图像分割方法综述【文献综述】
医学图像分割方法综述

医学图像分割方法综述林瑶,田捷1北京,中国科学院自动化研究所人工智能实验室,100080摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。
本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。
关键词:医学图像分割 综述1.背景介绍医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。
随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。
图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。
分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。
所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。
定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...:g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。
(b) 是连通的区域。
g k (c) ,即任意两个子区域不存在公共元素。
(d) 区域满足一定的均一性条件。
均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。
g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。
在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。
图像分割文献综述

文献综述图像分割就是把图像分成各具特色的区域提取感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤,是一种基本的计算机视觉技术。
图像分割起源于电影行业。
伴随着近代科技的发展,图像分割在实际中得3到了广泛应用,如在工业自动化、在线产品检验、生产过程控制、文档图像处理、遥感和生物医学图像分析、以及军事、体育、农业工程等方面。
总之,只要是涉及对对象目标进行特征提取和测量,几乎都离不开图像分割。
所以,对图像分割的研究一直是图像工程中的重点和热点。
自图像分割的提出至今,已经提出了上千种各种类型的分割算法。
由于分割算法非常多,所以对它们的分类方法也不尽相同。
我们依据使用知识的特点与层次,将其分为基于数据和基于模型两大类。
前者是直接对当前图像的数据进行操作,虽然可以利用相关的先验信息,但是不依赖于知识;后者则是直接建立在先验知识的基础上,这类分割更符合当前图像分割的技术要点,也是当今图像分割的主流。
基于数据的图像分割算法多数为传统算法,常见的包括,基于边缘检测,基于区域以及边缘与区域相结合的分割方法等等。
这类分割方法具有以下缺点,○1易受噪声和伪边缘影响导致得到的边界不连续,需要用特定的方法进行连接;○2只能提取图像局部特征,缺乏有效约束机制,难以获得图像的全局信息;○3只利用图像的底层视觉特征,难以将图像的先验信息融合到高层的理解机制中。
这是因为传统的图像处理算法都是基于MIT人工智能实验室Marr提出的各层相互独立、严格由低到高的分层视觉框架下进行的。
由于各层之间不存在反馈,数据自底向上单向流动,高层的信息无法指导底层特征的提取,从而导致底层的误差不断积累,且无法修正。
基于模型的分割方法则可以克服以上缺陷。
基于模型的分割方法可以将分割目标的先验知识等有用信息融合到高层的理解机制之中,并通过对图像中的特定目标对象建模来完成分割任务。
这是一种自上而下的处理过程,可以将图像的底层视觉特征与高层信息有机结合起来,因此更接近人类的视觉处理。
医学图像分割方法综述

原理: 分裂合并的思想将图像先看成一个区域,然后区域不断被 分裂为四个矩形区域,直到每个区域内部都是相似的。研究重 点是分裂和合并规划的设计。
缺点: 分裂技术破坏区域边界。
example
• 在想要分割的部分选择一个或者多个种子 • 相邻像素就会以某种算法进行检测 • 将符合检测条件的像素加入到区域中 • 逐渐生长为满足约束条件的目标区域
途径: 先用基于区域的分裂合并方法分割图像,然后用边界信息对区 域间的轮廓进行优化;先在梯度幅值图像中检测屋脊点和波谷点, 通 过最大梯度路径连接奇异点获得初始图像分割,然后采用区域合并技 术获得最终结果等
其它分割方法
