选用电容一般原则

合集下载

电路板设计中电容的一般配置原则

电路板设计中电容的一般配置原则

电路板设计中电容的一般配置原则退藕电容的一般配置原则1. 电源输入端跨接10 ~100uf的电解电容器。

如有可能,接100uf以上的更好。

2. 原则上每个集成电路芯片都应布置一个0.01pf的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1~ 10pf的但电容。

3. 对于抗噪能力弱、关断时电源变化大的器件,如 ram、rom存储器件,应在芯片的电源线和地线之间直接入退藕电容。

4、电容引线不能太长,尤其是高频旁路电容不能有引线。

此外,还应注意以下两点:a、在印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用附图所示的rc 电路来吸收放电电流。

一般 r 取 1 ~ 2k,c取2.2 ~ 47uf。

b、 cmos的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源。

由于大部分能量的交换也是主要集中于器件的电源和地引脚,而这些引脚又是独立的直接和地电平面相连接的。

这样,电压的波动实际上主要是由于电流的不合理分布引起。

但电流的分布不合理主要是由于大量的过孔和隔离带造成的。

这种情况下的电压波动将主要传输和影响到器件的电源和地线引脚上。

为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。

这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。

当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好。

这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。

去耦电容配置的一般原则如下:● 电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

● 为每个集成电路芯片配置一个0.01uF的陶瓷电容器。

如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

详解滤波电容的选择及计算

详解滤波电容的选择及计算

详解滤波电容的选择及计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100倍左右。

电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

滤波电容如何选择

滤波电容如何选择

滤波电容的选择滤波电容的选择滤波电容的选择经过整流桥以后的是脉动直流,波动范围很大。

后面一般用大小两个电容大电容用来稳定输出,众所周知电容两端电压不能突变,因此可以使输出平滑小电容是用来滤除高频干扰的,使输出电压纯净电容越小,谐振频率越高,可滤除的干扰频率越高容量选择:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可2.别人的经验(来自互联网)1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

2、电源滤波中电容对地脚要尽可能靠近地。

3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。

4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例:AC220-9V再经过全桥整流后,需加的滤波电容是多大的?再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。

后者电容耐压应大于9V,容量应大于220微发以上。

2.有一电容滤波的单相桥式整流电路,输出电压为24V,电流为500mA,要求:(1)选择整流二极管;(2)选择滤波电容;(3)另:电容滤波是降压还是增压?(1)因为桥式是全波,所以每个二极管电流只要达到负载电流的一半就行了,所以二极管最大电流要大于250mA;电容滤波式桥式整流的输出电压等于输入交流电压有效值的1.2倍,所以你的电路输入的交流电压有效值应是20V,而二极管承受的最大反压是这个电压的根号2倍,所以,二极管耐压应大于28.2V。

(2)选取滤波电容:1、电压大于28.2V;2、求C的大小:公式RC≥(3--5)×0.1秒,本题中R=24V/0.5A=48欧所以可得出C≥(0.00625--0.0104)F,即C的值应大于6250μF。

(3)电容滤波是升高电压。

滤波电容的选用原则在电源设计中,滤波电容的选取原则是:C≥2.5T/R其中:C为滤波电容,单位为UF;T为频率,单位为Hz,R为负载电阻,单位为Ω当然,这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R.3.滤波电容的大小的选取PCB制版电容选择印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。

详解滤波电容的选择及计算

详解滤波电容的选择及计算

电源滤波电容的选择与计算电感的阻抗与频率成正比 ,电容的阻抗与频率成反比 .所以 ,电感可以阻扼高频通过 ,电容可以阻扼低频通过 . 二者适当组合 ,就可过滤各种频率信号 .如在整流电路中 ,将电容并在负载上或将电感串联在负载上 ,可滤去交流纹波 . 。

电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。

电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。

电容和电感的很多特性是恰恰相反的。

一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。

因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。

低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千 Hz到几万Hz。

当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。

因此在使用中会因电解液的频繁极化而产生较大的热量。

而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。

电源滤波电容的大小,平时做设计,前级用 4.7u,用于滤低频,二级用 0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,O.luF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。

