第七章回复与再结晶

合集下载

材料科学基础@七 回复与再结晶

材料科学基础@七 回复与再结晶
15
第二节 再结晶
再结晶:当变形金属被加热到较高温度时,由 于原子活动能力增大,晶粒的形状开始发生变 化,被拉长及破碎的晶粒通过重新生核、长大, 变成新的均匀、细小的等轴晶粒的过程。
再结晶的驱动力:弹性畸变能的降低
16
再结晶的形核和长大过程
17
再 结 晶 的 形 核 和 长 大 过 程
18
再结晶过程特点
二 再结晶动力学 (1)再结晶速度与温度的关系(热激活过程)
v再=Aexp(-QR/RT)
(2)规律 开始时再结晶速度很小,在体积分数为50%时 最大,然后减慢。
25
26
三 再结晶温度 1 再结晶与相变的区别 共同点:①形核-长大过程;
②都使组织形态发生了彻底改变; ③转变动力学也有固态相变特点。 区别: ①再结晶前后各晶粒的点阵结构类型和成分都 未变化。 ②再结晶温度不像结晶那样有确定的转变温度。
流线的应用:流线的分布形态与零件的几何外 形一致并在零件内部封闭。不在外部露头。
例如曲轴工作时最大应力与流线平行,冲击力 与流线平行,不易断裂。
58
59
3 形成带状组织 形成:两相合金变形或带状偏析被拉长。 影响:各向异性。 消除:避免在两相区变形、减少夹杂元素含量、 采用高温扩散退火或正火。
带状组织和纤维 组织有何异同
53
动态回复中的组织: (1)也发生多边化(类似静态回复),形成亚晶。 亚晶在稳定阶段保持等轴状态和恒定尺寸。 (2)动态回复过程中,变形晶粒不发生再结晶, 故仍呈纤维状
亚晶的尺寸受变形速率与变形温度的影响,变形速率 越小,变形温度越高,生成的亚晶尺寸也越大。
54
2 动态再结晶:在塑变过程中发生的再结晶。
62

第七章回复再结晶

第七章回复再结晶

注:再结晶退火温度一般比上述温度高100~200℃。
3.影响再结晶温度的因素
(1)金属冷加工变形度 变形度δ越大,驱动力越大,发生再结晶的温度越低,当变形度达 到一程度后, 趋于一个最低温度,称为最低再结晶温度,T再min。 经验表明:T再min≈0.4T熔点, (2)金属的纯度 金属中的杂质或合金元素,尤其是高熔点成分的存在,会阻碍原子 的扩散(位错的扩散),因此再结晶温度会提高。纯度越高,再结晶温 度越低。 如:纯铁T再min =450℃;碳钢T再min =500-650℃;合金钢T再min >650700℃ (3)加热速度和保温时间 a、提高加热速度,再结晶温度升高;加热速度太低,再结晶温度也会 升高。 b、延长保温时间,再结晶温度降低 综合上述因素,再结晶退火温度一般为: T再min +100-200℃
5.分散相粒子
当合金中溶质浓度超过其固溶度后,就会形成第二相,多数情 况下,这些第二相为硬脆的化合物,在冷变形过程中,一般不 考虑其变形,所以合金的再结晶也主要发生在基体上。 当第二相颗粒较粗时,变形时位错会绕过颗粒,并在颗粒周围 留下位错环,或塞积在颗粒附近,从而造成颗粒周围畸变严重, 促进再结晶,降低再结晶温度; 当第二相颗粒细小,分布均匀时,不会使位错发生明显聚集, 因此对再结晶形核作用不大,相反,其对再结晶晶核的长大过 程中的位错运动和晶界迁移起一种阻碍作用,因此使得再结晶 过程更加困难,提高再结晶温度。 间距和直径都较大时,提高畸变能,并可作为形核核心,促进 再结晶;直径和间距很小时,提高畸变能,但阻碍晶界迁移, 阻碍再结晶。
图 变形程度与再结晶温度的关系
3.微量溶质原子
阻碍位错和晶界的运动, 不利于再结晶。
图 合金元素对铁再结晶温度影响

