。
假设有n个元素中有r1个元素相同,r2个元素相同......ri个元素相同,排列的数目可以通过以下公式计算:P(n, m) = n! / (r1! * r2! * ... * ri! * (n-m)!)2. 求整数解的排列:当要求整数解的排列时,我们可以使用分别代表每个数位的元素进行排列的方法。
比如,要求x、y、z三个整数之和为10,且满足x>0,y>0,z>0,我们可以将它们看作是从[1, 10]的元素集合中选取的排列。
3. 禁忌排列:禁忌排列是指排列中出现某些特殊情况需要剔除的情况。
比如,要求三个不同字母A、B、C排列成3位数,且BC不得出现,那么我们可以通过计算总的排列数减去BC出现的排列数得到最终的结果。
三、解题技巧1. 确定问题类型:在解决排列与组合问题时,首先需要明确题目中给出的要求是排列还是组合。
排列要考虑元素顺序,组合则不考虑。
高中数学知识点总结及公式大全排列组合与概率的计数与事件

高中数学知识点总结及公式大全排列组合与概率的计数与事件高中数学知识点总结及公式大全:排列组合与概率的计数与事件数学作为一门基础学科,对于高中学生来说,无疑是学习过程中必不可少的一部分。
在高中阶段,学习数学的内容相当繁杂,其中涉及的知识点众多。
本文将对高中数学的排列组合与概率的计数与事件进行系统的总结,并提供相关公式大全供参考。
一、排列组合基础知识排列与组合是数学中的两个基本概念,具有广泛的应用。
在学习排列组合的过程中,有几个核心的概念需要掌握。
1. 排列排列是从若干元素中按照一定的顺序选取出一部分元素,形成一个有序的序列。
常见的排列可以分为全排列和局部排列两种。
- 全排列:将若干元素按照不同的顺序进行排列,所得的不同排列数称为全排列。
全排列的公式为:A(n, n) = n!,其中 n 表示元素的个数。
- 局部排列:从若干元素中选取出其中的一部分元素,按照一定的顺序进行排列,所得的不同排列数称为局部排列。
局部排列的公式为:A(n, m) = n!/(n-m)!,其中n 表示元素的总数,m 表示选取的元素个数。
2. 组合组合是从若干元素中选取出一部分元素,不考虑其顺序,形成一个无序的集合。
常见的组合有全组合和局部组合两种。
- 全组合:将若干元素选取出所有可能的组合,所得的不同组合数称为全组合。
全组合的公式为:C(n) = 2^n,其中 n 表示元素的个数。
- 局部组合:从若干元素中选取出其中的一部分元素,不考虑其顺序,所得的不同组合数称为局部组合。
局部组合的公式为:C(n, m) =n!/[m!(n-m)!],其中 n 表示元素的总数,m 表示选取的元素个数。
二、概率与事件概率和事件是数学中研究随机事件发生可能性的重要内容。
在学习概率与事件的过程中,有几个核心的概念需要了解。
1. 概率概率是对随机事件发生可能性的量化描述。
以事件 A 在随机试验中发生为例,事件 A 发生的概率记为 P(A)。
概率的计算公式为:P(A) =N(A)/N(S),其中 N(A) 表示事件 A 中有利的试验结果的个数,N(S) 表示样本空间 S 中的所有可能结果的个数。
高中组合知识点归纳总结

高中组合知识点归纳总结在高中数学学科中,组合是一个重要的内容领域,涵盖了排列、组合和二项式定理等知识点。
本文将对高中组合知识点进行归纳总结,帮助同学们更好地掌握这一部分内容。
一、排列1. 定义:排列是指从一组元素中选取若干个元素按特定的顺序排列的方式。
根据排列的特征,可以分为有放回排列和无放回排列。
2. 有放回排列:从n个元素中选取r个元素进行排列,每个元素都可以重复选取。
计算公式为P(n,r) = n^r。
3. 无放回排列:从n个元素中选取r个元素进行排列,每个元素只能选取一次。
计算公式为A(n,r) = n! / (n-r)!。
二、组合1. 定义:组合是指从一组元素中选取若干个元素按照无序排列的方式。
根据组合的特征,可以分为有放回组合和无放回组合。
2. 有放回组合:从n个元素中选取r个元素进行组合,每个元素都可以重复选取。
计算公式为C(n,r) = (n+r-1)! / (r!(n-1)!。
3. 无放回组合:从n个元素中选取r个元素进行组合,每个元素只能选取一次。
计算公式为C(n,r) = n! / (r!(n-r)!)。
三、二项式定理1. 定义:二项式定理是数学中的一个重要定理,描述了二次幂的展开式中的系数。
具体公式为(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + ... + C(n,n)a^0*b^n。
2. 应用:二项式定理在代数、概率和组合等领域都有广泛的应用。
例如,在计算二次幂的展开式时,可以根据二项式定理快速求解。
四、题型归纳在高中数学考试中,组合相关的题目主要有以下几种类型:1. 求排列、组合的个数:题目给出了元素个数和排列或组合的条件,要求计算可能的个数。
2. 求排列、组合的具体情况:题目给出了元素个数和排列或组合的条件,需要求出具体的排列或组合情况。
3. 求满足条件的概率:题目给出了元素个数和排列或组合的条件,需要求出满足条件的概率。
高中数学排列与组合部分重要知识点总结

高中数学排列与组合部分重要知识点总结高中数学排列与组合部分重要知识点总结①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 kk!=(k+1)!-k!排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把详细问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,防止“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的`和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn 9+…=2n -1③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学排列组合笔记梳理
最近两年排列组合和概率统计的内容在高考中愈发重要,所以打算先更新这一部分的笔记
一、排列数和组合数
这是解决排列组合问题的基础,除了知道定义外,还需要了解它们的性质以及一些使用方法。
排列组合数的一些性质在二项式定理的相关题目中经常会用到,所以理科的同学也要多留意一下(接下来的一两期会更新二项式相关内容)
二、排列组合问题的常见题型
1.捆绑法和插空法
一种“先解决整体再解决局部”的办法,用到乘法规则,是排列组合的经典题型之一。
2.隔板法
在名额分配、不定方程正整数解等题型中都会用到,关键要学会从问题中抽出隔板模型。
3.使用集合元素个数公式来帮助求解
这类题目也可以用分类法求解,不过画图会让问题更直观,不容易缺失情况
4.圆排列问题
只需要一个小小的策略就可以转化成直线排列啦
5.几何相关的排列组合问题
主要考察正方体、四面体等立体图形的相关性质,只要见过这类题型,了解套路,就不怕没有思路。