层次分析法的应用实例汇总
层次分析法的应用实例

层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。
通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。
下面将介绍几个AHP方法的应用实例。
1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。
通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。
然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。
2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。
通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。
3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。
通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。
然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。
4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。
通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。
5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。
通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。
然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。
综上所述,层次分析法在多准则决策问题的应用非常广泛。
通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。
这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。
层次分析法应用实例

层次分析法应用实例选择一个合适的餐馆一、 问题描述:古人云:民以食为天,在大学生活中,我们经常在假日跟几个好友一起去外 面吃饭,可是学校外面的餐馆各式各样,五花八门,选择一个好吃价格又合适的 餐馆也是十分令人困扰的。
(一) 目标选择一个合适的餐馆 (二) 准则选择餐馆的标准大体可以分成四个:地理位置、环境、味道、人均价格。
方案:美特家(海甸岛店)、印象三宝、滋味天下。
(在文中依次用A 、B 、C 表示)二、 解决步骤(一)层次结构图此结构图中分为三个层次:目标层、标准层和决策方案图 (二)设置标度人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强 重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值, 这样就得到9个数值,即9个标度,为了便于将比较判断定量化,引入 1〜9比 率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8 表示上述两判断级之间的折中值。
目标层 标准层决策层(四)求各因素权重的过程下面我们用两两比较矩阵来求出A、B、C在地理位置的得分第一步,先求出两两比较矩阵每一列的第二步,把两两比较矩阵的每一元素除以其相应列的总和,所得商组成的新的矩阵称之为标准两两比总和:1.000第四步,我们将求出的餐馆A,B,C三个方案在地理位置,环境,味道,价格四个方面的得分(权重),即这四个方面的特征向量如表第五步,我们还必须取得每个标准在总目标满意的餐馆里相对重要的程度,即要取得每个标准相对的权重,即标准的特征向量。
我们就需要把这四个标准两两比较,得到两两比较矩阵如表通过这个两两比较矩阵,我们同样地可求出标准的特征向量如表即味道相对权重为0.421,地理位置的相对权重为0.198,环境的相对权重为0.081,人均价格的相对权重为0.279.三、两两比较矩阵的一致性检验第一步,由被检验的两两比较矩阵乘以其特征向量,所得的向量称之为赋权和向量,即广1 1/7 1/2( 6.103 '「0.30*7 1 3 X0.681 = 2.052 1/3 1 0.216 0.649第二步,每个赋权和向量的分量分别除以对应的特征向量的分量,即第i个赋权和向量的分量除以第i个特征向量的分量,如下:0.308/0.103=2.9902.05/0.681=3.0100.649/0.216=3.005第三步,计算出第二步结果中的平均值,记为入max入max =(2.99+3.010+3.005) - 3=3.002第四步,计算一致性指标CI:CI=(入max-n)/(n-1)=(3.002-3) - 2=0.001第五步,计算出一致性率CR:CR=CI/RI=0.001 - 0.58=0.002 三0.1一致性规定当CR^ 0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。
层次分析法经典案例

层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。
本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。
一、案例背景某企业计划购买新设备,以提升生产效率和质量。
然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。
为了解决这一问题,业主决定应用层次分析法进行设备选择。
二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。
1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。
在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。
目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。
2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。
通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。
比如,在准则层中,设备性能指标对设备价格的重要性为6。
3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。
通过对判断矩阵进行归一化处理,可获得各因素的权重。
权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。
例如,计算准则层中各因素的权重向量。
4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。
通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。
若一致性比率超过一定阈值,需要检查和修正判断矩阵。
5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。
根据排序结果,我们可以选择最合适的备选方案。
经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地
景
费
居
饮
旅
色
用
住
食
途
苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1
层次分析法及其案例分析

2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。
层次分析法经典案例

层次分析法经典案例层次分析法是一种比较常见且实用的决策分析方法,通过对待比较的各种方案的因素逐一分析,将其组织成一种层次结构,然后再运用数学方法对其进行计算,得出最终的结果。
经典案例有很多,比如金融领域、生产制造等许多行业都可以应用到层次分析法,下面我来介绍一下层次分析法在一个工厂的生产制造中的应用案例。
某工厂是一家生产钢管的制造厂,该工厂本着“质量第一、信誉第一”的原则,一直都很重视生产制造中的质量管控。
但是,由于市场竞争日益激烈,不断有新的小厂涌现,压力越来越大,所以该工厂决定对生产制造中的质量问题进行深入分析,并采用层次分析法,制定出更加合理的质量管控方案。
该工厂首先将生产制造中的质量管控分成了几个层次,分别是管理层次、生产层次、产品层次和客户需求层次,当然,每个层次下面还有自己的一些小要素,如管理层次下面就包括质量文化、质量指数等等,生产层次下面包括人员培训、设备状态等等,小要素比较复杂,不做过多介绍。
接下来是层次分析法的重头戏,对每个小要素的影响程度进行量化,以及对不同小要素之间的相关性进行评估,这是做好层次分析法的关键,必须要准确评估,否则得出的结果很可能会偏差较大。
为了保证量化的准确性,该工厂引入了专家协助,共同制定出适合该企业的一套量化标准。
原本需要量化的小要素有50个,经过专家评估和筛选,最终选出了20个,其余30个小要素的影响程度与剩下的20个小要素的相关性贡献较小,因此不被列入对比。
在对20个小要素进行量化之后,该工厂得出了各小要素的权重值,这个权重值表示每个小要素对于决策结果的影响程度,根据这些权重值,可确定各个小要素的重要性,从而制定出更加合理的质量管控方案。
经分析,该工厂管控方案的优先级排序如下:1.产品质量:该项权重值为0.408,被认为是影响质量管理的最重要因素,因为一个工厂的根本目的就是要生产出高质量的产品,切实提高其竞争力。
2.生产管理与控制:该项权重值为0.325,生产管理是确保产品质量的基础,虽然位于产品质量之下,但同样很重要。
层次分析法案例

