查询表法模糊控制器实验报告

合集下载

查询表法模糊控制器实验报告

查询表法模糊控制器实验报告

查询表式模糊逻辑控制器设计实验报告
一、 实验目的
利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法的基本原理及实现过程,并找出参数Ke ,Kec ,和Ku 对模糊控制器性能影响的规律。

二、 实验要求 设计一个二维模糊控制器分别控制一一个一阶被控对象1
1)(11+=s T s G 。

先用模糊控制器进行控制,然后改变控制对象参数的大小,观察模糊控制的鲁棒性,找出参数Ke ,Kec ,和Ku 对模糊控制器性能影响的规律。

三、 实验步骤
叙述查询表式模糊控制系统仿真主要步骤。

四、实验内容
(一)查询表式模糊控制系统仿真实验
1、一阶对象1
1)(11+=s T s G 采用查询表式方法进行仿真实验,自己选定Ke ,Ku ,Kec 的值,按下表中给出的数值调整被控对象参数并观察输出响应曲线,观察模糊控制器对被控对象参数变化的适应性。

(其中T1称为被控对象参数,Ke ,Ku ,Kec 称为控制器参数)
2变其中的一个控制参数通过仿真实验观察它们各自对控制性能的影响。

将实验结果填入下表。

(1)Ke = Ku =
(二)实验讨论
1、通过对模糊控制器参数的设置及调整所获得的控制性能,得出关于控制
器参数对其性能影响的基本规律。

]
1、改变被控对象的参数,考察模糊控制器对被控对象参数变化的适应性,
并得出结论。

《智能控制》-模糊控制实验报告

《智能控制》-模糊控制实验报告

课程名称:智能控制实验名称:模糊控制一、实验目的:(1)了解在Simulink 仿真环境下建立控制系统方框图的方法,熟悉Matlab 和Simulink 仿真环境(2)掌握模糊控制器的设计方法。

(3)比较PID 控制和模糊控制的特点。

二、实验内容和步骤 已知s e s s s G 2.0214820)(-++=,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。

结构如下图。

(1)模糊控制规则设计针对该定位系统,设计二维模糊控制规则,使性能达到最佳。

模糊控制规则如下:(2)设计未加PID或FUZZY控制器时,设计系统如下:输入阶跃信号,观测与分析仿真结果。

(3)加入PID控制器如下:对应的仿真结构图为:调整参数,观测与分析仿真结果。

PID控制的仿真曲线如下:(4)设计FUZZY控制器在simulink仿真环境下,设计模糊控制系统,包括模糊控制规则、隶属函数、比例因子、量化因子、论域等参数设计。

FUZZY控制仿真结构图如下:其中黄色部分具体为:利用simulink设计的模糊控制的仿真结构图为:其中对于模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E的隶属函数EC的隶属函数U的隶属函数再将其中一个学生的比较好的实验结果作为参考实例:首先仿真图如下:模糊控制器的设计:E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:E和EC的隶属函数U的隶属函数控制规则:ECNB NM NS ZE PS PM PB ENB PB PB PB PB PM ZE ZENM PB PB PB PB PM ZE ZENS PM PM PM PM ZE NS NSZE PM PM PS ZE NS NM NMPS PS PS ZE NM NM NM NMPM ZE ZE NM NB NB NB NBPB ZE ZE NM NB NB NB NB设计好模糊控制器后,运行仿真图形,得到的仿真曲线如下(step time=1):模糊控制的仿真曲线由仿真可知,通过选择合适的PID参数可以达到较好的控制性能。