材料科学基础第七章(1)

材料科学基础第七章(1)
• 7.1.2.3 内应力的变化:在回复阶段可部分消除,在再结晶阶段全部消除。
• 7.2 回复
• 7.2.1 回复过程中微观结构的变化机制:回复指冷变形金属加热时尚未发生 微米量级的组织变化前的微观结构及性能的变化过程,分低温回复,中温回 复和高温回复三种。
• 7.2.1.1 低温回复:冷变形金属在0.1Tm~0.3Tm温度范围内所产生回复称为低 温回复。低温时原子活动能量有限,主要局限于点缺陷运动。通过空位迁移 至晶界、位错或与间隙原子结合而消失,空位浓度显著下降。
• 冷变形金属开始发生再结晶的最低温度称为再结晶温度。可用金相法、硬度 法和X射线衍射法测定。
• 金相法:以显微镜观察到第一个新晶粒或晶界凸出形核而出现锯齿状边缘的 退火温度为再结晶温度。
• 硬度法:以硬度-退火温度曲线上硬度开始显著降低或软化50%的温度为再结 晶温度。
• 为了便于比较和使用,通常规定冷变形量大于70%的金属在1小时内能够完成 再结晶(体积分数>0.95)的最低温度为再结晶温度。
(7-3)
• 如果将同样的冷变形金属的性能在不同温度下回复到同样程度,则有:
• c0t1exp(-Q/RT1)= ln(x0/x)=c0t2exp(-Q/RT2)
• 即: t1/t2=exp[-Q(1/T2-1/T1)/R]
(7-4)
• 此式为用实验数据导出工艺参数的依据。
• 7.2.3 去应力退火:冷变形金属在回复阶段能消除大部分内应力,又能保持 冷变形的硬化效果,因此回复也称为去应力退火。
• 图7-11是经98%强冷轧的纯铜在不同温度下的等温 再结晶动力学曲线。等温下的再结晶速度开始很
小,随再结晶体积分数φV的增大而增加,并在 0.5处达到最大,然后又逐渐减小。具有典型的形

金属学与热处理第七章 金属及合金的回复与再结晶

金属学与热处理第七章 金属及合金的回复与再结晶
度后的硬度HV、电阻变化率ΔR/R、密度变化率Δρ/ρ和功率差ΔP
五、亚晶粒尺寸
在回复阶段的前期,亚晶粒尺寸变化不大,但在 后期,尤其在接近再结晶温度时,亚晶粒尺寸显著增 大。
第二节 回 复
一、退火温度和时间对回复过程的影响
回复是指冷塑性变形的金属在加热时,在光学 显微组织发生改变前(即在再结晶晶粒形成前)所 产生的某些亚结构和性能的变化过程。通常指冷塑 性变形金属在退火处理时,其组织和性能变化的早 期阶段。
回复机制
冷变形后,晶体中同号的刃型位错处在同一滑移 面时它们的应变能是相加的,可能导致晶格弯曲(见 图7-5a);而多边化后,上下相邻的两个同号刃型位 错之间的区域内,上面位错的拉应变场正好与下面位 错的压应变场相叠加,互相部分地抵消,从而降低了 系统的应变能(见图7-5b)。
图7-5 多边化前、后刃型位错的排列情况 a)多边化前 b)多边化后
回复机制
图7-6 刃型位错的攀移和 滑移示意图 图7-7 刃型位错攀移示意图
三、亚结构的变化
金属材料经多滑移变形后形成胞状亚结构,胞内位 错密度较低,胞壁处集中着缠结位错,位错密度很高。 在回复退火阶段,当用光学显微镜观察其显微组织时, 看不到有明显的变化。但当用电子显微镜观察时,则可 看到胞状亚结构发生了显著地变化。图7-8为纯铝多晶 体进行回复退火时亚结构变化的电镜照片。
第七章 金属及合金的回复与再结晶
第一节 形变金属与合金在退火过程 中的变化
第二节 回 复 第三节 再 结 晶 第四节 晶粒长大 第五节 金属的热加工
第一节 程
形变金属与合金在退火过
中的变化
一、显微组织的变化
将塑性变形后的金属材料加热到0.5Tm温度附近,
进行保温,随着时间的延长,金属的组织将发生一系 列的变化,这种变化可以分为三个阶段,如图7-1所示。