一般前面那个越大越好,两个电容值相差大概100 倍左右。

电源滤波,开关电源,要看你的ESR电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。

大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L, 一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM 为10n H左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢?电源滤波电容如何选取 ,掌握其精髓与方法 ,其实也不难1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc), 但由于电容两端引脚的电感效应 , 这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地•原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR自谐振频率)值不同,想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了 .2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的 SFR是多少?就算我知道SFR 值,我如何选取不同 SFR值的电容值呢?是选取一个电容还是两个电容?电容的SFR值和电容值有关,和电容的引脚电感有关所以相同容值的 0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量 S21?知道了电容的SFR值后,用软件仿真,如 RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比 .仿真完后,那就是实际电路试验,如调试手机接收灵敏度时丄NA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好•但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:3 =1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性 .因而一般大电容滤低频波,小电容滤至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验更可靠的做法是将一大一小两个电容并联, 一般要求相差两个数量级以上,以获得更大的滤波频段文章来源:我看了这篇文章,也做个粗略的总结吧:1•电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。

选择电机启动电容的3个方法你会几个

选择电机启动电容的3个方法你会几个

选择电机启动电容的3个方法你会几个?作为电工,遇到更换电机启动电容是常有的事,有的很容易,坏什么型号,更换什么型号,一般本着原号原换的原则,但有时就会遇到一些特例,比如电机的启动电容严重烧毁变形,根本看不到上面标注的型号参数。

或身边没有相同的型号,那我们是否快速的知道要换的电容型号参数呢,在这里讲三个方法,大家可根据自己爱好选择一个合适自己的!第一个方法死记硬背法,这里有个排序,按电机的功率从小到大记,40——60瓦电机一般配1---1.5uf容量的电容,70瓦电机一般配2uf 容量的电容,180瓦电机用6uf电容,350瓦至2.2千瓦的电机都用450V200μf无极性电容,不用算的,因为运行电流有个允许范围,记住这些也不难,可以最快速度的知道该更换的启动电容型号。

这里要强调一点值得注意的就是启动电容和工作电容,因为启动电容其实要求的电流比工作电容大,但因为电容选配可以允许有一定的浮动范围,所以大多数都是把工作电容稍微选大一点,一作两用,这也就是有些电风扇用的时间久了、电容损耗变小了,风扇启动时就启动不了了,换个容量大点的电容就可以的原因。

第二种方法,理论性较强,准确性略高,但也有一些因素是估算成份,所以结果也并不是十分精确,弊端就是有时会略闲麻烦,但如果熟悉运算几次,掌法此方法,也就和算一道计算题一样,并没有想象的复杂,把各种参数带入公式中,圈出的结果就是要选配电容的容量,按下面公式计算选配:C=350000*I/2p*f*u*cos∮其中:co∮表示电机功率因数,一般取0.55---0.75p表示电机极对数,电机铭牌上有或根据公式可算出来u表示电源电压,指额定状态下f表示电源频率,我国为50赫兹l表示额定电流c表示电容容量最后说的一种方法,是最快捷也是最准确的一种方法,就是手机里的电工计算软件,下载一个电工计算软件,把要计算的各参数填入,软件会自动算出选配电容的容量,这得益于高科技。

最后重点来了,这也是一点经验的总结,如果我们估算或计算的电容无法买到或手边没有,我们可以就近选择型号容量接近的,尽量偏大一点,但不管用那种方法选配,最后更换好后都必须检测一下电流是否符合,最终结果都已这个检测为标准来确定选配的电容是否合适,如果电流悬殊太大,说明配型不对,必须重新选配,否则,遗留后患,带来更大麻烦,不过,只要最后一个检测步骤不少,即使选错了,也有弥补的机会,所以最后一步才是更换启动电容的重点所在。

电源设计中的电容选用规则

电源设计中的电容选用规则

电源设计中的电容选用规则电源往往是我们在电路设计过程中最容易忽略的环节。

作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。

电源设计中的电容使用,往往又是电源设计中最容易被忽略的地方。

一、电源设计中电容的工作原理在电源设计应用中,电容主要用于滤波(filter)和退耦/旁路(decoupling/bypass)。

滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。

根据观察某一随机过程的结果,对另一与之有关的随机过程进行估计的概率理论与方法。

滤波一词起源于通信理论,它是从含有干扰的接收信号中提取有用信号的一种技术。

“接收信号”相当于被观测的随机过程,“有用信号”相当于被估计的随机过程。

滤波主要指滤除外来噪声,而退耦/旁路(一种,以旁路的形式达到退耦效果,以后用“退耦”代替)是减小局部电路对外的噪声干扰。

很多人容易把两者搞混。

下面我们看一个电路结构:图中电源为A和B供电。

电流经C1后再经过一段PCB走线分开两路分别供给A和B。

当A 在某一瞬间需要一个很大的电流时,如果没有C2和C3,那么会因为线路电感的原因A端的电压会变低,而B端电压同样受A端电压影响而降低,于是局部电路A的电流变化引起了局部电路B 的电源电压,从而对B电路的信号产生影响。