基于模糊理论:图像分割问题是典型的结构不良问题,而模糊集理论具 有描述不良问题的能力。基于模糊理论的图像分割方法包括模糊阈值 分割方法、模糊聚类分割方法和模糊连接度分割方法等。
优点:实现简单,对不同类灰度值或其他特征相差很大 时,能有效分 割。常做医学图像的预处理。
缺点: 不适应多通道和特征值相差不大的图像;对噪声和灰度不均匀 很敏感;阈值选取困难。
直方图
• 图像区域由灰度值区分开
基于阈值的图像分割
阈值:
选择灰度值作为阈值
g m in和g m a x
遍历整幅图像检测像素是否在此区域内
分类: 形变模型包括形变轮廓(deformable contour) 模型(又称 snake或active contour ),三维形变表面(deformable surface )模型。
形变轮廓模型: 使轮廓曲线在外能和内能的作用下向物体边 缘靠近,外力推动轮廓运动,而内力保持轮廓的光滑性。
基于阈值的图像分割
基于UNet结构改进的医学影像分割技术综述

2、UNet模型改进的技术原理和 实现方法
2.1增加网络深度
增加网络深度是提高UNet模型性能的一种有效方法。通过增加编码器和解码 器的层数,可以使得模型具有更强的特征提取能力和更细致的空间信息捕捉能力。 然而,增加网络深度也会带来计算量和参数量增加的问题。一些研究通过使用轻 量级的网络结构(如MobileNetV2、ShuffleNetV2等)来平衡网络深度和计算效 率。
然而,UNet结构仍存在一些问题和不足,需要进一步改进和完善。因此,本 次演示将综述基于UNet结构改进的医学影像分割技术,以期为相关研究提供参考 和借鉴。
文献综述
UNet结构是一种全卷积网络架构,最早由Jens Petersen等人提出,并广泛 应用于医学影像分割任务。UNet结构由编码器和解码器两部分组成,通过跳跃连 接的方式将编码器中的低级特征图传递给解码器中的相应位置,从而保留更多的 空间信息。然而,传统的UNet结构仍存在一些问题和不足,如上下采样过程中的 信息丢失、梯度消失等问题。针对这些问题,研究者们提出了许多改进方法。
总之,U-Net是医学图像分割领域的一种强大工具,其表现出的特性和性能 在许多医学图像处理任务中取得了显著的成功。尽管仍存在一些挑战,如鲁棒性 和资源限制问题,但随着新技术的不断发展,我们有理由相信这些问题会被逐步 解决。未来对于U-Net及其变体的进一步研究,将为医学图像分割提供更准确、 更有效的方法。
U-Net在医学图像分割任务中表现出极佳的性能。例如,在分割CT图像中的 肺组织、MRI图像中的脑组织、X光图像中的骨骼等任务中,U-Net都能够取得超 越传统图像处理算法的性能。同时,通过引入不同的改进策略,如残差连接、注 意力机制、多尺度特征融合等,可以进一步增强U-Net的性能。
图像分割综述

摘要图像分割是把图像划分为有意义的若干区域的图像处理技术,分割技术在辅助医学诊断及运动分析、结构分析等领域都有着重要的研究价值和广泛的应用发展前景。
在阅读大量文献的基础上,本文对图像分割技术的理论基础、发展历程及图像分割方法的热点、难点问题进行了分类综述,对不同分割算法优缺点进行了总结和归纳,并对图像分割的发展趋势进行了初步的展望和预测。
在此基础上,为了对图像分割理论有更直观的认识,本文选取并行边界算法和分水岭算法这两种方法,用MATLAB软件进行了基础的仿真,并对结果进行了分析和总结,本文重点对一些近年来新兴的算法,比如水平集(Level-set)算法、马尔科夫随机场算法(Markov)、模糊算法、遗传算法、数学形态学算法等进行了概略性的探讨,对这些新兴算法的特点、原理、研究动态进行了分析和总结。
关键词:图像分割;边界;区域;水平集;马尔科夫AbstractImage segmentation is an image processing technology that divides the image into a number of regions. Image segmentation has very important significance in supporting medical diagnosis, motion analysis, structural analysis and other fields.Based on recent research, a survey on the theory and development of image segmentation, hot and difficult issues in image segmentation is given in this