7.金属及合金的回复与再结晶

7.金属及合金的回复与再结晶

图 冷变形金属退火时某些性能的变化
第七 章金属及合金的回复与再结晶
硬度的变化 回复阶段的硬度变化很小,而再结晶阶段则 下降较多。
电阻率的变化 变形金属的电阻率在回复阶段巳表现明显 的下降趋势。
密度的变化 变形金属的密度在再结晶阶段发生急剧增高 的原因主要是再结晶阶段中位错密度显著降低所致。
内应力的变化 金属经塑性变形所产生的第一类内应力在 回复阶段基本得到消除,而第二、三类内应力只有通过再 结晶方可全部消除。
R m r m 0
1 R r 0 m 0
m : 冷变形后的屈服强度
:冷变形后经不同规程回火后的屈服强度
r
:纯铁充分退火后的屈服强度
0
R:屈服应力回复率
1 R:剩余加工硬化分数
第七 章金属及合金的回复与再结晶
图 同一变形度的Fe在不同 温度等温退火后的性能变化曲线
①回复过程在加热后立刻 开始,没有孕育期;
t0
回复 t1
再结晶
t2 晶粒长大 t3
冷变形金属组织随加热温度及时间的变化示意图
第七 章金属及合金的回复与再结晶
t2~t3为第Ⅲ阶段,称为晶粒长大:晶粒通过晶界 移动,发生长大,直至达到一种相对稳定的尺寸。 回复和再结晶的驱动力
储存能是变形金属加热时发生回复和再结晶的驱 动力。 储存能: 冷塑变形时,外力所做的功尚有一部分 储存在变形金属的内部,这部分能量叫储存能。
第七 章金属及合金的回复与再结晶
(2)中温回复 变形金属在中等温度下加热时所发生的 回复过程称为中温回复。此时因温度升高,原子活动能力 也增强,除点缺陷运动外,位错也被激活,在内应力作用 下位错可以在滑移面上滑移或交滑移,使异号位错相遇相 消,位错密度下降,位错缠结内部重新排列组合,使变形 亚晶规整化。

材料科学基础——回复再结晶

材料科学基础——回复再结晶

塑性变形对金属组织与性能的影响
4. 力学性能
强度、硬度↑ 塑性、韧性↓
加工硬化
利:提高材料强度 弊:增加变形抗力,不利于进一步加工
塑性变形对金属组织与性能的影响
5. 残余应力(remnant stress)
金属形变时,外力做功 的大部分以热的形式散 掉,只有一小部分 (10%-15%)以残余内 应力的方式储存在形变 金属中(储存能),它 随形变量加大而加大, 但占形变总功的分数却 随形变量加大而减小。
Tm(Tm为金属熔点),经过一定时间后, 就会有晶体缺陷密度大为降低的现象,新等 轴晶粒在冷变形的基体内形核长大,直到冷 变形晶粒完全耗尽为止。
0.6 mm
0.6 mm
33% cold worked brass
New crystals nucleate after 3 sec. at 580C.
a. 单个位错滑移、攀移,形成亚晶界。 b. 亚晶合并成Y结点。 c. Y结点移动,亚晶长大,完成多边形化。
多边形化
内容回顾
回复的不同阶段
形变形成位错缠结和胞状结构(如图a,b)→胞内位 错重排列和对消(如图c)→胞壁的峰锐化形成亚晶(如图 d)→亚晶长大(如图e)
低温回复( 0.1Tm < T<0.3Tm)
晶界是有利的再结晶形核 位置,原始晶粒小,再结 晶形核位置多,有利于再 结晶;但原始晶粒小,变 形较均匀,减少形核位置, 不利于再结晶。 总体是前者影响大于后者。 原始晶粒尺寸还可能影响 形变织构,从而影响再结 晶动力学。
亚晶合并机制 亚晶蚕食机制 晶界弓出机制
再结晶核心的长大
再结晶晶核一经形成,就开始自发地长大。 晶核在畸变能的作用下,背离其曲率中心, 向畸变能较高的变形晶粒推移,直到全部形 成无畸变(或畸变很少)的等轴晶粒为止。

