第5章高频功率放大器分析

合集下载

高频电子线路(第五章 高频功率放大器)

高频电子线路(第五章 高频功率放大器)
①高效率输出 联想对比: ②高功率输出
高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
7
(3)高频功率放大器的种类

谐振功率放大器(学习重点)
特点是负载是一个谐振回路,功率放大增益可
以很大,一般用于末级; 不易于自动调谐。

宽带功率放大器(了解即可)
特点是负载是传输线变压器,可在很宽的频带
工作状态 甲类 乙类 甲乙类 丙类 丁类 半导通角 c=180° c=90° 90° <c<180° c<90° 开关状态 理想效率 50% 78.5% 50%<h<78.5% h>78.5% 负 载 电阻 推挽,回路 推挽 选频回路 选频回路 应 用 低频 低频,高频 低频 高频 高频
90%~100%
由于这种周期性的能量补充,所以振荡回路能维持振 荡。当补充的能量与消耗的能量相等时,电路中就建立起 动态平衡,因而维持了等幅的正弦波振荡。
34
问题二:半流通角θc通常多大合适?
如果θc取值过大,趋向甲类放大器,则效率 太低; 如果θc取值过小,效率虽然提高了,但输出 功率的绝对值太小(因为iC脉冲太低); 这是一对矛盾,根据实验折中,人们通常 取
gC (vB VBZ )(当vB VBZ )
外部电路关系:
vB VBB Vbm cos t
v C V CC V cm cos t
31
(4)对2个问题的解释

问题一(可能会引起同学们困惑的问题)
为什么iC的波形时有时无,而输出的波形vo却能
是连续的?

问题二(有的题目已知条件不给θc,而解题 中又需要θc )
通过LC回路,滤去无用分量,只留下 Icm1cosωt分量

第五章 功率放大电路

第五章 功率放大电路

V C( C V
CC U CE (sat)) RL
2.2W
m

π 4
V CC
U CE(sat) V CC

65%
5.2.2 OTL电路
1 、 OCL 电 路 线 路 简 单 、 效率高,但要采用双电源供电, 给使用和维修带来不便。
2、采用单电源供电的互 补对称电路,称为无输出变压 器(Output transformerless)的 功放电路,简称OTL电路,如 图5.2.5所示。其特点是在输出 端负载支路中串接了一个大容 量电容C2。
第五章 功率放大电路
5.1 功率放大电路概述 5.2 乙类互补对称功率放大电路 5.3 集成功率放大器 *5.4 功率管的安全使用
教学目标
1、了解功放电路特点、分类、对功放电路要求。熟悉低频
功放电路主要技术指标。
2、熟悉OCL、OTL电路组成、工作原理、性能参数估算方
法。
3、掌握交越失真产生原因、消除交越失真方法。 4、掌握复合管组成原则。
教学目标
5、熟悉常用集成功率放大器(LA4102、LM386、TDA2030
等)引脚功能,了解其主要技术指标。熟悉集成功放应用电 路组成、外接元器件作用,会估算闭环增益。
6、选学BTL电路原理及其由集成功放构成的应用电路。
7、选学功放管二次击穿和热致击穿现象及其保护措施,功
放管等功率器件散热计算及散热片的选择。
2、功放管的最大耐压U(BR)CEO 当一只管子饱和导通时,另一只管子承受的最大反向电
压为2VCC。故
U (BR)CEO 2VCC
3、功放管的最大集电极电流
I
CM

VCC RL
4、选择示例

Chapter5 高频功率放大器v1.0解析

Chapter5 高频功率放大器v1.0解析


故放大器效率:
Po Po c P Po Pc
21
第五章
高频功率放大器
高频电子线路
两点结论:
1)设法尽量降低集电极耗散功率Pc,则放大器效率c 自然会提高。这样,在给定P=时,晶体管的交流输出 功率Po就会增大;
2) 由式
c Po 1 Pc c
ic ic
Q
o
eb
o
t
o振放大器波形图 t
5
t
高频功率放大器波形图
第五章
高频功率放大器
高频电子线路
高频功率放大器与非谐振功率放大器的对比

相同点: ①输出功率大, ②输出效率高。

功率放大器实质上是一个能量转换器,把电源供给的直流能 量转化为交流能量,能量转换的能力即为功率放大器的效率。

不同点:

谐振功率放大器通常用来放大窄带高频信号(信号的通带宽度 只有其中心频率的1%或更小),其工作状态通常选为丙类工作 状态(导通角c<90),为了不失真的放大信号,它的负载必 须是谐振回路

非谐振放大器可分为低频功率放大器和宽带高频功率放大器。 低频功率放大器的负载为无调谐负载,工作在甲类或乙类工 作状态;宽带高频功率放大器以宽带传输线为负载。
π

sin c c cos c I cM o ( c ) π(1 cos c )
I c1m

cos t cos c 1 c ic cosωt dt I cM costdt π π c (1 cos c )
π

I cM
c sin c cos c I cM 1 ( c ) π(1 cos c )

高频电子线路试题库

高频电子线路试题库

高频电子线路试题库一、单项选择题(每题 2 分,共20 分)第二章选频网络1、LC 串联电路处于谐振时,阻抗()。

A、最大B、最小C、不确定2、L C并联谐振电路中,当工作频率大于、小于、等于谐振频率时,阻抗分别呈()。

A、感性容性阻性B、容性感性阻性C、阻性感性容性D、感性阻性容性3、在LC并联电路两端并联上电阻,下列说法错误的是()A、改变了电路的谐振频率B、改变了回路的品质因数C、改变了通频带的大小D、没有任何改变第三章高频小信号放大器1、在电路参数相同的情况下,双调谐回路放大器的通频带与单调谐回路放大器的通频带相比较A、增大B减小C相同D无法比较2、三级相同的放大器级联,总增益为60dB,则每级的放大倍数为()。

A、10dB B 、20 C、20 dB D、103、高频小信号谐振放大器不稳定的主要原因是((A)增益太大(B)通频带太宽Cb' c的反馈作用(D)谐振曲线太尖锐。

第四章非线性电路、时变参量电路和混频器(C)晶体管集电结电容1、通常超外差收音机的中频为( )A) 465K B) 75KHZ ( C) 1605KHZ ( D) 10.7MHZ2、接收机接收频率为fc ,fL >( A) fc > fI fc+fI B) fL+fc C) fc+2fI( D)3、设混频器的fL >fC 产生的干扰称为( ,即fL =fC+fI )。

,若有干扰信号fn=fL+fI ,则可能(A)交调干扰(B)互调干扰(C)中频干扰(D)镜像干扰4、乘法器的作用很多,下列中不属于其作用的是(A、调幅B、检波C、变频D、调频5、混频时取出中频信号的滤波器应采用( )(A)带通滤波器(B)低通滤波器(C)高通滤波器(D)带阻滤波器(A)相加器(B)乘法器(C)倍频器(D)减法器7、在低电平调幅、小信号检波和混频中,非线性器件的较好特性是()A、i=b0+b1u+b2u2+b3u3 B 、i=b0+b1u+b3u3 C、i=b2u2 D、i=b3u38、我国调频收音机的中频为( )( A) 465KHZ ( B) 455KHZ ( C) 75KHZ ( D) 10.7MHZ9、在混频器的干扰中,组合副波道干扰是由于 ------- 造成的。

高频功率放大器

高频功率放大器

iB

iC 均为余弦脉冲,用傅里叶级数展开为:
iB I B 0 I B1m cost I B 2 m cos 2t I B 3m cos 3t
iC I C 0 I C1m cost I C 2 m cos 2t I C 3 m cos 3t
1、直流功率
PD
由直流供电电源提供的功率 P E C I c 0 D 2、输出功率 P0 由电子器件送给谐振回路的基波信号产生的功率
1 1 1 U cm 2 P0 I c1mU cm I c1m Re 2 2 2 Re
3、集电极损耗功率消耗在集电结的功率
2
Pc PD P0
4、集电极效率
高频功率放大器的输出回路具有选频作用, 若调谐在基波频率上,则回路两端的电压可表 示为:
uC U cm cost I C1m Re cost uC E EC U cm cost
Re
为输出回路的有载谐振电阻
第三节
丙类高频放大器的分析
一、折线分析法 高频功率放大器属于大信号分析,和低频放大器一样,往往采用折线 法分析(图解法),其输入特性和输出特性如图2-5所示。
I c1m
i

c
co stdt
I c1m I c max 1 ( )
I cnm
1 2

i
c
cos ntdt
I cnm I c max n ( )
将电流分解系数制成曲线,可得图2-8。
1 ( ) g1 0 ( )
三、高频功率放大器的功率和效率
静态工作点 Q :
当输入信号 ,即静态时, u i U bm cost 0