article. And describes the characteristics of each method as well as their respective advantages and disadvantages in image segmentation .This article introduces and analyzes some basic imaging and image segmentation methods in theory and describes the development trends of medical image segmentation. To have a better understanding of image segmentation, I use MATLAB software to stimulate on images about the parallel edge algorithms and watershed algorithm. And the analysis of the segmentation results is given in the article.This article introduces and analyzes the new algorithms in recent years such as Level-set algorithm, Markov algorithm, Fuzzy algorithm, Genetic algorithm and Morphological algorithm. In this paper, the features, theory and research trends of these algorithms are analyzed and summarized.Keywords: Image segmentation; Border; Area;Level-set;Markov第1章引言1.1 图像分割的背景和重要作用图像是传达信息的一种方式,图像中含有大量的有用信息,理解图像并从图像中抽取信息以用来完成其他工作是数字图像技术中一个重要的应用领域,而理解图像的第一步就是图像的分割。
图像分割算法在医学图像中的应用综述

图像分割算法在医学图像中的应用综述
孙淑婷;刘铖枨;周广茵;韩锐;陈立超;羊月褀;许玥
【期刊名称】《现代仪器与医疗》
【年(卷),期】2024(30)2
【摘要】医学图像分割是计算机辅助诊断领域的一项关键技术,其主要任务是将特定的器官、组织或异常区域从图像中准确地识别出来。
但是医学图像的质量易受到其复杂纹理和成像设备限制(如噪声和边界不清晰)的影响,故传统的医学图像分割方法已难以满足现实临床需求。
随着深度学习技术的进步,基于这一领域的算法已经取得了显著的进展。
本文首先回顾了七种传统的医学图像分割策略,并重点介绍了两种当前主流的深度学习方法:全卷积神经网络和U-Net,最后文章探讨了目前深度学习技术所面临的挑战及其可能的解决策略。
【总页数】10页(P59-68)
【作者】孙淑婷;刘铖枨;周广茵;韩锐;陈立超;羊月褀;许玥
【作者单位】南京医科大学生物医学工程与信息学院;南京医科大学第一附属医院(江苏省人民医院)临床医学工程处
【正文语种】中文
【中图分类】TH77;R318
【相关文献】
1.医学图像分割处理中改进型PCNN模型的应用综述
2.基于群智能优化算法的医学图像分割综述
3.深度卷积神经网络方法在医学图像分割应用中的综述
4.图像分
割技术在医学图像处理中的应用综述5.U-Net及其变体在医学图像分割中的应用研究综述
因版权原因,仅展示原文概要,查看原文内容请购买。
图像分割技术研究综述

图像分割技术研究综述随着科技的快速发展,图像分割技术作为计算机视觉领域的重要分支,已经在众多应用领域中发挥着越来越重要的作用。
本文将对图像分割技术的研究进行综述,包括其发展历程、应用领域、研究成果以及未来研究方向。
图像分割技术是指将图像按照像素或区域进行划分,从而提取出感兴趣的目标或背景的过程。
图像分割技术在信号处理、计算机视觉、机器学习等领域具有重要的应用价值。
例如,在智能交通中,图像分割技术可以用于车辆检测和跟踪;在医学图像分析中,图像分割技术可以用于病灶区域提取和诊断。
根据图像分割技术所采用的方法,可以将其大致分为以下几类:基于阈值的分割、基于区域的分割、基于边缘的分割、基于模型的分割以及基于深度学习的分割。
1、基于阈值的分割是一种简单而又常用的图像分割方法,其基本原理是通过设定一个阈值,将图像的像素值进行分类,从而将图像分割为不同的区域。