模糊控制实验报告

模糊控制实验报告

模糊控制实验报告本实验通过使用模糊控制器来控制直流电机的转速。

模糊控制是一种基于模糊推理的控制方法,该方法可以处理一些无法准确数学建模的系统控制。

模糊控制的输入和输出都是模糊变量,这样可以考虑到系统存在的不确定性和模糊性。

实验装置包括模糊控制器、直流电机、转速测量装置、实验板等。

模糊控制器由模糊推理机、偏差和变化率输入模糊化模块、输出反模糊化模块、规则库组成。

实验板可通过控制开关选择转速和方向。

在实验中,通过设置转速值和方向,记录电机的真实转速和输出控制信号,来验证模糊控制器的控制效果。

通过不同的控制变量和规则库来对比不同的控制方案。

实验结果表明,模糊控制器对于直流电机转速的控制具有较好的效果。

当控制变量为偏差和变化率时,规则库中的设定合理,输出控制信号的变化平稳,电机转速较为稳定。

当增加控制变量或修改规则库时,控制效果也发生了变化。

同时,实验还验证了模糊控制的重要性和优越性,可以解决一些无法准确建模的系统控制问题。

在实验中,还需要注意一些实验细节,例如校准直流电机转速传感器的准确度,保证实验板电路的正常工作和实验数据的准确性,减少误差的影响。

总之,本实验通过实际操作验证了模糊控制器在直流电机转速控制中的应用,对于学习模糊控制的控制方法和实验操作具有很好的参考意义。

同时,本实验也展示了模糊控制对于处理模糊问题的效果。

在直流电机转速控制中,存在许多因素的影响导致控制过程不确定和模糊,例如负载的变化、外部干扰的存在等等。

而模糊控制可以将这些不确定因素转化为模糊变量进行处理,从而提高控制精度和鲁棒性。

此外,本实验也强调了规则库的重要性。

规则库是模糊控制中很关键的一部分,其中包含了专家经验和数学模型的映射关系。

规则库中的设定需要充分考虑被控对象的特性,才能够保证模糊控制器的控制效果。

而实验中不同的规则库设计对于控制效果的影响也展现了模糊控制的灵活性和可定制性。

最后,本实验的数据记录和实验结果分析也为后续工程实际应用提供了很好的参考。

模糊控制实验

模糊控制实验

中南大学模糊控制课程实验报告学生姓名:彭雄威指导教师:袁艳学院:信息科学与工程学院学号:114611167实验一:本系统设计基于MATLAB图形模糊推理系统,设计步骤如下:打开MATLAB,输入指令fuzzy,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Mamdani模糊推理系统。

(1)增加一个输入变量,将输入变量命名为E、Ec,将输出变量命名U。

这样就建立了一个两输入单输出的模糊推理系统。

如图1.1所示。

图1.1增加一个输入变量(2) 设计模糊化模块:设计隶属度函数论域范围图3.2设计水位误差E模块3.3设计水位误差Ec模块图3.4设计水位输出U模块(4)模糊控制器的规则设计(5)通过观察器观察规则情况在菜单view中的rules和surface选项分别对应得是规则观测器和曲面观测器。

图 3.7 规则观测器图 3.6 曲面观测器 (6) 保存编辑好的FIS文件实验二:利用MATLAB软件的M文件编辑器和实验一所生成的fuzzf.FIS文件,在M 文件编辑器中输入:a=readfis('fuzzf');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)便可得fuzzf.FIS文件的模糊控制查询表,其中的数据在水位误差E的论域为[-1 1],误差变化Ec的论域为[-0.1 0.1]内可以任意取值。

a=readfis(' fuzzf ')a =name: ' fuzzf 'type: 'mamdani'andMethod: 'min'orMethod: 'max'defuzzMethod: 'centroid'impMethod: 'min'aggMethod: 'max'input: [1x2 struct]output: [1x1 struct]rule: [1x5 struct]a=readfis(' fuzzf ');evalfis([-0.5,-0.07;-0.5,0;-0.5,0.07; 0, -0.07;0,0;0,0.07;0.5,-0.07;0.5,0;0.5,0.07],a)ans =-0.2000-0.4444-0.46670.1363-0.0014-0.22710.40000.44120.1333实验三利用MATLAB软件的M文件编辑器(也可选择C语言)完成模糊控制查询表的计算。