第7章 回复、再结晶-1

第7章 回复、再结晶-1

界面移动方向



24
二、再结晶动力学
1、再结晶动力学曲线 看出: ¾ 有孕育期;与温度有关。 ¾ 再结晶速度先小,再快,再结晶体积分数约为50%时 速度最快,然后逐渐减慢。
纯铜(经98%冷轧)在不同温度下的再结晶动力学曲线
25
2、影响再结晶形核率与长大速率的因素 (1)变形程度 变形程度越大,储存能越高,形核率和长大速率大, 且N/G的比值增大。变形量对铝恒温再结晶影响如下图。 (2)杂质与微量溶质原子 当杂质与微量溶质原子以第二相存在时,阻碍位错运 动,储存能增高,形核率增大;晶界处富集的溶质原子 和杂质原子,阻碍晶界迁移,使长大速度降低。

10
2、中温回复(0.3<TH<0.5)

原子活动能力增大。 点缺陷继续运动消失。 位错通过滑移、交滑移运动使异号位错对消、位错重 新排列以及亚晶长大,进而使位错数量有所减少。 亚晶长大(亚晶规范化): 高层错能金属形变时产生胞状组织,在回复时,胞内 位错滑移到胞壁发生异号位错对消,使胞内无位错; 胞壁位错滑移、交滑移重新组合,从而排列整齐,胞 壁厚度减小。亚晶界清晰、明确,亚晶尺寸相对增大。 低层错能金属通过位错滑移排列成位错网络。
35
思考题:
1. 金属经冷塑性变形后,组织和性能发生什么变 化? 2. 用冷拔紫铜管通过冷弯的方法制造机器上的输 油管,为了避免开裂,弯前应进行什么热处 理?
36
14
¾

亚晶合并:通过两相邻亚晶的转动,使取向趋于一 致,亚晶界消失。形成大角度亚晶界的一种方式。 这种区域性的、大量的位错调整和消失,只有在高温 下进行。
15
二、回复动力学
回复动力学是研究某种性能回复的速度。