基于阈值的分割方法实现简单、运算效率高,但在处理复杂图像时,往往难以选择合适的阈值,导致分割效果不理想。
2、基于区域的分割方法是根据图像像素的灰度或颜色特征,将图像分割为不同的区域。
这类方法通常适用于均匀背景和简单目标的图像,但对于复杂背景和遮挡情况的处理效果较差。
3、基于边缘的分割方法是通过检测图像中的边缘信息,将不同区域之间的边界提取出来,从而实现图像分割。
这类方法对噪声和光照变化较为敏感,需要结合其他方法进行优化。
4、基于模型的分割方法通常是利用数学模型对图像进行拟合,从而将图像中的目标或背景分离出来。
常用的模型包括参数化模型和非参数化模型两类。
这类方法能够处理复杂的图像特征,但对模型的选择和参数调整要求较高。
5、基于深度学习的分割方法是通过训练深度神经网络,实现对图像的自动分割。
这类方法具有强大的特征学习和自适应能力,能够处理各种复杂的图像特征,但在计算复杂度和训练成本方面较高。
近年来,随着人工智能和机器学习技术的快速发展,基于深度学习的图像分割技术在学术研究和实际应用中取得了显著的成果。
文献综述报告

文献综述报告目录1 前言 (1)2 主题 (1)2.1 卷积神经网络 (1)2.1.1 起源 (1)2.1.2 概念 (1)2.1.3 网络结构 (2)2.1.4 卷积特征提取 (2)2.1.5 池化 (3)2.2 图像分割 (4)3 总结 (7)参考文献 (7)1前言随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks, CVVs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。
使用深度学习算法训练的卷积神经网络模型自提出以来在计算机视觉领域的多个大规模识别任务上取得了令人瞩目的成绩。
本文首先简要介绍深度学习和卷积神经网络的兴起与发展,概述卷积神经网络的基本模型结构、卷积特征提取和池化操作。
然后综述了基于深度学习的卷积神经网络模型在图像分割应用领域中的研究现状和发展趋势,主要从典型的网络结构的构建、训练方法和性能表现3个方面进行介绍。
最后对目前研究中存在的一些问题进行简要的总结和讨论,并展望未来发展的新方向。
2主题2.1 卷积神经网络2.1.1 起源20世纪60年代初期,Hubel和Wiesel等通过对猫的大脑视觉皮层系统的研究,提出了感受野的概念,并进一步发现了视觉皮层通路中对于信息的分层处理机制,由此获得了诺贝尔生理学或医学奖。
到了80年代中期,Fukushima等基于感受野概念提出的神经认知机,可以看作是卷积神经网络(Convolution neural networks, CNNs)的第一次实现,也是第一个基于神经元之问的局部连接性和层次结构组织的人工神经网络。
神经认知机是将一个视觉模式分解成许多子模式,通过逐层阶梯式相连的特征平面对这些子模式特征进行处理,使得即使在目标对象产生微小畸变的情况卜,模型也具有很好的识别能力。
在此之后,研究人员开始尝试使用一种被称作多层感知器的人工神经网络(实际上是只含一层隐含层节点的浅层模型)来代替手工提取特征,并使用简单的随机梯度下降方法来训练该模型,于是进一步提出了用于计算误差梯度的反向传播算法,这一算法随后被证明十分有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。
活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。
鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。
最后指出了图像分割的算法还有一些进一步优化的研究发展方向。
关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。
图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。
水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。
一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。
2、整体性。
能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。
3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。
4、稳定性,算法受噪声的影响性很小。
5、自动化,分割过程不需要人工的干预。