高频电子线路课程教学大纲

高频电子线路课程教学大纲

高频电子线路课程教学大纲一、课程简介高频电子线路课程旨在介绍高频电子线路的基本原理、设计方法和实际应用。

通过本课程的学习,学生将掌握高频电子线路设计的基本概念和技能,为将来从事相关领域的工作打下坚实的基础。

二、课程目标1. 了解高频电子线路的基本概念和特点;2. 掌握高频电子线路的设计原则和方法;3. 学习高频电子线路分析与仿真的工具和技术;4. 理解高频电子线路的主要应用领域,并能应用于实际设计中;5. 培养学生的团队合作能力和创新精神。

三、课程内容第一章:高频电子线路概述1. 高频电子线路概述及应用领域介绍2. 高频电子线路的特点和要求第二章:高频电子线路基础知识1. 电磁波基础2. 传输线理论和特性阻抗3. 矩形波导和同轴线4. 常用高频电子元器件的特性和参数第三章:射频放大器设计1. 射频放大器的基本原理2. BJT 和 MOSFET 射频放大器设计3. 基于微带线的封装和设计4. 射频放大器的稳定性分析第四章:射频混频器与频率合成器设计1. 射频混频器的原理和分类2. 射频混频器设计方法与技巧3. PLL 频率合成器的设计原理和实现方法第五章:高频功率放大器设计1. 高频功率放大器的基本原理和应用2. 高频功率放大器的设计方法和技巧3. 不同类别功率放大器的对比分析第六章:高频滤波器设计1. 高频滤波器的基本知识和分类2. 高频滤波器的设计方法和工具3. 常用高频滤波器设计案例分析第七章:天线设计与工艺1. 天线的基本原理和参数2. 天线的设计方法和工艺要求3. 天线与射频系统的匹配与优化第八章:实验与实践1. 高频电子线路实验室的基本设备和仪器2. 实验操作技巧与安全注意事项3. 设计与验证高频电子线路的实践项目四、考核方式1. 平时成绩:包括课堂表现、作业完成情况和实验报告等;2. 期中考试:考察学生对课程内容的掌握程度;3. 期末考试:综合考核学生对整个课程的理解和应用能力。

五、参考书目1. 《高频电子线路设计基础》作者:XXX2. 《射频电子线路设计与仿真》作者:XXX3. 《高频功率放大电路技术》作者:XXX六、教学团队本课程由资深高频电子线路工程师和教授担任,具有丰富的教学和实践经验,能够提供全面的教学指导和辅导。

05第五章、功率放大电路

05第五章、功率放大电路



5.3 甲乙类互补对称功率放大电路
一、交越失真 由于三极管输入特性有门槛电压,特性开始部分非线性又比较 严重,在两管交替工作点前后,出现一段两管电流均为零因而负载电流和电压均 为零的时间,使输出波形出现了“交越失真”。 二、甲乙类双电源互补对称功率放大电路 1.电路组成及电路工作原理:在两管的基极之间产生一个合适的偏压,使它们处 于微导通状态,两管各有不大的静态电流,电路工作在甲乙类,由于iL=iC1-iC2 , 输出波形接近于正弦波,基本上可以实现线性放大。 2.性能指标计算及选管原则(同乙类功放) 三、甲乙类单电源互补对称功放:(OTL) 1.电路组成及分析: 它与OCL电路的根本区别在于输出端接有大电容C。就直流而言, 只要两管特性相同,K点的电位VK=Vcc/2,而大电容C 被充电 到VC=VK=Vcc/2 。就交流而言,只要时间常数;RLC比输入信号 的最大周期大得多,电容上电压可看作固定不变,而C对交流可 视为短路。这样,用单电源和C 就可代替OCL电路的双电源。T1 管上的电压是Vcc 与VK 之 差,等于Vcc/2 ,而T2 管的电源电压 就是0与VK 之差,等于Vcc/2 。OTL电路的工作情况与OCL电路 完全相同。但是在用公式估算性能指标时,要用Vcc/2代替 。 2.选管原则:(同双电源互补对称功放)原公式中Vcc用Vcc/2替代。 3.带自举的单电源互补对称电路
• 1. 2. 3. 4. • • •
• • • • • • • • •
2.直流电源供给的功率 直流电源供给的功率是指一个周期内的平均功率。直流电源供给的功率,一 部分转换为负载所需的交流功率,还有一部分被功率管消耗。 3.转换效率 η=Po/Pv=3.14×Vom/(4Vcc) 在理想情况下,当Vom=Vcc时,效率为78.5%。 4.管耗 PT=PT1 +PT2=PV -Po=2(VCC·Vom/π-Vom·Vom/4)/RL 四、功率放大电路放大管三种工作状态 甲类、乙类、甲乙类