回复与再结晶

回复与再结晶

晶粒的正常长大(normal grain growth)
正常长大:再结晶后的晶粒均匀连续的长 大。 驱动力:界面能越大,曲率半径越小,驱 动力越大。(长大方向是指向曲率中心, 而再结晶晶核的长大方向相反。) 长大方式:大晶粒吞食小晶粒,大角度晶 界向曲率中心移动。
晶粒的正常长大
晶粒的稳定形状 晶界趋于平直; 二维晶粒:二维坐标中晶粒边数趋于6, 晶界夹角趋于120°; 三维晶粒:十四面体。
7.5 金属的热塑性变形
7.4.1 热、冷塑性变形的区别 (1) 热、冷塑性变形的区别 冷加工:在再结晶温度以下的变形加工。 加工硬化。 热加工:在再结晶温度以上的变形加工。 加工硬化、软化。 热加工温度:T再<T热加工<T固-100~200℃。
金属的冷加工
性能变化是单向的: 变形前 变形后
第7章 回复与再结晶
本章主要内容
冷塑性变形金属在加热时的转变 回复阶段 再结晶
金属的热塑性变形
回复与再结晶
7.1 冷塑性变形金属在加热时的转变
机械功(塑性变形) 热量(散失) 晶体内部缺陷储存能量→金属处于不稳 定的高能状态→有向低能转变的趋势
根据冷变形金属加热时组织和性能的变 化,可分为回复、再结晶和晶粒长大三 个阶段。
导致位错密度降低
7.2.2 回复机制
(3) 高温回复(>0.5Tm) 攀移:位错垂直于滑移面的移动。 机制:原子面下端原子的扩散,位错随半 原子面的上下移动而上下运动。 分类:正攀移(原子面上移、空位加入)、 负攀移(原子面下移、原子加入)。 攀移的作用:原滑移面上运动受阻—攀 移—新滑移面—滑移继续。
7.1.1 显微组织的变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化严重时下降。 (2)物理性能 密度:在回复阶段变化不大,在再结晶阶段急剧升高; 电阻:电阻在回复阶段可明显下降。
回复、再结晶及晶粒长大阶段中性能的变 化情况
7.2 回复
回复过程3阶段(储存能在回复阶段三个峰值所对应的) 约化温度:表征加热温度的高低,用绝对温标表示的加热温度与其熔点温度之比, TH =T/Tm。
错相遇相消,位错密度下降,位错缠结内部重新排列组合,使亚晶规整化。
(3)高温回复( TH >0.5Tm) 高温回复,原子活动能力进一步增强,位错除滑移外,还可攀移。主要机制是多边化。冷变形后由
于同号刃型位错在滑移面上塞积而导致点阵弯曲,在退火过程中通过刃型位错的攀移和滑移,使同号 刃型位错沿垂直于滑移面的方向排列成小角的亚晶界,这个过程称为多边化。其驱动力来自应变能的 下降。
位错及晶界处,对位错的运动及晶界的迁移起阻碍作用,因此不利于再结晶的形核与长大,阻碍再结 晶,使再结晶温度升高。 4.原始晶粒尺寸
其他条件相同情况下,晶粒越细,变形抗力越大,冷变形后存储能越多,再结晶温度越低。相同变 形度,晶粒越细,晶界总面积越大,可供形核场所较多,生核率也增大,再结晶速度加快。
5.分散相粒子 分散相粒子直径较大,离子间距较大的情况下,再结晶被促进;而小的粒子尺寸和小的粒子间距,
储存能的释放与性能变化
1 储存能:存在于冷变形金属内部的一小部分(~10%)变形功。
弹性应变能(3~12%) 2 存在形式 位错(80~90%)
点缺陷
3 储存能的释放:原子活动能力提高,迁移至平衡位置,储存能得以释放。
(1)力学性能 回复阶段:强度、硬度略有下降,塑性略有提高。 再结晶阶段:强度、硬度明显下降,塑性明显提高。 晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗
晶粒的异常长大
1 异常长大: 少数再结晶晶粒的急剧长大现象 (二次再结晶) 2 基本条件:正常晶粒长大过程被(第二分散相微粒、织构)强烈阻碍。 3 驱动力:界面能变化(不是重新形核) 4 原因:晶粒内部肯定存在大量的阻止晶粒长大的因素。
1)合金元素附集晶界,阻碍晶界迁移。 2)第二相粒子阻碍晶界运动。 3)薄板中的热蚀沟。
再结晶的形 核与长大过 程
再结晶的形核 形核机制:晶界弓出形核和亚晶形核。
(1)小变形量的弓出形核机制 小变形量时,各晶粒形变不均匀, 相邻晶粒的位错密度相差很大,变形小的晶粒向变形度大的亚晶
粒一侧弓出→形成无畸变晶核。
弓出形核机制示意图
(2)亚晶合并机制 当形变量比较大时,高层错能金属存在很多亚晶,易交滑移。
超塑性
超塑性:某些材料在特定变形条件下呈现的特别大的延伸率。 条件:晶粒细小、温度范围(0.5~0.65Tm)、应变速率小(1~0.01%/s)。 本质:多数观点认为是由晶界的滑动和晶粒的转动所致。 应用:复杂零件的精密成形;难于热变形材料的加工。
谢谢
23