但是让一种具体的图像分割方法全部满足上述特点是很难的,各种图像分割的方法都存在着必然的局限性,所以只能根据不同的适用领域和所要分割的图像区域特征来选择所对应的图像分割方法。
2.早期的图像分割方法早期的图像分割方法,根据方法所利用的图像特征,分为边界法和区域法两类[4]。
前者是根据区域间像素特征的突变性或不连续性实现;后者是通过架设分割结果的某子区域具有一定的相似性质,而不同区域的像素没有共同性质,即通过判断区域的相似性来进行的分割。
它们都存在着各自的优点和缺点,基于区域分割的方法,常见的有:阈值法[5],常用的并行区域分割技术,阈值是用于区分不同目标的灰度值,选择合适的阈值是该分割法的关键;区域生长法:从图像的某个像素出发,按一定的准则对领域像素点进行判断,将符合要求的像素点逐步加入,至满足一定条件时终止。
此方法计算简单,但需要人为的设置初始点,对噪声敏感;分裂合并法:从整个图像出发,不断分裂成各个子区域,按照一定条件对前景区域进行合并,该方法虽分割效果好,但算法复杂,计算量大,也有可能破坏区域的边界等。
基于边缘的分割算法可分为并行边缘检测和串行边缘检测两种[6],并行边缘检测是基于图像边缘处的灰度值不连续性,而利用微分算子进行检测,常用的有Roberts 算子,Prewitt 算子,Sobel 算子,Laplace 算子,Marr 算子,Krisch 算子等。
而串行边界分割不但利用了本身像素的信息,还利用了其他已处理的像素信息,常用的算法有边界跟踪。
在实际应用中,为了更好的分割效果,经常把各种的分割算法结合起来用,这也成为了图像分割的重点研究方向之一。
3.图像分割的发展3.1参数形式的活动轮廓模型(snake 模型)()()()()()()[]⎰⎰+==1010int snak e c E E ds s c E s c E ds s ext (2-1) 1987年,Kass 等人提出来参数活动轮廓模型(Snake 模型),(2-1)为Snake 模型的能量函数表示,将一系列的图像处理问题统一的转换为能量极小化的问题。
跟其他传统方法一样,传统的参数活动轮廓模型存在很多的局限性,由于模型是由演化曲线自身的内力和图像信息的外力构成的,由内力约束它的形状,外力引导它的行为,模型外力的作用范围小是很大的缺陷,而且,这个方法对轮廓的初始位置敏感,不能收敛到轮廓的凹陷区域及处理拓扑变化,计算复杂度也很高。
针对外力的缺陷,在后期的研究中产生了很多改进版的模型,Cohen 等人在模型外力中,为了使得模型轮廓在图像同质区域内能够稳定的进行收敛,增加了一项气球膨胀力。
Xv 等人提出的GVF(Gradient Vector Flow)模型和广义GVF (Generalized GVF )模型,这两个模型在扩大外力作用范围上有很大的帮助,同时也可以扩大收敛的凹陷区域。
Li 等人提出的VFC(Vector Field Convolution)模型在有上述作用的基础上,同时对图像噪声具有一定的鲁棒性[7]。
由于传统的参数轮廓模型采用的是变分法来极小化能量模型,而变分法需要较高阶次的求导和对能量函数连续的要求,导致数值计算的稳定性较差和一些约束性条件不能有效的运用。
Amini 等人提出的基于动态规划(Dynamic Programming ,DP )的优化算法可以去掉变分法的求导过程,但是计算复杂度是O (3nm ),Williams 和Shah 在此基础上提出了一种局部最优的贪婪优化算法(GreedyOptimization )在保持动态规划等优点的基础上,使得计算复杂降为O (nm )。
3.2水平集方法水平集(Level Set )函数以隐含的方式表达基于几何活动轮廓模型的轮廓曲线运动[8],最先是由Osher ,Sethian [9]提出,当时提出是用来求解描述火苗外形变化的偏微分方程。
水平集方法是将演化曲线()t s C ,嵌入到比它高一维的水平集函数()t y x ,,φ中,得到()()(){}0,,,,==t y x y x t s C φ。
传统的水平集函数定义如(2-2)所示,其中()()()t s ,C y x ,d ,表示坐标()y x ,到曲线C 的距离。
嵌入其中的曲线C 随着高维函数φ的变化而变化,所以当φ是被确定的时候,曲线C 一定是确定的。
()=t y x ,,φ()()()()()()()()()()()()⎪⎩⎪⎨⎧-t s C outside y x if t s C y x d t s C at y x if t s C inside y x if t s C y x d ,,,,,,,0,,,,, (2-2)水平集方法的优点如下: a.能较容易的实现低维向高维的扩展,能轻易的将二维平面演化问题扩展到三维闭合曲面上,有利于实现三维立体图像的分割。