第5章 高频功率放大器

第5章 高频功率放大器
图3 ─ 31(a)是工作频率为50 MHz的晶体管谐振功 率放大电路, 它向50 Ω外接负载提供25 W功率, 功率 增益达7 dB。
L3
14~ 150pF L1
50 C1 C2 90~ 400 pF
V Lb
L2 Ec
+ 13.5 V
C332~ 250 pF
C342~
50 250 pF
(a)
50 5~ 30 pF
(3 ─ 30)
Le
=
0.1971(2.3Lg
4l d

0.75)
10−9
(3 ─ 31)
5.4 高频功率放大器的实际线路
5.5.1 直流馈电线路 直流馈电线路包括集电极和基极馈电线路。下面 结合集电极馈电线路和基极馈电线路说明Cb、 Lb的应 用方法。 图3 ─ 25是集电极馈电线路的两种形式: 串联馈电 线路和并联馈电线路。 图 3 ─ 25(b) 中晶体管、 电源、 谐振回路三者是并联连接的, 故称为并联馈电线路。
L1
C1
C2 5~ 33pF
C3 15 pF
C4
L3
V
R101 0
k C5
R2 110 k
L2 ED
C6 15 pF
5~ 33 pF
50
C8 C7 5~ 33 pF
EG (b)
图 3 ─ 31 (a) 50 MHz谐振功放电路;
(b) 175 MHz谐振功放电路
5.5 高频功放、功率合成与射频
模块放大器
R1
R2
(a)
(b)
(c)
图 3 ─ 27几种常见的LC (a) L型; (b) T型; (c) Π型
对于L —I型网络有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/25
6
谐振功率放大器的基本工作原理
1、原理电路
u ()

ibB V +
uce
ub
ube - -
ic -
uc CL

2020/10/25
VEBbB
VCECc
R
7
2020/10/25
vBE VBB Vbm cost
iC gc (vBE VBZ )
( t 2k ) C )

iC gc (VBB Vbm cost VBZ )
第5章 高频功率放大器
1、熟练掌握高频谐振功率放大器的工作原理、特性分 析 2、正确理解馈电电路和匹配网络在高频谐振功率放大 器中的应用 3、了解丙类倍频器的工作原理 4、了解传输线变压器的工作原理
2020/10/25
1
§5.1 概述
一、高频功率放大器的分类
2020/10/25
2
二、高频功率放大器与高频小信号放大器的比较
2020/10/25
16
输出特性的理想化
在高频功率放大器中,又常根据集电极电流是否进 入饱和区,将它的工作状态分为三种: 欠压工作状态:集电极电流最大点电流在直线1的右 方,交流输出电压较低; 过压工作状态:集电极电流最大点电流在直线1的左 方饱和区,交流输出电压较高; 临界工作状态:集电极电流最大点电流在直线1上。
Ik iC max k (C ) 波形分解系数
Ico
ic
m
ax
sin (1
cos cos )
ic maxa0 ( )
I
c1
ic
max
sin cos (1 cos )
ic maxa1( )
Icn
ic
m
ax
2
sin
n
n cos 2n sin (n2 1)(1 cos
c
cosn os )
当t C时,iC 0