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告

模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。

二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。

通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。

三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。

2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。

(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。

3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。

4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。

四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。

五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。

模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。

模糊控制器汇总

模糊控制器汇总

实验二模糊控制实验实验目的matlab中的模糊工具箱的使用及模糊控制器的应用1)用fuzzy工具箱计算P82 2-14,要求求出控制器输出。

2)用FUZZY工具箱完成洗衣机模糊控制器设计要求求出控制器输出。

完成模糊控制决策表。

一、用fuzzy工具箱计算P82 2-14,并与手算结果对比。

实验结果如图1-1所示,图1-1题目2-14的实验结果二、用FUZZY工具箱完成洗衣机模糊控制器设计。

(1)题目分析:洗衣时间长短实际与衣物的脏污程度有关,太脏了就洗久点,不脏就可以洗快点。

人类的操作经验是由模糊的自然语言描述的,在洗衣机的调节中,人类的操作经验是:(1)“如果污泥越多,且油脂越多,洗涤时间就越长;”(2)“如果污泥适中,且油脂适中,洗涤时间就适中;”(3)“如果污泥越少,且油脂越少,洗涤时间就越短;”通过分析可以知道这实际是一个开环的控制决策过程:输入是污泥度x与油污度y,输出是洗涤时间z。

在该规则中对这些量进行衡量的是一些模糊词语,“多”、“少”、“长”、“短”。

(2)定义输入、输出模糊集将污泥x 分为3个模糊集:{SD (污泥少),MD (污泥中),LD (污泥多)} 论域:{0,50,100}将油脂分为3个模糊集:{NG (油脂少),MG (油脂中),LG (油脂多)} 论域:{0,50,100} 输出模糊集:将洗涤时间分为5个模糊集:{VS (很短),S (短),M (中等),L (长),VL (很长)}。

论域:{0,10,25,40,60} 单位s 例如:(3)建立模糊控制器求:假设当前传感器测得信息为:x0(污泥)=90,y0(油脂)=90 观察控制器的输出。

(4)建立控制决策表 x0=10,20,30,40,50,60,70,80,90,y0=10,20,30,40,50,60,70,80,90,分别取值时,控制器的输出。

(5)改变输入输出变量的模糊值、隶属度函数的曲线、解模糊的方法等,观察控制器三维图以及控制器输出, Maltlab 提供5种反模糊化方法:1.centroid :面积重心法;2.bisector :面积等分法;3.mom :最大隶属度平均法;4.som :最大隶属度取小法;5.lom :最大隶属度取大法 三、按照上述要求完成洗衣机模糊控制器设计。

模糊控制实验报告

模糊控制实验报告

模糊控制系统实验报告学院:班级::学号:、实验目的1.通过本次实验,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。

2.提高有关控制系统的程序设计能力;3.熟悉Matlab语言以及在智能控制设计中的应用。

二、实验内容设计一个采用模糊控制的加热炉温度控制系统。

被控对象为一热处理工艺制作中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0-5V,输出相电压为0-220V,输出最大功率180kW炉内变化室温~625C。

三、实验过程及步骤1.用Matlab中的Simulink工具箱,组成一个模糊控制系统,如图所示2.采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线(1)模糊集合及论域的定义对误差E、误差变化EC机控制量U的模糊集合及其论域定义如下: E、EC和U的模糊集合均为:{NB、NM NS 0、PS PM PB}E和EC的显示范围为:[-6 6]结果如下图所示FIS Editor: UntitledFile Edit Viev;FIS VariablesEMECin put variable "E"Current VariableNameTypeRangeDisplay RangeEinput[-6 6]Help Close Select etl variable "E"File Edit Viev^Current VariableNsrueTypeRangeDitsptey RangeSelected variable 'U"打开Rule编辑器,并将49条控制规则输入到Rule编辑器中FIS VariablesLIoutput06】[-6 6]Rule Editor: UntitledECouiput variable "U1利用编辑器的” View T Rules”和” View^Surface ”得到模糊推理系统的模糊规则和输入输出特性曲面,分别如下图所示Fil e Edit Viev; OptionsFile Edit Viev^ OptionsRule Viewer Untitled忻珅:[□ g]Plot points: 101left down up ReadySurface Viewer: UntitledE "U = 1.a3e-D0&Move:Help Close口从图中可以看出,输出变量U 是关于两个输入变量E 、EC 的非线性函 数,输入输出特性曲面越平缓、光滑,系统的性能越好。