b .演化曲线的几何特征可以用水平集函数()t y x ,,φ直接计算出来。
c .水平集函数()t y x ,,φ的零水平集可以自然的处理变拓扑结构。
d.只要速度函数F 保持为连续的光滑函数,水平集函数()t y x ,,φ就始终为可微函数,从而利用离散的有限差分法实现其数值近似算法。
3.3几何形式的活动轮廓模型几何活动轮廓模型是由Caselles 等人与Malladi 等人分别独立提出的首个水平集活动轮廓模型[10],基于曲线进化理论和水平集的思想,先将平面闭合曲线隐含的表达为二维曲面函数的水平集,再通过曲面的进化来隐含的求解曲线的进化,相对于Snake 模型,可以处理曲线的拓扑变化、对初值不敏感、具有稳定唯一的数值解。
最初的几何轮廓模型对于边缘不明显或不连续的图像处理效果不理想[11]。
Caselles 等人通过测地活动轮廓模型(geodesic active contour )解决这个问题,当轮廓曲线越过正确的物体边缘的时候对曲线修正,该模型采取了与原始Sanke 模型相似的设计模式,以间接的方式来设计轮廓线的演化方程。
测地活动轮廓模型关于演化曲线C 的能力泛函被定义为(2-3),其中g 表示图像的边缘指示函数。
()dp p C E ∂∂=⎰10G g C (2-3) 测地活动轮廓模型的水平集方程可以写为(2-4)φφφφφ∇⋅∇-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∇∇+∇=∂∂g div v g t 0 (2-4) Mumford 和Shah 于20世纪80年代提出一种模型[12],综合了图像的边界和区域信息,此模型利用同质区域的相似性原则来驱使活动轮廓向目标物体边界逼近,对模糊或不连续的边界的分割效果很好,因为此模型的轮廓线演化与边界的梯度无关。
Mumford-Shah 模型同时将图像分割、噪声去除和图像重建用一个广义能量泛函的最小值问题来描述。
4.未来的发展趋势讨论图像分割是一个很复杂的问题,需要不断的进一步的研究和改进问题,本文大概的罗列了一些图像分割的方法,阐述了方法的一些优缺点,在保持优点的基础上,如何去对缺点进行研究,使其克服,是很重要的任务。
在参数活动轮廓模型方面,可以在新的外力模型或者对现有模型改进来克服对初始值和噪声方面的问题。
计算量庞大的几何活动轮廓模型算法方面,可以研究如何简化计算,加快算法的收敛速度等等。
参考文献:[1]王志勇, 池哲儒, 余英林. 分形编码在图像检索中的应用[J]. 电子学报, 2000, 28(6): 19~23.[2]毛红达. 基于区域活动轮廓模型的图像分割[D]. 浙江: 浙江大学, 2008.[3]王大凯, 侯榆青, 彭进业. 图像处理的微分方程方法[M]. 北京: 科学出版社, 2008.[4]章毓晋. 图像工程(中册)[M]. 北京:清华大学出版社, 2005.[5]付峰, 应义斌. 生物图像阈值分割方法的研究[J]. 浙江大学报, 2003, 29(1): 108~112.[6]黄艺, 杜宇人. 基于边缘信息的图像分割技术研究[J]. 现代电子技术, 2005, 5: 116~20.[7]曹远星, 董宇宁. 蛇模型综述[J]. 信息技术, 2006, 3: 113~116.[8]X. Yang, D. J. Sorlovitz, L. T. Cheng, W. E. Level Set Simulations of Dislocation-Particle bypass Methanisms[J]. Acta Mater, 2004, 52: 1745-1760.[9]S. Osher, J. Sethian, Fronts propagation with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation[J]. Journal of Computational Physics, 1988, 79(1): 12~49.[10]Caselles V, Kimmed R, Sapiro G. Geodesic active contours[C]. Fifth InternationalConference on Computer Vision, 1995, 3: 694-699.[11]蒋晓悦, 赵荣樁. 一种改进的活动轮廓图像分割技术[J]. 中国图象图形学报, 2004, 9(9):1019~1024.[12]李俊, 杨新等. 基于Mumford-Shah模型的快速水平集图像分割方法[J]. 计算机学报,2002,25(11): 1175~1183.。