回复机理 (1)低温回复(TH在0.1-0.3Tm)
低温回复主要涉及点缺陷的运动。空位或间隙原子移动到晶界或位错处消失,空位与间隙原子的 相遇复合,空位集结形成空位对或空位片,使点缺陷密度大大下降。主要发生电阻和应力回复。
(2)中温回复( TH在0.3-0.5Tm) 中温回复时,随温度升高,原子活动能力增强,位错可以在滑移面上滑移或交滑移,使异号位
1.概念:将变形金属加热到一个较低温度保温,以消除内应力,又称去 应力退火。
2.应用:回复退火主要用来除去内应力,冷变形后金属中存在的内应力 通常是有害的。
如:黄铜弹壳,为消除晶间应力腐蚀开裂,可用260℃退火去应力。
回复退火后,晶粒形状及σ ﹑ HV都无明显变化,只是内应力消除,电阻率下降。
7.3 再结晶--形核和长大过程 定义:冷变形金属加热到一定温度后,在变形基体中重新生成无畸变的新晶粒,性能恢复到原 来的软化状态,这一过程称为再结晶. 驱动力:变形金属经回复后未被释放的储存能(相当于变形总储能的90%)。
第七章回复与再结晶
1
回复,再结晶只是针对经过冷塑变的材料而言;
再结晶过程没有发生真正意义的相变,再结晶与重结晶完全不同;
动力--形变的储存能;
再结晶过程,其形变织构仍然存在
或保留原织构
或形成新的织构--退火织构
7.1 形变金属及合金在退火过程中的变化
显微组织的变化
将冷塑性变形的金属材料加热到0.5T熔温度附近,进行保温,随时间的延长。第一阶段显微组织无 变化,晶粒仍是冷变形后的纤维状,称为回复阶段。第二阶段完全变成新的等轴晶粒,称为再结晶 阶段。第三阶段称为晶粒长大阶段。
亚晶合并机制示意图 过程:
① 多边化。亚晶的“Y”过程 ② 相邻晶粒转动使小亚晶合并为大亚晶。 ③ 亚晶尺寸增大形成大角晶界。 ④ 大角晶界弓出形成再结晶核心。
(3)亚晶蚕食机制 一般变形量很大的低层错能金属扩展位错宽度大,不易束集,交滑移困难,位错密度很高。
过程:
亚晶蚕食机制示意图
① ρ很大的小区域位错攀移重分布,使位错运动到相邻晶粒,
低碳钢(0.06%.C)变形度及退火温度对再 结晶晶粒大小的影响
7.4 晶粒长大
长大方式:正常长大; 异常长大(二次再结晶).
正常长大
驱动力:长大,使总的界面能降低,是热力学自发过程。 驱动力表现为由晶界曲率产生的张力Ρ。
说明: ①晶粒长大的驱动力是晶界总能量的下降,具体表现为晶界曲率变化产生的力P; ②P总是与晶界能成正比,所以大角度晶界易于迁移,而小角度晶界不可能迁移; ③P总是正比于1/R,所以曲率增大,驱动力增大,平面的界面是不可能迁移的; ④P总是指向曲率中心的,所以晶界向曲率中心方向迁移。
多边化前后位错的排列情况 (a) 多边化前 (b)多边化后
刃型位错的滑移和攀移过程
回复动力学 研究回复动力学,可以了解冷变形金属在回复过程中的性能、回复程度与时间的关系,从而更好的控
制回复过程。
经拉伸变形的纯铁在不同温度下加热时,屈服强度的回复动力学 曲线
如何解释图中的现象?
回复退火——去应力退火
再结晶温度:通常是指金属经较大塑性变形后加热1小时,发生再结晶体积达95%所需的温度。一般 将发生5%再结晶时的温度称为开始再结晶温度。 纯金属:T再=(0.35~0.45)Tm