同样,B的电流变化也会对A形成干扰。

这就是“共路耦合干扰”。

增加了C2后,局部电路再需要一个瞬间的大电流的时候,电容C2可以为A暂时提供电流,即使共路部分电感存在,A端电压不会下降太多。

对B的影响也会减小很多。

于是通过电流旁路起到了退耦的作用。

一般滤波主要使用大容量电容,对速度要求不是很快,但对电容值要求较大。

如果图中的局部电路A是指一个芯片的话,而且电容尽可能靠近芯片的电源引脚。

而如果“局部电路A”是指一个功能模块的话,可以使用瓷片电容,如果容量不够也可以使用钽电容或铝电解电容(前提是功能模块中各芯片都有了退耦电容—瓷片电容)。

电容选用原则

电容选用原则

电容选用原则
电容是电子元器件中常用的一种,其主要作用是存储和释放电荷。

在选择电容时,可以根据以下原则进行考虑:
1. 电容值(容量):电容的容量决定了它能够存储的电荷量。

根据具体应用需求,选择适当的电容值是十分重要的。

一般来说,电容值越大,其存储的电荷量越多。

2. 电压等级:电容具有工作电压范围,超过其额定电压会导致电容损坏。

因此,在选择电容时,需要根据系统的工作电压来选择合适的电容的额定电压等级,以确保电容能够正常工作。

3. 尺寸与封装:电容的尺寸和封装形式也需要考虑。

不同尺寸和封装形式的电容适用于不同的应用场景。

在选择时,需要考虑电路板空间大小、电容的安装方式等因素。

4. 温度特性:电容的电容值和电阻特性可能随温度的变化而发生变化。

在某些应用中,对温度特性的要求较高。

因此,需要选择具有适当温度特性的电容。

5. 电容类型:常见的电容类型有陶瓷电容、铝电解电容、钽电容等。

不同类型的电容具有不同的特性和应用领域。

根据具体的应用需求选择合适的电容类型。

6. 成本和供应:最后,还需要考虑电容的成本和供应情况。

一些特殊类型或大容量的电容可能价格较高或供应不足,这也需要在选择时进行综合考虑。

总之,电容的选择需要根据具体的应用场景和需求来确定,综合考虑电容值、电压等级、尺寸与封装、温度特性、电容类型、成本和供应等因素。

选用电容一般原则

选用电容一般原则

电容从电路来说,总就是存在驱动得源与被驱动得负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号得跳变,在上升沿比较陡峭得时候,电流比较大,这样驱动得电流就会吸收很大得电源电流,由于电路中得电感,电阻(特别就是芯片管脚上得电感,会产生反弹),这种电流相对于正常情况来说实际上就就是一种噪声,会影响前级得正常工作。

这就就是耦合。

去藕电容就就是起到一个电池得作用,满足驱动电路电流得变化,避免相互间得耦合干扰。

旁路电容实际也就是去藕合得,只就是旁路电容一般就是指高频旁路,也就就是给高频得开关噪声提高一条低阻抗泄防途径、高频旁路电容一般比较小,根据谐振频率一般就是0.1u,0.01u等,而去耦合电容一般比较大,就是10u或者更大,依据电路中分布参数,以及驱动电流得变化大小来确定。

ﻫ旁路就是把输入信号中得干扰作为滤除对象,而去耦就是把输出信号得干扰作为滤除对象,防止干扰信号返回电源。

这应该就是她们得本质区别。

去耦电容在集成电路电源与地之间得有两个作用:一方面就是本集成电路得蓄能电容,另一方面旁路掉该器件得高频噪声。

数字电路中典型得去耦电容值就是0。

1μF。

这个电容得分布电感得典型值就是5μH。

0.1μF得去耦电容有5μH得分布电感,它得并行共振频率大约在7MHz左右,也就就是说,对于10 MHz以下得噪声有较好得去耦效果,对40MHz以上得噪声几乎不起作用。

1μF、10μF得电容,并行共振频率在20MHz以上,去除高频噪声得效果要好一些、每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。

最好不用电解电容,电解电容就是两层薄膜卷起来得,这种卷起来得结构在高频时表现为电感、要使用钽电容或聚碳酸酯电容。

去耦电容得选用并不严格,可按C=1/F,即10MHz取0。

1μF,100MHz取0.01μF。

分布电容就是指由非形态电容形成得一种分布参数。

一般就是指在印制板或其她形态得电路形式,在线与线之间、印制板得上下层之间形成得电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容从电路来说,总是存在驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。