VBB Vbm cosC VBZ 0
故得
cosC
VBZ VBB Vbm
iC gcVbm (cost cosC )
iC max gcVbm (1 cosC )

iC
iC max
cost cosC 1 cosC
周期性的余弦尖脉冲
8
用傅立叶级数展开得:
iC Ik cos kt IC0 Icm1 cos t Icm2 cos 2t k 0
2、低频功率放大器工作于甲类、甲乙类或乙类状态; 高频功率放大器则一般都工作于丙类。
2020/10/25
4
§5.2 谐振功率放大器的工作原理
一、获得高效率所需要的条件
P==直流电源供给的直流功率 PO=交流输出信号功率 PC=集电极耗散功率
P PO PC
c
PO P
PO PO PC
1)在给定的 P=时,降低PC,则 c 自然会提高。这样,晶体管的交流输出功率
直流电源VCC所供给的直流功率为
P VCC IC0
回路可吸取的基频功率为
PO
1 2
Vcm
I
cm1
Vc2m 2Rp
1 2
I
2
cm1
Rp
集电极耗散功率为
2020/10/25
PC P PO
11
放大器的集电极效率为:
C
PO P
1 2
Vcm
Icm1
VCC ICO
1 2
g1
(c
)
Vcm (集电极电压利用系数)
2020/10/25
14
2020/10/25
15
§5.3、晶体管谐振功率放大器的 折线近似分析法
一、晶体管特性曲线的理想化及其解析式
折线近似分析法,是将电子器件的特性曲线理想化,每 一条特性曲线用一条或几条直线(组成折线)来代替。可 以用简单的数学解析式来代表电子器件的特性曲线。 优点是简单,缺点是准确度较低。
VCC
g1(c )
I cm1 ICO
iiCCmmaaxx((10 cc))
(1 c)(波形系数) (0 c)
2020/10/25
12
2020/10/25
13
增大ξ和g1的值是提高效率的两个措施, 增大α1是增大 输出功率的措施。然而增大g1与增大α1是互相矛盾的。 导通角θ越小, g1越大, 效率越高, 但α1却越小, 输出功率 也就越小。所以要兼顾效率和输出功率两个方面, 选取合 适的导通角θ。若取θ=70°, 此时的集电极效率可达到 85.9%, 而θ=120°时的集电极效率仅为64%左右。因此, 一般以70°作为最佳导通角, 可以兼顾效率和输出功率两 个重要指标。
2020/10/25
3
三、高频功率放大器与低频功率放大器的区别
共同点是:输出功率大和效率高
不同点是: 1、低频功率放大器的工作频率低,20Hz~20kHz,相对 频带宽。因此都是采用无调谐负载,如电阻、变压器等; 高频功率放大器的工作频率高,几百kHz~几百MHz,相 对频带窄。因此,一般都采用选频网络作为负载回路。
1、前者放大的是大信号,后者放大的是小信号 2、前者为非线性电路(分析方法为折线分析法);后者为 线性电路(用y参数等效电路分析法) 3、前者通常工作于丙类状态,后者工作于甲类状态 4、质量指标不同:前者为输出功率大、效率高以及输出中 的谐波分量应尽量小,以免对其他频道产生干扰;后者有 增益、选择性、通频带、稳定性、噪声系数等。
ic maxan ( )
(n 1)
2020/10/25
9
2020/10/25
10
2、功率关系
由于负载调谐在基波上,所以输出端只有基波分量,并且
v o
1 cost
(Rp
p2
L ,R为电感的损耗电阻) CR
vC VCC Vcm cost
vBE VBB Vbm cost
PO就会增大。
2)维持晶体管的集电极耗散不超过规定值,提高集电极效率,将使交流输出功 率大为增加。
2020/10/25
5
如何减小集电极耗散?
集电极耗散的瞬时功率为:
pC iCvC
如果使iC只有在vC最低的时候才能通过,那么集电极耗散功率 自然会大为减小。iC需是脉冲状。 电流通角2C 180o 即工作在丙类状态
临界线方程可写为:
iC gcrvC
2020/10/25
17
二、高频功率放大器的动态特性与负载特性
高频功率放大器的工作状态取决于负载阻抗Rp和电压VCC、VBB、Vbm四个参数。
负载特性曲线:如果维持三个电压参数不变,此时各种电流、 输出电压、功率和效率等随Rp而变化的曲线。
动态特性曲线:在输出特性图中, 表示输出电压vC、vB与iC的关系曲线 又称为交流负载线。由于谐振功放的负载是选频网络, 故输出交流电压vc必 然是一个完整的余弦信号。由图可以看到, 截止区和饱和区内的动态线分 别和输出特性中截止线和临界饱和线重合(其中临界饱和线斜率为gcr), 而放 大区内的动态线是一条其延长线经过Q点的负斜率线段AB。
相关文档
最新文档