2.变形程度 变形程度越大,存储能也越多,再结晶驱动力也越大,因此再结晶温度也越低,同时再结晶速
度也越快。
3.微量溶质原子 微量的溶质原子的存在对再结晶有巨大的影响。溶质或杂质原子与位错,晶界有交互作用,偏聚在
7.5 金属的热变形 热变形或热加工指金属材料在再结晶温度以上的加工变形。热加工过程中,在金属内部同时进 行着加工硬化与回复再结晶软化两个相反过程。
动态回复 在塑变过程中发生的回复。主要发生在层错能高的金属材料的热变形过程中。
动态回复过程的热加工真应力—应变曲线: (1)形变开始时,位错密度增加,应力增加,产生硬化。 (2)变形到一定程度,位错密度达稳定状态。 (3)只发生动态回复的材料,热加工后仍保持长晶粒(但晶粒内部 存在等轴状亚晶—胞状亚结构) (4)将动态回复的材料热加工后快冷可使强化部分保留下来。
热加工后的组织与性能
(1)改善铸锭组织。气泡焊合、破碎碳化物、细化晶粒、降低偏析。提高强度、塑性、韧性。 (2)形成纤维组织(流线)。
组织:枝晶、偏析、夹杂物沿变形方向呈纤维状分布。 性能:各向异性。沿流线方向塑性和韧性提高明显。 (3)形成带状组织 形成:两相合金变形或带状偏析被拉长。 影响:各向异性。类似于流线组织。 消除:避免在两相区变形、减少夹杂元素含量、采用高温扩散退火或正火。
形成一个ρ低的小区域。
②ρ低的区域逐渐扩大,其与周围区域的位向角增大。
③当小区域扩大到一定体积,与周围晶粒之晶界变为大角晶界。
④大角晶界弓出形成核心。
三种形核机制都是大角度晶界的突然迁移,所不同的是获得大角度晶界的途径不同。
再结晶动力学 影响再结晶的因素
1.温度 加热温度越高,再结晶转变速度越快,完成再结晶所需的时间也越短。
晶粒的稳定形貌
影响晶粒长大的因素
(1)温度:温度越高,晶界易迁移,晶粒易粗化。但在某温度下,存在极限。 (2)第二相质点:阻碍晶界迁移,降低晶粒长大速率。一般有晶粒稳定尺寸d和第二相质点半径r、体 积分数的关系:
d=4r/3 (3)杂质与合金元素:“气团作”钉扎晶界,不利于晶界移动。 (4)相邻晶粒位向差:小角度晶界的界面能小于大角度晶界,因而前者的移动速率低于后者。
动态再结晶
在塑变过程中发生的再结晶。
主要发生在低层错能的材料,产生扩展位错,难以进行交滑移和攀移,有很大的储存能。 特点 反复形核,有限长大,晶粒较细。
包含亚晶粒,位错密度较高,强度硬度高。 应用:采用低的变形终止温度、大的最终变形量、快的冷却速度可
获得细小晶粒。
动态再结晶的真应力—应变曲线 ① 热加工后为等轴晶,强度较高,晶粒细。 ② 停止加工后发生静态再结晶,晶粒粗一个等 级,这是造成混晶的重要作用。
再结晶被阻碍。 原因?
再结晶后晶粒大小 (1)变形度的影响
①不能相变细化的金属,可以再结晶细化。 ②避免临界变形度 (2)退火温度 提高退火温度,不仅使再结晶的晶粒长大,而且使临界变形度小,临界变形度越小,再结晶后的 晶粒也越粗大。
回复退火:去应力(1,2类)退火,电阻率降; 再结晶退火:除织构外,所有性能都恢复。
相关文档
最新文档