这就是耦合。

去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

这应该是他们的本质区别。

去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。

数字电路中典型的去耦电容值是0. 1μF。

这个电容的分布电感的典型值是5μH。

0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。

1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。

每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。

最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。

要使用钽电容或聚碳酸酯电容。

去耦电容的选用并不严格,可按C =1/F,即10MHz取0.1μF,100MHz取0.01μF。

分布电容是指由非形态电容形成的一种分布参数。

一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。

这种电容的容量很小,但可能对电路形成一定的影响。

在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候。

也成为寄生电容,制造时一定会产生,只是大小的问题。

布高速PCB时,过孔可以减少板层电容,但会增加电感。

分布电感是指在频率提高时,因导体自感而造成的阻抗增加.电容器选用及使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。

2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。

在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。

3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。

4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。

电容的型号命名:1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C。

第二部分:用字母表示材料。

第三部分:用数字表示分类。

第四部分:用数字表示序号。

2)电容的标志方法:(1)直标法:用字母和数字把型号、规格直接标在外壳上。

(2)文字符号法:用数字、文字符号有规律的组合来表示容量。

文字符号表示其电容量的单位:P、N、u、m、F等。

和电阻的表示方法相同。

标称允许偏差也和电阻的表示方法相同。

小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。

(3)色标法:和电阻的表示方法相同,单位一般为pF。

小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4)进口电容器的标志方法:进口电容器一般有6项组成。

第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。

第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差1 A 金+100 R 黄-2202 B 灰+30 S 绿-3303 C 黑0 T 蓝-4704 G ±30 U 紫-7505 H 棕-30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红-80±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙-150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是% 。

第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂。

第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂。

当有小数时,用R或P表示。

普通电容器的单位是pF,电解电容器的单位是uF。

第六项:允许偏差。

用一个字母表示,意义和国产电容器的相同。

也有用色标法的,意义和国产电容器的标志方法相同。

3.电容的主要特性参数:(1)容量与误差:实际电容量和标称电容量允许的最大偏差范围。

一般分为3级:I级±5%,II级±10%,III级±20%。

在有些情况下,还有0级,误差为±20%。

精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级。

常用的电容器其精度等级和电阻器的表示方法相同。

用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II级——±10%;M——III级——±20%。

(2)额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压。

对于结构、介质、容量相同的器件,耐压越高,体积越大。

(3)温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值。

温度系数越小越好。

(4)绝缘电阻:用来表明漏电大小的。

一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。

电解电容的绝缘电阻一般较小。

相对而言,绝缘电阻越大越好,漏电也小。

(5)损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量。

这些损耗主要来自介质损耗和金属损耗。

通常用损耗角正切值来表示。

(6)频率特性:电容器的电参数随电场频率而变化的性质。

在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小。

损耗也随频率的升高而增加。

另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能。

所有这些,使得电容器的使用频率受到限制。

不同品种的电容器,最高使用频率不同。

小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ。

单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就A VX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。

下面我们仅就常用的NPO、X7R、Z5U和Y5V 来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是A VX公司的命名方法,其他公司的产品请参照该公司的产品手册。

NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。

在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。

所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。

一NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。

它的填充介质是由铷、钐和一些其它稀有氧化物组成的。

NPO电容器是电容量和介质损耗最稳定的电容器之一。

在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。

NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。

其典型的容量相对使用寿命的变化小于±0.1%。

NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。

下表给出了NPO电容器可选取的容量范围。

封装DC=50V DC=100V0805 0.5---1000pF 0.5---820pF1206 0.5---1200pF 0.5---1800pF1210 560---5600pF 560---2700pF2225 1000pF---0.033μF 1000pF---0.018μFNPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。

二X7R电容器X7R电容器被称为温度稳定型的陶瓷电容器。

当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。

X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。

X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。

它的主要特点是在相同的体积下电容量可以做的比较大。

下表给出了X7R电容器可选取的容量范围。

封装DC=50V DC=100V0805 330pF---0.056μF 330pF---0.012μF1206 1000pF---0.15μF 1000pF---0.047μF1210 1000pF---0.22μF 1000pF---0.1μF2225 0.01μF---1μF 0.01μF---0.56μF三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器。

这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。

对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。

但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。

尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。

尤其是在退耦电路的应用中。

下表给出了Z5U电容器的取值范围。

相关文档
最新文档