模糊控制报告

模糊控制报告

目录1 课程设计的目的和意义 (2)1.1 课题简介 (2)1.2 设计任务 (2)1.3 课程设计的目的 (2)1.4 课程设计的步骤 (2)2 系统方案设计 (4)2.1 系统功能 (4)2.2 系统组成 (4)2.3 设计方案的选择 (4)3 系统硬件设计 (6)3.1 最小系统的设计 (6)3.1.1 时钟电路硬件设计 (6)3.1.2 复位电路硬件设计 (6)3.2 测温电路 (7)3.2.1 DS18B20的主要性能和管脚说明 (7)3.2.2 DS18B20的内部结构及工作原理 (8)2.3.3 DS18B20与STC89C52的接口电路 (11)3.2 键盘/显示电路硬件设计 (12)3.2.1 键盘电路硬件设计 (12)3.2.2 显示电路硬件设计 (12)3.3 控制空调电路 (13)3.4 报警电路图 (14)4 系统主程序设计 (15)4.1系统主程序流程图 (15)谢辞 (28)参考文献 (29)附录 (31)附录一系统总体电路图 (31)1 课程设计的目的和意义1.1 课题简介本学期我们学习了单片机原理与应用,模糊控制这两学科,在理论课结束之际我们对智能控制进行了课程设计,以便于我们更进一步深刻地理解和掌握单片机原理与模糊控制。

此次我们选择的课题是室内温度检测及模糊控制系统。

1.2 设计任务(1)控制系统的总体方案设计,画出整个系统的原理框图。

(2)系统硬件电路的设计:包括传感器的选择,控制电路的设计,键盘与显示电路的设计,报警电路的设计,看门狗设计及存储器、定时器等接口电路的设计等。

(3)模糊控制推理过程阐述。

(4)利用GUI建立FIS,得到输出曲面。

1.3 课程设计的目的课程设计的目的是:培养学生综合运用模糊控制技术所学的基本理论、基本知识,分析与解决实际问题的能力。

通过课程设计,使学生基本具备以下五个方面的能力:1、检索中外文献的能力;2、独立思考,对方案进行论证、分析与比较的能力;3、初步掌握模糊控制系统的设计原则、设计方法、设计的主要内容及相关程序的编写的能力;4、使用计算机的能力、计算与绘图的能力;5、撰写设计说明书,表述研究结果及答辩的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

查询表式模糊逻辑控制器设计实验报告
一、 实验目的
利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法的基本原理及实现过程,并找出参数Ke ,Kec ,和Ku 对模糊控制器性能影响的规律。

二、 实验要求 设计一个二维模糊控制器分别控制一一个一阶被控对象1
1)(11+=s T s G 。

先用模糊控制器进行控制,然后改变控制对象参数的大小,观察模糊控制的鲁棒性,找出参数Ke ,Kec ,和Ku 对模糊控制器性能影响的规律。

三、 实验步骤
叙述查询表式模糊控制系统仿真主要步骤。

四、实验内容
(一)查询表式模糊控制系统仿真实验
1、一阶对象1
1)(11+=s T s G 采用查询表式方法进行仿真实验,自己选定Ke ,Ku ,Kec 的值,按下表中给出的数值调整被控对象参数并观察输出响应曲线,观察模糊控制器对被控对象参数变化的适应性。

(其中T1称为被控对象参数,Ke ,Ku ,Kec 称为控制器参数)
2变其中的一个控制参数通过仿真实验观察它们各自对控制性能的影响。

将实验结果填入下表。

(1)Ke = Ku =
(二)实验讨论
1、通过对模糊控制器参数的设置及调整所获得的控制性能,得出关于控制
器参数对其性能影响的基本规律。

]
1、改变被控对象的参数,考察模糊控制器对被控对象参数变化的适应性,
并得出结论。

相关文档
最新文档