层次分析法案例
假设有一家公司需要决定是否要在某个城市建立新工厂。
使用层次分析法进行决策,以下是具体步骤:
1. 制定层次结构模型
层次结构模型需要包括目标层、标准层和方案层。
在本案例中,目标是建立新工厂,标准层包括:成本、政策、市场和人力资源,方案层包括两个备选城市A和城市B。
2. 确定判断矩阵
判断矩阵是评估各个因素之间相对重要性的矩阵。
在本案例中,假设公司决策者认为成本对于建立新工厂最为重要,因此将其赋予1的权重,然后比较其他标准层的相对重要性,进而得到所有标准层的判断矩阵。
3. 计算权重向量
通过对判断矩阵求特征值和特征向量,然后计算出每个标准层的权重向量。
4. 计算一致性比率
计算每个判断矩阵的一致性比率,以确保决策者的判断合理可靠。
如果一致性比率超过一定阈值,则需要重新调整判断矩阵,直到达到一定的一致性。
5. 计算得分
将权重向量和备选方案的属性值相乘,得到每个备选方案的得分。
根据得分进行排序,如果得分最高的是城市A,则说明公司应该在城市A建立新工厂。
通过上述步骤,公司可以使用层次分析法来做出更为客观科学的决策。
层次分析法实例范文

层次分析法实例范文下面我将以一个实例来说明层次分析法的应用。
假设你是一家公司的项目经理,需要在三个设计方案中选择一个最适合的方案。
你希望通过层次分析法来评估并选择最佳方案。
首先,你需要确定准则层。
准则层是评估和比较设计方案的标准。
在本实例中,准则层可以包括三个因素:成本、技术易用性和效果。
其次,你需要对每个准则进行两两比较。
你需要确定哪个准则对你更重要,换句话说,你需要对准则之间的重要性进行评估。
你可以使用一个1到9的尺度来进行评估,其中1表示相对重要性相同,9表示相对重要性非常不同。
在这个例子中,假设你认为成本对你更重要,因此可以给成本的评估为9,而技术易用性和效果的评估都为5接下来,你需要对每个准则的子准则进行两两比较。
对于成本来说,可能的子准则可以包括材料成本、人力成本和设备成本。
你需要评估这些子准则之间的重要性,同样使用1到9的尺度进行评估。
假设你认为人力成本对成本的影响最大,你可以给予人力成本的评估为9、材料成本和设备成本则分别给出评估5和3对于技术易用性和效果这两个准则,你需要进行类似的比较和评估。
比如,你可能认为技术易用性中的用户友好性对你最重要,效果中的创新性最重要。
完成这些比较和评估后,你需要计算总体权重。
通过层次分析法计算权重的方法是对准则之间的比较矩阵进行归一化处理,即计算每列的平均值,然后将每个条目除以其所在列的平均值。
最后,求每行的平均值得到每个准则的权重。
例如,对于成本准则,对应的比较矩阵为:1591/5131/91/31计算每列的平均值为:1/35/95/3然后将每个条目除以其所在列的平均值,得到:15/93/53/511/35/33/11最后,求每行的平均值得到每个准则的权重:0.48780.25920.2529重复这个过程,你可以得到技术易用性和效果的权重。
最后,你可以将每个设计方案在每个准则上进行评估。
同样使用1到9的尺度进行评估,并对每个准则乘以其对应的权重得到总体分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 层次分析法的应用实例
设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。
此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。
例 过河的代价与效益分析。
(a) 过河效益层次结构
(b) 过河代价层次结构
图5-3 过河的效益与代价层次结构图
过河的效益
A 过河的效益 2B
经济效益
1B
过河的效益
3B
隧 道
2D
桥 梁
1D
渡 船
3D
美化
11
C
进出方便
10
C
舒适
9
C
自豪感
8
C
交往沟通
7C
安全可靠
6
C
建筑就业
5
C
当地商业4C 岸间商业3C
收入2C
节省时间1
C
过河的代价
A 社会代价
2B 经济代价 1B
环境代价
3B
隧 道 2D
桥 梁
1D 渡 船
3D
对生态的污染
9
C
对水的污染
8
C
汽车的排放物
7
C
居民搬迁
6
C
交往拥挤
5C
安全可靠
4
C
冲击渡船业
3
C
操作维护
2
C
投入资金
1
C
关于效益的各个判断矩阵如表5-9—表5-23所示。
表5-9
表5-10
表5-11
表5-12
表5-13
表5-14
表5-15
表5-16
表5-17
表5-18
表
5-19
表
5-20
表5-21
表5-22
表
5-23
这样我们得到方案关于效益的合成顺序为
T )07.0 ,36.0 ,57.0()4(=益ω
效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因
C11的排序权重很低,故不影响最后结果)。
从效益看建靠桥梁方案为最佳。
表5-24
表
5-25
表5-26
表
5-27
表5-28
表5-29
表5-30
表
5-31
代价分析的判断矩阵如表5-24—表5-36所示。
表5-32
表5-33
表5-34
表
5-35
表
5-36
得到方案关于代价的合成排序为
T )05.0 ,58.0 ,36.0()4(=代ω
整体一致性比例C.R.(4)<0.1。
各方案的效益/代价如下:
桥梁:效益/代价=1.58 隧道:效益/代价=0.62
轮渡:效益/代价=1.28
方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。